Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.600
Filtrar
1.
Nat Commun ; 15(1): 4691, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824171

RESUMEN

Self-reactive and polyreactive B cells generated during B cell development are silenced by either apoptosis, clonal deletion, receptor editing or anergy to avoid autoimmunity. The specific contribution of apoptosis to normal B cell development and self-tolerance is incompletely understood. Here, we quantify self-reactivity, polyreactivity and apoptosis during physiologic B lymphocyte development. Self-reactivity and polyreactivity are most abundant in early immature B cells and diminish significantly during maturation within the bone marrow. Minimal apoptosis still occurs at this site, however B cell receptors cloned from apoptotic B cells show comparable self-reactivity to that of viable cells. Apoptosis increases dramatically only following immature B cells leaving the bone marrow sinusoids, but above 90% of cloned apoptotic transitional B cells are not self-reactive/polyreactive. Our data suggests that an apoptosis-independent mechanism, such as receptor editing, removes most self-reactive B cells in the bone marrow. Mechanistically, lack of survival signaling rather than clonal deletion appears to be the underpinning cause of apoptosis in most transitional B cells in the periphery.


Asunto(s)
Apoptosis , Linfocitos B , Supresión Clonal , Ratones Endogámicos C57BL , Animales , Apoptosis/inmunología , Supresión Clonal/inmunología , Linfocitos B/inmunología , Ratones , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/inmunología , Receptores de Antígenos de Linfocitos B/genética , Diferenciación Celular/inmunología , Médula Ósea/inmunología , Femenino , Células Precursoras de Linfocitos B/inmunología
2.
Front Immunol ; 15: 1415573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835772

RESUMEN

Efferocytosis, the process of engulfing and removing apoptotic cells, plays an essential role in preserving tissue health and averting undue inflammation. While macrophages are primarily known for this task, dendritic cells (DCs) also play a significant role. This review delves into the unique contributions of various DC subsets to efferocytosis, highlighting the distinctions in how DCs and macrophages recognize and handle apoptotic cells. It further explores how efferocytosis influences DC maturation, thereby affecting immune tolerance. This underscores the pivotal role of DCs in orchestrating immune responses and sustaining immune equilibrium, providing new insights into their function in immune regulation.


Asunto(s)
Células Dendríticas , Macrófagos , Fagocitosis , Células Dendríticas/inmunología , Humanos , Fagocitosis/inmunología , Animales , Macrófagos/inmunología , Apoptosis/inmunología , Tolerancia Inmunológica , Eferocitosis
3.
Vet Immunol Immunopathol ; 273: 110775, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38776648

RESUMEN

BACKGROUND: Hydatid disease is caused by the larval stages of the canine tapeworm Echinococcus granulosus. It is one of the most critical helminthic diseases, representing worldwide public health and socio-economic concern. AIM: This study aimed to investigate the expression of apoptosis and immune response within hepatic tissues of humans and sheep infected with the Hydatid cyst. METHODS: Paraffin-embedded tissue was prepared from each tissue sample and used for histopathological examination by Haematoxylin- Eosin. Also, toluidine blue staining was used for mast cell detection, while an immunohistochemical study was performed to assess CD3 T lymphocytes, CD4 helper T lymphocytes, CD8 cytotoxic T lymphocytes, CD20 memory B lymphocytes, CD68 macrophage, and caspase-3 antibodies. RESULTS: The histological examination revealed significant changes, including the infiltration of inflammatory cells, predominantly lymphocytes with scattered giant cells, necrotic hepatic tissue, and fibrosis. Toluidine blue stain revealed a higher number of mast cells (5 cells/field) in humans compared to sheep (3.6 cells/field). The immunohistochemical analysis confirmed that the CD3 were the most predominant inflammatory cell in the hepatic tissue of humans (intensive 70%), and sheep (moderate 38.47%). Caspase-3 was observed in all samples in different grades and mostly in human liver tissue. CONCLUSION: This data could aid in recognizing immunological markers for differentiating disease progression, as well as enhance the understanding of local immune responses to cystic Echinococcosis (CE). The findings could provide preliminary data for future studies on immune responses associated with Hydatid cysts.


Asunto(s)
Equinococosis Hepática , Enfermedades de las Ovejas , Animales , Ovinos/inmunología , Equinococosis Hepática/inmunología , Equinococosis Hepática/veterinaria , Equinococosis Hepática/parasitología , Enfermedades de las Ovejas/inmunología , Enfermedades de las Ovejas/parasitología , Humanos , Hígado/parasitología , Hígado/inmunología , Hígado/patología , Masculino , Femenino , Equinococosis/inmunología , Equinococosis/veterinaria , Echinococcus granulosus/inmunología , Apoptosis/inmunología , Caspasa 3/inmunología , Adulto
4.
J Immunol ; 213(1): 40-51, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38809096

RESUMEN

NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.


Asunto(s)
Apoptosis , Células Asesinas Naturales , Activación de Linfocitos , Humanos , Células Asesinas Naturales/inmunología , Apoptosis/inmunología , Activación de Linfocitos/inmunología , Daño del ADN , Replicación del ADN , Antígeno CD56/metabolismo , Estrés Fisiológico/inmunología , Linfocitos T/inmunología , Células Cultivadas
5.
Front Immunol ; 15: 1275203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779685

RESUMEN

Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.


Asunto(s)
Macrófagos , Fagocitosis , Humanos , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Apoptosis/inmunología , Transducción de Señal , Inflamación/inmunología , Eferocitosis
6.
Front Biosci (Landmark Ed) ; 29(4): 157, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38682203

RESUMEN

Dendritic cells (DCs), the most efficient antigen-presenting cells (APCs), bridge the innate and adaptive immune systems. As such, the turn-over of DCs is critical during autoimmune responses, and the dysregulation of DC apoptosis could cause severe immune destruction in the host. For example, reduction of immunogenic DCs by increased apoptosis could lead to immune tolerance to pathogen infection that might allow exposure of nuclear autoantigens, whereas reduced apoptosis could result in long-term lymphocyte activation to break the immune tolerance for the development of autoimmune disease. Thus, keeping a balance between survival and apoptosis of DCs is crucial to maintain immune homeostasis. In this review, we summarize the recent development on the factors inducing DC apoptosis and their underlying mechanisms to provide insights into the immunopathogenesis of some autoimmune diseases, which could lead to effective therapeutic interventions in the clinics.


Asunto(s)
Apoptosis , Enfermedades Autoinmunes , Células Dendríticas , Células Dendríticas/inmunología , Humanos , Enfermedades Autoinmunes/inmunología , Apoptosis/inmunología , Animales , Tolerancia Inmunológica/inmunología
7.
Mol Immunol ; 170: 46-56, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615627

RESUMEN

Peritoneal B cells can be divided into B1 cells (CD11b+CD19+) and B2 cells (CD11b-CD19+) based on CD11b expression. B1 cells play a crucial role in the innate immune response by producing natural antibodies and cytokines. B2 cells share similar traits with B1 cells, influenced by the peritoneal environment. However, the response of both B1 and B2 cells to the same stimuli in the peritoneum remains uncertain. We isolated peritoneal B1 and B2 cells from mice and assessed differences in Interleukin-10(IL-10) secretion, apoptosis, and surface molecule expression following exposure to LPS and Interleukin-21(IL-21). Our findings indicate that B1 cells are potent IL-10 producers, possessing surface molecules with an IgMhiCD43+CD21low profile, and exhibit a propensity for apoptosis in vitro. Conversely, B2 cells exhibit lower IL-10 production and surface markers characterized as IgMlowCD43-CD21hi, indicative of some resistance to apoptosis. LPS stimulates MAPK phosphorylation in B1 and B2 cells, causing IL-10 production. Furthermore, LPS inhibits peritoneal B2 cell apoptosis by enhancing Bcl-xL expression. Conversely, IL-21 has no impact on IL-10 production in these cells. Nevertheless, impeding STAT3 phosphorylation permits IL-21 to increase IL-10 production in peritoneal B cells. Moreover, IL-21 significantly raises apoptosis levels in these cells, a process independent of STAT3 phosphorylation and possibly linked to reduced Bcl-xL expression. This study elucidates the distinct functional and response profiles of B1 and B2 cells in the peritoneum to stimuli like LPS and IL-21, highlighting their differential roles in immunological responses and B cell diversity.


Asunto(s)
Apoptosis , Interleucina-10 , Interleucinas , Lipopolisacáridos , Peritoneo , Interleucinas/inmunología , Interleucinas/metabolismo , Animales , Lipopolisacáridos/farmacología , Lipopolisacáridos/inmunología , Ratones , Interleucina-10/inmunología , Interleucina-10/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Peritoneo/inmunología , Peritoneo/citología , Subgrupos de Linfocitos B/inmunología , Ratones Endogámicos C57BL , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/inmunología , Linfocitos B/inmunología , Antígeno CD11b/metabolismo , Antígeno CD11b/inmunología , Proteína bcl-X/metabolismo , Proteína bcl-X/inmunología , Fosforilación/efectos de los fármacos , Antígenos CD19/inmunología , Antígenos CD19/metabolismo
8.
J Dermatol ; 51(5): 621-631, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605467

RESUMEN

Alopecia areata refers to an autoimmune illness indicated by persistent inflammation. The key requirement for alopecia areata occurrence is the disruption of immune-privileged regions within the hair follicles. Recent research has indicated that neuropeptides play a role in the damage to hair follicles by triggering neurogenic inflammation, stimulating mast cells ambient the follicles, and promoting apoptotic processes in keratinocytes. However, the exact pathogenesis of alopecia areata requires further investigation. Recently, there has been an increasing focus on understanding the mechanisms of immune diseases resulting from the interplay between the nervous and the immune system. Neurogenic inflammation due to neuroimmune disorders of the skin system may disrupt the inflammatory microenvironment of the hair follicle, which plays a crucial part in the progression of alopecia areata.


Asunto(s)
Alopecia Areata , Folículo Piloso , Inflamación Neurogénica , Alopecia Areata/inmunología , Alopecia Areata/etiología , Alopecia Areata/patología , Humanos , Folículo Piloso/inmunología , Folículo Piloso/patología , Inflamación Neurogénica/inmunología , Inflamación Neurogénica/etiología , Neuropéptidos/metabolismo , Neuropéptidos/inmunología , Mastocitos/inmunología , Queratinocitos/inmunología , Queratinocitos/patología , Apoptosis/inmunología , Animales
9.
Bull Math Biol ; 86(6): 66, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678489

RESUMEN

The development of autoimmune diseases often takes years before clinical symptoms become detectable. We propose a mathematical model for the immune response during the initial stage of Systemic Lupus Erythematosus which models the process of aberrant apoptosis and activation of macrophages and neutrophils. NETosis is a type of cell death characterised by the release of neutrophil extracellular traps, or NETs, containing material from the neutrophil's nucleus, in response to a pathogenic stimulus. This process is hypothesised to contribute to the development of autoimmunogenicity in SLE. The aim of this work is to study how NETosis contributes to the establishment of persistent autoantigen production by analysing the steady states and the asymptotic dynamics of the model by numerical experiment.


Asunto(s)
Apoptosis , Trampas Extracelulares , Lupus Eritematoso Sistémico , Conceptos Matemáticos , Modelos Inmunológicos , Neutrófilos , Lupus Eritematoso Sistémico/inmunología , Lupus Eritematoso Sistémico/patología , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Humanos , Neutrófilos/inmunología , Apoptosis/inmunología , Autoantígenos/inmunología , Simulación por Computador , Macrófagos/inmunología , Macrófagos/metabolismo , Activación Neutrófila/inmunología , Activación de Macrófagos
10.
Science ; 384(6691): eabo7027, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574142

RESUMEN

Macrophages are functionally heterogeneous cells essential for apoptotic cell clearance. Apoptotic cells are defined by homogeneous characteristics, ignoring their original cell lineage identity. We found that in an interleukin-4 (IL-4)-enriched environment, the sensing of apoptotic neutrophils by macrophages triggered their tissue remodeling signature. Engulfment of apoptotic hepatocytes promoted a tolerogenic phenotype, whereas phagocytosis of T cells had little effect on IL-4-induced gene expression. In a mouse model of parasite-induced pathology, the transfer of macrophages conditioned with IL-4 and apoptotic neutrophils promoted parasitic egg clearance. Knockout of phagocytic receptors required for the uptake of apoptotic neutrophils and partially T cells, but not hepatocytes, exacerbated helminth infection. These findings suggest that the identity of apoptotic cells may contribute to the development of distinct IL-4-driven immune programs in macrophages.


Asunto(s)
Apoptosis , Interleucina-4 , Macrófagos , Fagocitosis , Esquistosomiasis mansoni , Animales , Ratones , Apoptosis/inmunología , Hepatocitos/inmunología , Interleucina-4/genética , Interleucina-4/metabolismo , Macrófagos/inmunología , Ratones Noqueados , Neutrófilos/inmunología , Fagocitosis/inmunología , Esquistosomiasis mansoni/genética , Esquistosomiasis mansoni/inmunología , Modelos Animales de Enfermedad
11.
J Immunol ; 212(10): 1540-1552, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38517295

RESUMEN

Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/inmunología , Masculino , Persona de Mediana Edad , Femenino , SARS-CoV-2/inmunología , Anciano , Linfocitos B/inmunología , Subgrupos de Linfocitos B/inmunología , Índice de Severidad de la Enfermedad , Adulto , Apoptosis/inmunología , Enfermedad Crítica , Interleucina-10/inmunología , Interleucina-10/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Interleucina-6/metabolismo , Interleucina-6/inmunología
12.
Parasit Vectors ; 16(1): 371, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37858158

RESUMEN

BACKGROUND: Toxoplasmosis is a zoonosis with a worldwide presence that is caused by the intracellular parasite Toxoplasma gondii. Active regulation of apoptosis is an important immune mechanism by which host cells resist the growth of T. gondii or avoid excessive pathological damage induced by this parasite. Previous studies found that upregulated expression of microRNA-185 (miR-185) during T. gondii infection has a potential role in regulating the expression of the ARAF gene, which is reported to be associated with cell proliferation and apoptosis. METHODS: The expression levels of miR-185 and the ARAF gene were evaluated by qPCR and Western blot, respectively, in mice tissues, porcine kidney epithelial cells (PK-15) and porcine alveolar macrophages (3D4/21) following infection with the T. gondii ToxoDB#9 and RH strains. The dual luciferase reporter assay was then used to verify the relationship between miR-185 and ARAF targets in PK-15 cells. PK-15 and 3D4/21 cell lines with stable knockout of the ARAF gene were established by CRISPR, and then the apoptosis rates of the cells following T. gondii infection were detected using cell flow cytometry assays. Simultaneously, the activities of cleaved caspase-3, as a key apoptosis executive protein, were detected by Western blot to evaluate the apoptosis levels of cells. RESULTS: Infection with both the T. gondii ToxoDB#9 and RH strains induced an increased expression of miR-185 and a decreased expression of ARAF in mice tissues, PK-15 and 3D4/21 cells. MiR-185 mimic transfections showed a significantly negative correlation in expression levels between miR-185 and the ARAF gene. The dual luciferase reporter assay confirmed that ARAF was a target of miR-185. Functional investigation revealed that T. gondii infection induced the apoptosis of PK-15 and 3D4/21 cells, which could be inhibited by ARAF knockout or overexpression of miR-185. The expression levels of cleaved caspase-3 protein were significantly lower in cells with ARAF knockout than in normal cells, which were consistent with the results of the cell flow cytometry assays. CONCLUSIONS: Toxoplasma gondii infection could lead to the upregulation of miR-185 and the downregulation of ARAF, which was not related to the strain of T. gondii and the host cells. Toxoplasma gondii infection could regulate the apoptosis of host cells via the miR-185/ARAF axis, which represents an additional strategy used by T. gondii to counteract host-cell apoptosis in order to maintain survival and reproduce in the host cells.


Asunto(s)
MicroARNs , Proteínas Proto-Oncogénicas A-raf , Enfermedades de los Porcinos , Toxoplasma , Toxoplasmosis , Animales , Ratones , Apoptosis/genética , Apoptosis/inmunología , Caspasa 3 , Células Cultivadas , Luciferasas , MicroARNs/genética , MicroARNs/metabolismo , Porcinos/genética , Porcinos/metabolismo , Porcinos/parasitología , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/parasitología , Toxoplasmosis/genética , Toxoplasmosis/metabolismo , Proteínas Proto-Oncogénicas A-raf/genética , Proteínas Proto-Oncogénicas A-raf/metabolismo
13.
Anticancer Res ; 43(9): 3943-3960, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648328

RESUMEN

BACKGROUND/AIM: Acute myeloid leukemia (AML) is a severe malignancy of the bone marrow marked by an abnormal accumulation of bone marrow precursors. Cuproptosis is a recently identified type of copper-dependent regulatory cell apoptosis that relies on mitochondrial respiration. However, its participation in the development of AML remains unclear. This study analyzed the association between cuproptosis-related genes and the prognosis of AML patients. MATERIALS AND METHODS: Cases of AML were acquired from TCGA, GEO, and TARGET and the molecular subgroups characterized by genes associated with cuproptosis, besides the associated cell infiltration of the tumor microenvironment (TME) were investigated. The cuproptosis score was developed using the minor absolute shrinkage and selection operator (LASSO) tool to evaluate the cuproptosis features of a single tumor sample. RESULTS: Two distinct molecular subgroups related to cuproptosis were discovered in AML with different prognoses. The cellular infiltration assay of TME showed immunological heterogeneity between the two subtypes. The cuproptosis score predicted tumor subgroups, immunity, and prognosis. A small cuproptosis value was marked by a good prognosis, whereas the anti-PD-1/PD-L1 immunotherapy group suggested the same cuproptosis group was related to an elevated immunotherapy potency. CONCLUSION: The cuproptosis score is a biomarker important for determining the molecular subgroups, prognosis, TME cell infiltration features, and immunotherapeutic efficacy of individuals with leukemia.


Asunto(s)
Apoptosis , Cobre , Leucemia Mieloide Aguda , Microambiente Tumoral , Microambiente Tumoral/inmunología , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/patología , Apoptosis/genética , Apoptosis/inmunología , Cobre/metabolismo , Cobre/toxicidad , Humanos , Pronóstico , Leucocitos/inmunología
14.
PeerJ ; 11: e15337, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483985

RESUMEN

To assess the immune potential of spiders, in the present study juvenile and adult females of Parasteatoda tepidariorum were exposed to Bacillus subtilis infection, injury by a nylon monofilament and a combination of both. The expression level of selected immune-related genes: defensin 1 (PtDEF1), lysozyme 1 (PtLYS1), lysozyme C (PtLYSC), lysozyme M1 (PtLYSM1), autophagy-related protein 101 (PtATG101), dynamin (PtDYN) and heat shock proteins (HSP70) (PtHSPB, PtHSPB2A, PtHSPB2B), production of lysozyme and HSP70 proteins, and hemocytes viability were measured. The obtained results indicated expression of the lysozyme, autophagy-related protein and HSP70 genes in both ontogenetic stages of P. tepidariorum. It has been also shown that the simultaneous action of mechanical and biological factors causes higher level of lysozyme and HSP70, cell apoptosis intensity and lower level of hemocytes viability than in the case of exposure to a single immunostimulant. Moreover, mature females showed stronger early immune responses compared to juveniles.


Asunto(s)
Bacillus subtilis , Cuerpos Extraños , Arañas , Animales , Femenino , Bacillus subtilis/inmunología , Cuerpos Extraños/inmunología , Arañas/genética , Arañas/inmunología , Arañas/microbiología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Factores de Edad , Regulación de la Expresión Génica/inmunología , Apoptosis/inmunología , Hemocitos/inmunología
15.
Mediators Inflamm ; 2023: 3951940, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37124062

RESUMEN

Background: Hepatocellular carcinoma (HCC) remains a challenging medical problem. Cuproptosis is a novel form of cell death that plays a crucial role in tumorigenesis, angiogenesis, and metastasis. However, it remains unclear whether cuproptosis-related genes (CRGs) influence the outcomes and immune microenvironment of HCC patients. Method: From The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases, we obtained the mRNA expression file and related clinical information of HCC patients. We selected 19 CRGs as candidate genes for this study according to previous literature. We performed a differential expression analysis of the 19 CRGs between malignant and precancerous tissue. Based on the 19 CRGs, we enrolled cluster analysis to identify cuproptosis-related subtypes of HCC patients. A prognostic risk signature was created utilizing univariate Cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses. We employed independent and stratification survival analyses to investigate the predictive value of this model. The functional enrichment features, mutation signatures, immune profile, and response to immunotherapy of HCC patients were also investigated according to the two molecular subtypes and the prognostic signature. Results: We found that 17 CRGs significantly differed in HCC versus normal samples. Cluster analysis showed two distinct molecular subtypes of cuproptosis. Cluster 1 is preferentially related to poor prognosis, high activity of immune response signaling, high mutant frequency of TP53, and distinct immune cell infiltration versus cluster 2. Through univariate and LASSO Cox regression analyses, we created a cuproptosis-related prognostic risk signature containing LIPT1, DLAT, MTF1, GLS, and CDKN2A. High-risk HCC patients were shown to have a worse prognosis. The risk signature was proved to be an independent predictor of prognosis in both the TCGA and ICGC datasets, according to multivariate analysis. The signature also performed well in different stratification of clinical features. The immune cells, which included regulatory T cells (Treg), B cells, macrophages, mast cells, NK cells, and aDCs, as well as immune functions containing cytolytic activity, MHC class I, and type II IFN response, were remarkably distinct between the high-risk and low-risk groups. The tumor immune dysfunction and exclusion (TIDE) score suggested that high-risk patients had a higher response rate to immune checkpoint inhibitors than low-risk patients. Conclusion: This research discovered the potential prognostic and immunological significance of cuproptosis in HCC, improved the understanding of cuproptosis, and may deliver new directions for developing more efficacious therapeutic techniques for HCC patients.


Asunto(s)
Apoptosis , Carcinoma Hepatocelular , Cobre , Neoplasias Hepáticas , Humanos , Apoptosis/genética , Apoptosis/inmunología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/terapia , Cobre/metabolismo , Cobre/toxicidad , Perfilación de la Expresión Génica , Inmunoterapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/terapia , Pronóstico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Anciano
16.
Anim Biotechnol ; 34(9): 4667-4674, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36861935

RESUMEN

Antibiotics as feed additives, play a vital role in animal husbandry. However, overused antibiotics could cause endogenous infections in animals, and even endanger human health through the food chain. And immunopotentiators can make the low immune function improve and accelerate the induction of immune response. The aim of this study was to investigate the effects of five different immunopotentiators on the expression of liver apoptosis and immune factor related genes in Shaoxing ducklings (Anas Platyrhynchos). A total of 150 one-day-old Shaoxing ducklings were randomly divided into six groups including saline, chlorogenic acid, ß-D-glucan, astragalus flavone, CpG DNA and chicken IgG, which were injected subcutaneously into the neck, respectively. At 18 days old, the liver tissues were collected to detecte the mRNA and protein expression levels of inflammatory and apoptosis-related genes. The results showed that compared with the control group, the mRNA and protein levels of liver Bcl2 with chlorogenic acid, ß-D-glucan, astragalus flavone, CpG-DNA and chicken IgG were significantly decreased (p < 0.05), while the expression level of Caspase3 was up-regulated in some different degrees. In addition,The expression levels of liver iNOS and COX2 were significantly increased after the injection of five immunopotentiators (p < 0.05), and the mRNA levels of IFN-α, IFN-ß, IL-1ß, RIG-I, TLR3 and TLR7 genes were also significantly up-regulated compared with the control group (p < 0.05). In conclusion, chlorogenic acid, ß-D-glucan, astragalus flavone, CpG-DNA and chicken IgG can be used as immunopotentiators to regulate duck innate immunity. This study provides a new way to prevent important infectious diseases of ducks, and also provides a certain reference for the application of antibiotic substitutes in animal production.


Asunto(s)
Alimentación Animal , Patos , Flavonas , Animales , Adyuvantes Inmunológicos/administración & dosificación , Antibacterianos , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Ácido Clorogénico , ADN , Patos/fisiología , Glucanos , Inmunidad Innata , Inmunoglobulina G , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , ARN Mensajero/metabolismo
17.
J Virol ; 97(1): e0144222, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36541803

RESUMEN

Pathological effects of apoptosis associated with viral infections of the central nervous system are an important cause of morbidity and mortality. Reovirus is a neurotropic virus that causes apoptosis in neurons, leading to lethal encephalitis in newborn mice. Reovirus-induced encephalitis is diminished in mice with germ line ablation of NF-κB subunit p50. It is not known whether the proapoptotic function of NF-κB is mediated by neural-cell-intrinsic (neural-intrinsic) processes, NF-κB-regulated cytokine production by inflammatory cells, or a combination of both. To determine the contribution of cell type-specific NF-κB signaling in reovirus-induced neuronal injury, we established mice that lack NF-κB p65 expression in neural cells using the Cre/loxP recombination system. Following intracranial inoculation of reovirus, 50% of wild-type (WT) mice succumbed to infection, whereas more than 90% of mice lacking neural cell NF-κB p65 (Nsp65-/-) survived. While viral loads in brains of WT and Nsp65-/- mice were comparable, histological analysis revealed that reovirus antigen-positive areas in the brains of WT mice displayed increased immunoreactivity for cleaved caspase-3, a marker of apoptosis, relative to Nsp65-/- mice. These data suggest that neural-intrinsic NF-κB-dependent factors are essential mediators of reovirus neurovirulence. RNA sequencing analysis of reovirus-infected brain cortices of WT and Nsp65-/- mice suggests that NF-κB activation in neuronal cells upregulates genes involved in innate immunity, inflammation, and cell death following reovirus infection. A better understanding of the contribution of cell type-specific NF-κB-dependent signaling to viral neuropathogenesis could inform development of new therapeutics that target and protect highly vulnerable cell populations. IMPORTANCE Viral encephalitis contributes to illness and death in children and adults worldwide and has limited treatment options. Identifying common host factors upregulated by neurotropic viruses can enhance an understanding of virus-induced neuropathogenesis and aid in development of therapeutics. Although many neurotropic viruses activate NF-κB during infection, mechanisms by which NF-κB regulates viral neuropathogenesis and contributes to viral encephalitis are not well understood. We established mice in which NF-κB expression is ablated in neural tissue to study the function of NF-κB in reovirus neurovirulence and identify genes activated by NF-κB in response to reovirus infection in the central nervous system. Encephalitis following reovirus infection was dampened in mice lacking neural cell NF-κB. Reovirus induced a chemokine profile in the brain that was dependent on NF-κB signaling and was similar to chemokine profiles elicited by other neurotropic viruses. These data suggest common underlying mechanisms of encephalitis caused by neurotropic viruses and potentially shared therapeutic targets.


Asunto(s)
Encefalitis Viral , Neuronas , Infecciones por Reoviridae , Reoviridae , Animales , Ratones , Apoptosis/genética , Apoptosis/inmunología , Quimiocinas/inmunología , Encefalitis Viral/inmunología , Encefalitis Viral/virología , Neuronas/inmunología , FN-kappa B/genética , FN-kappa B/metabolismo , Reoviridae/inmunología , Reoviridae/patogenicidad , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/virología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/inmunología
18.
Front Immunol ; 13: 899413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757772

RESUMEN

L. johnsonii N6.2 releases nano-sized vesicles (NVs) with distinct protein and lipid contents. We hypothesized that these NVs play a central role in the delivery of bioactive molecules that may act as mechanistic effectors in immune modulation. In this report, we observed that addition of NVs to the human pancreatic cell line ßlox5 reduced cytokine-induced apoptosis. Through RNAseq analyses, increased expression of CYP1A1, CYP1B1, AHRR, and TIPARP genes in the aryl hydrocarbon receptor (AHR) pathways were found to be significantly induced in presence of NVs. AHR nuclear translocation was confirmed by confocal microscopy. The role of NVs on beta cell function was further evaluated using primary human pancreatic islets. It was found that NVs significantly increased insulin secretion in presence of high glucose concentrations. These increases positively correlated with increased GLUT6 and SREBF1 mRNA and coincided with reduced oxidative stress markers. Furthermore, incubation of NVs with THP-1 macrophages promoted the M2 tolerogenic phenotype through STAT3 activation, expression of AHR-dependent genes and secretion of IL10. Altogether, our findings indicate that bacterial NVs have the potential to modulate glucose homeostasis in the host by directly affecting insulin secretion by islets and through the induction of a tolerogenic immune phenotype.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Interleucina-10 , Lactobacillus johnsonii , Receptores de Hidrocarburo de Aril , Apoptosis/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Glucosa/metabolismo , Humanos , Interleucina-10/inmunología , Interleucina-10/metabolismo , Lactobacillus johnsonii/genética , Lactobacillus johnsonii/inmunología , Lactobacillus johnsonii/metabolismo , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/inmunología , Receptores de Hidrocarburo de Aril/metabolismo
19.
Neuroimmunomodulation ; 29(4): 425-432, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35705003

RESUMEN

BACKGROUND: Ischemic stroke is a major health issue that causes high incidents of morbidity and mortality worldwide. Irisin is an excise-induced protein that has exhibited pleiotropic properties. Accumulating evidence reveals its critical roles in the regulation of various cellular functions, including nervous system functions. This study aims to disclose the effect of irisin on rat cerebral neurons suffering from hypoxia/reoxygenation (H/R) treatment and to explore the potential underlying molecular mechanisms. METHODS: The percentage of rat cerebral neuron cell death was determined by flow cytometry analysis and MTT assay. The expression levels of target genes were measured by western blotting and real-time quantitative reverse transcription PCR assay. RESULTS: Our results demonstrated that irisin treatment substantially reduced H/R-induced apoptosis of rat cerebral neurons. Further investigation revealed that irisin treatment markedly decreased mitogen-activated protein kinase (MAPK) signaling pathway activation and suppressed pro-informatory cytokine expression in cerebral neurons with H/R challenge. Finally, we showed that the neuroprotective effect and anti-inflammatory effect of irisin were comparable with three MAPK signaling inhibitors. CONCLUSION: Irisin exerts profound neuroprotective and anti-inflammatory effects on H/R-stimulated cerebral neurons by inhibiting the MAPK signaling activation. Therefore, irisin may serve as a potential drug for the treatment of patients with ischemic stroke.


Asunto(s)
Fibronectinas , Accidente Cerebrovascular Isquémico , Animales , Ratas , Antiinflamatorios/inmunología , Antiinflamatorios/farmacología , Apoptosis/genética , Apoptosis/inmunología , Citocinas/genética , Citocinas/inmunología , Fibronectinas/genética , Fibronectinas/inmunología , Fibronectinas/farmacología , Hipoxia Encefálica/genética , Hipoxia Encefálica/inmunología , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/inmunología , Neuronas/inmunología
20.
Mol Immunol ; 147: 157-169, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35597181

RESUMEN

Treponema pallidum is a "stealth pathogen" responsible for infectious sexually transmitted diseases. Although neutrophils are usually present in skin lesions of early syphilis, the role of these cells in T. pallidum infection has barely been investigated. Neutrophils are short-lived cells that undergo constitutive apoptosis, and phagocytosis usually accelerates this process. Here, we demonstrated that human polymorphonuclear neutrophils (hPMNs) could phagocytose T. pallidum in vitro. An unexpected discovery was that T. pallidum inhibited hPMNs apoptosis markedly in an opsonin-independent manner. Furthermore, this phenomenon was not affected by bacterial viability, as detected by annexin V, morphology studies, and TUNEL staining. Exploration of the underlying mechanism showed that expression of the cleaved forms of caspase-3, -8, and -9 and effector caspase activity were diminished significantly in T. pallidum-infected hPMNs. T. pallidum also impaired staurosporine- and anti-Fas-induced signaling for neutrophil apoptosis. Of note, these effects were accompanied by inducing the autocrine production of the anti-apoptotic cytokine IL-8. Taken together, our data revealed that T. pallidum could inhibit the apoptosis of hPMNs through intrinsic and extrinsic pathways and provide new insights for understanding the pathogenicity mechanisms of T. pallidum.


Asunto(s)
Apoptosis , Neutrófilos , Treponema pallidum , Apoptosis/inmunología , Apoptosis/fisiología , Humanos , Neutrófilos/metabolismo , Proteínas Opsoninas , Fagocitosis , Treponema pallidum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...