Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 729
Filtrar
1.
Iran J Med Sci ; 49(7): 441-449, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39114632

RESUMEN

Background: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual cognitive impairment, including loss of synapses and nerve cells involved in learning, memory, and habit formation processes. Bone Marrow Mesenchymal Stem Cells (BM-MSCs) are multipotent cells. Because of their self-renewable, differentiation, and immunomodulatory capabilities, they are commonly used to treat many disorders. Hence, the current study intends to examine the effect of BM-MSCs transplantation on Aluminum chloride (AlCl3)-induced cognitive problems, an experimental model resembling AD's hallmarks in rats. Methods: The study was conducted in 2022 at The Biomedical Laboratory Faculty of Medicine, Andalas University, Indonesia. Adult male Wistar rats (three groups: negative control; no intervention+treatment with PBS; positive control: AlCl3+treatment with aqua dest; AlCl3+BM-MSCs: AlCl3+treatment with BM-MSCs, n=5 each) were treated daily with AlCl3 orally for five days. Stem cells were intraperitoneally injected into rats at a dose of 1x106 cells/rat. The same quantity of phosphate-buffered saline was given to the control group. One month after stem cell injection, the rat brain tissue was removed and placed in the film bottles that had been created. The expression of neural progenitor cell markers, including nestin and sex-determining Y-box 2 (SOX-2), was analyzed using real-time polymerase chain reaction (RT-PCR). Rats' cognitive and functional memory were examined using Y-maze. Data were analyzed using SPSS software (version 26.0) with a one-way analysis of variance (ANOVA) test. Results: The gene expression of nestin (29.74±0.42), SOX-2 (31.44±0.67), and percent alternation of Y-maze (67.04±2.28) increased in the AlCl3+BM-MSCs group compared to that in the positive control group. RT-PCR analysis indicated that nestin (P<0.001) and SOX-2 (P<0.001) were significantly enhanced in the AlCl3+BM-MSCs group compared to the positive control group. This group also indicated an increased percent alternation of Y-maze (P<0.001) in the AlCl3+BM-MSCs group compared to the positive control group. Conclusion: Due to its potential effects on cell therapy, BM-MSCs were found effective in a rat model of AD on the impairment of the rats' behavior and increased expression of neural progenitor cell markers.


Asunto(s)
Cloruro de Aluminio , Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Células Madre Mesenquimatosas , Nestina , Ratas Wistar , Factores de Transcripción SOXB1 , Animales , Cloruro de Aluminio/farmacología , Ratas , Masculino , Enfermedad de Alzheimer/terapia , Nestina/genética , Trasplante de Células Madre Mesenquimatosas/métodos , Compuestos de Aluminio/farmacología , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Cloruros , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
2.
Sci Rep ; 14(1): 15944, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987437

RESUMEN

Assessment of spatial learning abilities is central to behavioral neuroscience and a useful tool for animal model validation and drug development. However, biases introduced by the apparatus, environment, or experimentalist represent a critical challenge to the test validity. We have recently developed the Modified Barnes Maze (MBM) task, a spatial learning paradigm that overcomes inherent behavioral biases of animals in the classical Barnes maze. The specific combination of spatial strategies employed by mice is often considered representative of the level of cognitive resources used. Herein, we have developed a convolutional neural network-based classifier of exploration strategies in the MBM that can effectively provide researchers with enhanced insights into cognitive traits in mice. Following validation, we compared the learning performance of female and male C57BL/6J mice, as well as that of Ts65Dn mice, a model of Down syndrome, and 5xFAD mice, a model of Alzheimer's disease. Male mice exhibited more effective navigation abilities than female mice, reflected in higher utilization of effective spatial search strategies. Compared to wildtype controls, Ts65Dn mice exhibited delayed usage of spatial strategies despite similar success rates in completing this spatial task. 5xFAD mice showed increased usage of non-spatial strategies such as Circling that corresponded to higher latency to reach the target and lower success rate. These data exemplify the need for deeper strategy classification tools in dissecting complex cognitive traits. In sum, we provide a machine-learning-based strategy classifier that extends our understanding of mice's spatial learning capabilities while enabling a more accurate cognitive assessment.


Asunto(s)
Aprendizaje por Laberinto , Ratones Endogámicos C57BL , Redes Neurales de la Computación , Aprendizaje Espacial , Animales , Masculino , Femenino , Ratones , Aprendizaje Espacial/fisiología , Modelos Animales de Enfermedad , Enfermedad de Alzheimer , Conducta Animal
3.
Nat Commun ; 15(1): 6410, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080283

RESUMEN

Adult neurogenesis is a unique form of neuronal plasticity in which newly generated neurons are integrated into the adult dentate gyrus in a process that is modulated by environmental stimuli. Adult-born neurons can contribute to spatial memory, but it is unknown whether they alter neural representations of space in the hippocampus. Using in vivo two-photon calcium imaging, we find that male and female mice previously housed in an enriched environment, which triggers an increase in neurogenesis, have increased spatial information encoding in the dentate gyrus. Ablating adult neurogenesis blocks the effect of enrichment and lowers spatial information, as does the chemogenetic silencing of adult-born neurons. Both ablating neurogenesis and silencing adult-born neurons decreases the calcium activity of dentate gyrus neurons, resulting in a decreased amplitude of place-specific responses. These findings are in contrast with previous studies that suggested a predominantly inhibitory action for adult-born neurons. We propose that adult neurogenesis improves representations of space by increasing the gain of dentate gyrus neurons and thereby improving their ability to tune to spatial features. This mechanism may mediate the beneficial effects of environmental enrichment on spatial learning and memory.


Asunto(s)
Giro Dentado , Hipocampo , Neurogénesis , Neuronas , Memoria Espacial , Animales , Neurogénesis/fisiología , Masculino , Femenino , Giro Dentado/fisiología , Giro Dentado/citología , Ratones , Neuronas/fisiología , Neuronas/metabolismo , Hipocampo/fisiología , Hipocampo/citología , Hipocampo/metabolismo , Memoria Espacial/fisiología , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Calcio/metabolismo , Aprendizaje Espacial/fisiología
4.
Brain Behav ; 14(7): e3614, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38988101

RESUMEN

PURPOSE: Levothyroxine (LEV) monotherapy cannot completely improve cognitive and behavioral impairments induced by hypothyroidism, whereas a combination therapy of exercise and LEV may ameliorate these deficits. This study aimed to determine the effects of mild-intensity forced exercise and LEV treatment on the anxiety profile and cognitive functions in male offspring of hypothyroid dams. METHOD: Twenty-four female rats (mothers) were randomly divided into sham (healthy) and hypothyroidism groups and then placed with male rats to mate. The presence of vaginal plaque confirmed pregnancy (gestational day, GD 0). 6-propyl-2-thiouracil (PTU, 100 ppm) was added to the drinking water of the hypothyroidism group from GD 6 to the 21st postnatal day (PND). The sham group received tap water. On PND 21, serum T4 levels of mothers, and 10 pups were measured to confirm hypothyroidism. Sixty-four male pups were left undisturbed for 30 days and then were divided into eight groups that received saline or LEV (50 µg/kg, i.p.) with or without forced mild-intensity exercise. After 14 days of interventions, anxiety-like behaviors, spatial learning and memory, and hippocampal brain-derived neurotrophic factor (BDNF) levels were evaluated. FINDING: A pre and postnatal PTU-induced model of hypothyroidism increased anxiety-like behaviors, impaired spatial learning and memory, and decreased hippocampal BDNF levels in male offspring rats. LEV alone increased BDNF levels and improved spatial learning. Exercise alone increased BDNF levels, improved spatial learning and memory, and decreased anxiety-like behaviors. Exercise plus LEV more effectively improved anxiety-like behaviors and spatial learning than exercise or LEV alone. CONCLUSION: Practically, these pre-clinical findings highlight the importance of the combination of exercise and LEV regimen in treating patients with hyperthyroidism.


Asunto(s)
Ansiedad , Factor Neurotrófico Derivado del Encéfalo , Hipocampo , Hipotiroidismo , Condicionamiento Físico Animal , Tiroxina , Animales , Hipotiroidismo/tratamiento farmacológico , Hipotiroidismo/metabolismo , Hipotiroidismo/terapia , Hipotiroidismo/fisiopatología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Masculino , Tiroxina/farmacología , Tiroxina/administración & dosificación , Ratas , Ansiedad/terapia , Ansiedad/etiología , Ansiedad/tratamiento farmacológico , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Femenino , Condicionamiento Físico Animal/fisiología , Embarazo , Ratas Wistar , Efectos Tardíos de la Exposición Prenatal/terapia , Efectos Tardíos de la Exposición Prenatal/metabolismo , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Terapia Combinada , Propiltiouracilo/farmacología , Propiltiouracilo/administración & dosificación
5.
Curr Biol ; 34(13): 2801-2811.e9, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38834064

RESUMEN

Consolidation of initially encoded hippocampal representations in the neocortex through reactivation is crucial for long-term memory formation and is facilitated by the coordination of hippocampal sharp-wave ripples (SWRs) with cortical slow and spindle oscillations during non-REM sleep. Recent evidence suggests that high-frequency cortical ripples can also coordinate with hippocampal SWRs in support of consolidation; however, the contribution of cortical ripples to reactivation remains unclear. We used high-density, continuous recordings in the hippocampus (area CA1) and prefrontal cortex (PFC) over the course of spatial learning and show that independent PFC ripples dissociated from SWRs are prevalent in NREM sleep and predominantly suppress hippocampal activity. PFC ripples paradoxically mediate top-down suppression of hippocampal reactivation rather than coordination, and this suppression is stronger for assemblies that are reactivated during coordinated CA1-PFC ripples for consolidation of recent experiences. Further, we show non-canonical, serial coordination of independent cortical ripples with slow and spindle oscillations, which are known signatures of memory consolidation. These results establish a role for prefrontal cortical ripples in top-down regulation of behaviorally relevant hippocampal representations during consolidation.


Asunto(s)
Consolidación de la Memoria , Corteza Prefrontal , Corteza Prefrontal/fisiología , Consolidación de la Memoria/fisiología , Animales , Masculino , Hipocampo/fisiología , Sueño/fisiología , Aprendizaje Espacial/fisiología , Región CA1 Hipocampal/fisiología
6.
Behav Brain Res ; 471: 115076, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38825021

RESUMEN

OBJECTIVE: It is to investigate the effects of ß-asarone on learning and memory, hippocampal morphology, synaptophysin (SYP) and postsynaptic density 95(PSD95) protein expression, N-methyl-D-aspartic acid receptor 2B (NR2B)- Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII) - Extracellular signal-regulated kinase (ERK) / Cyclic-AMP response element binding protein (CREB) signal in hippocampus of rats with exhaustive exercise-induced fatigue. METHODS: Fifty Sprague-Dawley male rats were randomly divided into five groups: normal group, exercise group, exercise and ß-asarone (2.5, 10, 40 mg/kg)-treated groups. The learning and memory in rats were tested by Morris water maze experiment. We measured the hippocampal morphology by Nissl staining. The levels of SYP, PSD95, NR2B, CaMKII, ERK1/2, CREB, p-NR2B, p-CaMKII, p-ERK1/2 and p-CREB expression were measured by western blot analysis. RESULTS: The results demonstrated that ß-asarone (10, 40 mg/kg) treatment significantly decreased the latency to find the platform, increased the time spent in the target quadrant and the number of crossing the platform of rats with exhaustive exercise-induced fatigue. ß-asarone (10, 40 mg/kg) treatment increased the cell density in the hippocampus CA1 region, significantly up-regulated NR2B-CaMKII-ERK/CREB signal and improved the protein expression levels of SYP and PSD95 in hippocampus of rats with exhaustive exercise-induced fatigue. CONCLUSIONS: It suggests that ß-asarone could improve learning and memory of rats with exhaustive exercise-induced fatigue. The mechanism might be related to ß-asarone protecting the morphology of hippocampus, increasing the protein expression levels of SYP and PSD95 and up-regulating NR2B-CaMKII-ERK/CREB signal in hippocampus of rats with exhaustive exercise-induced fatigue.


Asunto(s)
Derivados de Alilbenceno , Anisoles , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Fatiga , Hipocampo , Trastornos de la Memoria , Condicionamiento Físico Animal , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Animales , Masculino , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ratas , Fatiga/tratamiento farmacológico , Fatiga/metabolismo , Derivados de Alilbenceno/farmacología , Condicionamiento Físico Animal/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Anisoles/farmacología , Trastornos de la Memoria/tratamiento farmacológico , Aprendizaje Espacial/efectos de los fármacos , Aprendizaje Espacial/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Homólogo 4 de la Proteína Discs Large/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología
7.
Eur J Neurosci ; 60(3): 4346-4361, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858126

RESUMEN

Mild-moderate traumatic brain injuries (TBIs) are prevalent, and while many individuals recover, there is evidence that a significant number experience long-term health impacts, including increased vulnerability to neurodegenerative diseases. These effects are influenced by other risk factors, such as cardiovascular disease. Our study tested the hypothesis that a pre-injury reduction in cerebral blood flow (CBF), mimicking cardiovascular disease, worsens TBI recovery. We induced bilateral carotid artery stenosis (BCAS) and a mild-moderate closed-head TBI in male and female mice, either alone or in combination, and analyzed CBF, spatial learning, memory, axonal damage, and gene expression. Findings showed that BCAS and TBI independently caused a ~10% decrease in CBF. Mice subjected to both BCAS and TBI experienced more significant CBF reductions, notably affecting spatial learning and memory, particularly in males. Additionally, male mice showed increased axonal damage with both BCAS and TBI compared to either condition alone. Females exhibited spatial memory deficits due to BCAS, but these were not worsened by subsequent TBI. Gene expression analysis in male mice highlighted that TBI and BCAS individually altered neuronal and glial profiles. However, the combination of BCAS and TBI resulted in markedly different transcriptional patterns. Our results suggest that mild cerebrovascular impairments, serving as a stand-in for preexisting cardiovascular conditions, can significantly worsen TBI outcomes in males. This highlights the potential for mild comorbidities to modify TBI outcomes and increase the risk of secondary diseases.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Estenosis Carotídea , Circulación Cerebrovascular , Animales , Femenino , Masculino , Lesiones Traumáticas del Encéfalo/fisiopatología , Ratones , Circulación Cerebrovascular/fisiología , Estenosis Carotídea/fisiopatología , Ratones Endogámicos C57BL , Caracteres Sexuales , Factores Sexuales , Memoria Espacial/fisiología , Modelos Animales de Enfermedad , Aprendizaje Espacial/fisiología
8.
Physiol Behav ; 281: 114580, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38714271

RESUMEN

Environmental factors in early life have been demonstrated to increase the risk of neurodevelopmental disorders in offspring, especially the deficiency of the cognitive ability. Leptin has emerged as a key hormone that conveys information on energy stores, but there is growing appreciation that leptin signaling may also play an important role in neurodevelopment. The present study aimed to investigate whether maternal HFD exposure impairs the offspring learning and memory through the programming of central leptin system. We observed that hippocampus-dependent learning and memory were impaired in male but not female offspring from HFD-fed maternal ancestors (C57BL/6 mice), as assessed by novel object recognition and Morris water maze tests. Moreover, the chromatin immunoprecipitation results revealed the maternal HFD consumption led to the increasement in the binding of the histone marker H3K9me3 in male offspring, which mediates gene silencing in the leptin receptor promoter region. Furthermore, there was an increase in the expression of the histone methylase SUV39H1 in male but not female offspring, which regulates H3K9me3. Additionally, it has been observed that IL-6 and IL-1 also could lead to similar alternations when acting on cultured hippocampal neurons in vitro. Taken together, our data suggest that maternal HFD consumption influences male offspring hippocampal cognitive performance in a sex-specific manner, and central leptin signaling may serve as the cross-talk between maternal diet and cognitive impairment in offspring.


Asunto(s)
Dieta Alta en Grasa , Hipocampo , Leptina , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Aprendizaje Espacial , Animales , Femenino , Masculino , Hipocampo/metabolismo , Leptina/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones , Aprendizaje Espacial/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Embarazo , Transducción de Señal/fisiología , Caracteres Sexuales , Neuronas/metabolismo , Histonas/metabolismo , Receptores de Leptina/metabolismo , Receptores de Leptina/genética
9.
Physiol Behav ; 283: 114595, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810714

RESUMEN

Isolation of sex differences as a key characteristic underlying neurobehavioral differentiation is an essential component of studies in neuroscience. The current study sought to address this concern by observing behavioral differences using an automated home cage system for neurobehavioral assessment, a method rapidly increasing in use due to advances in technology and advantages such as reduced handling stress and cross-lab variability. Sex differences in C57BL/6 mice arose for motor activity and circadian-linked behavior, with females being more active compared to males, and males having a stronger anticipatory increase in activity leading up to the onset of the light phase compared to females. These activity differences were observed not only across the lifespan, but also in different genetic background mouse strains across different testing sites showing the generalizability and robustness of these observed effects. Activity differences were also observed in performance on a spatial learning and reversal task with females making more responses and receiving a corresponding elevation in reward pellets. Notably, there were no sex differences in learning nor achieved accuracy, suggesting these observed effects were predominantly in activity. The outcomes of this study align with previous reports showcasing differences in activity between males and females. The comparison across strains and testing sites showed robust and reproducible differences in behavior between female and male mice that are relevant to consider when designing behavioral studies. Furthermore, the observed sex differences in performance on the learning and reversal procedure raise concern for interpretation of behavior differences between sexes due to the attribution of these differences to motor activity rather than cognition.


Asunto(s)
Cognición , Ratones Endogámicos C57BL , Actividad Motora , Caracteres Sexuales , Animales , Femenino , Masculino , Actividad Motora/fisiología , Cognición/fisiología , Ratones , Ritmo Circadiano/fisiología , Conducta Animal/fisiología , Aprendizaje Inverso/fisiología , Aprendizaje Espacial/fisiología , Aprendizaje por Laberinto/fisiología
10.
Behav Neurosci ; 138(2): 125-141, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661671

RESUMEN

Selenium is an essential trace element that is delivered to the brain by the selenium transport protein selenoprotein P (SEPP1), primarily by binding to its receptor low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), at the blood-brain barrier. Selenium transport is required for several important brain functions, with transgenic deletion of either Sepp1 or Lrp8 resulting in severe neurological dysfunction and death in mice fed a selenium-deficient diet. Previous studies have reported that although feeding a standard chow diet can prevent these severe deficits, some motor coordination and cognitive dysfunction remain. Importantly, no single study has directly compared the motor and cognitive performance of the Sepp1 and Lrp8 knockout (KO) lines. Here, we report the results of a comprehensive parallel analysis of the motor and spatial learning and memory function of Sepp1 and Lrp8 knockout mice fed a standard mouse chow diet. Our results revealed that Sepp1 knockout mice raised on a selenium-replete diet displayed motor and cognitive function that was indistinguishable from their wild-type littermates. In contrast, we found that although Lrp8-knockout mice fed a selenium-replete diet had normal motor function, their spatial learning and memory showed subtle deficits. We also found that the deficit in baseline adult hippocampal neurogenesis exhibited by Lrp8-deficit mice could not be rescued by dietary selenium supplementation. Taken together, these findings further highlight the importance of selenium transport in maintaining healthy brain function. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Proteínas Relacionadas con Receptor de LDL , Ratones Noqueados , Selenio , Aprendizaje Espacial , Animales , Ratones , Dieta , Hipocampo/metabolismo , Proteínas Relacionadas con Receptor de LDL/genética , Proteínas Relacionadas con Receptor de LDL/metabolismo , Aprendizaje por Laberinto/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/fisiología , Memoria/efectos de los fármacos , Selenio/administración & dosificación , Selenio/deficiencia , Selenio/farmacología , Selenoproteína P/genética , Selenoproteína P/metabolismo , Aprendizaje Espacial/fisiología , Aprendizaje Espacial/efectos de los fármacos , Memoria Espacial/fisiología , Memoria Espacial/efectos de los fármacos
11.
Behav Processes ; 217: 105026, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38582301

RESUMEN

Species of crab have been shown to spatially track and navigate to consequential locations through different processes, such as path integration and landmark orienting. Few investigations examine their ability to wayfind in complex environments, like mazes, with multiple intersections and how they may utilize specific features to benefit this process. Spatial learning potentially would lend a fitness advantage to animals living in complicated habitats, and ghost crab (Ocypode quadrata) is a semiterrestrial species that typically occupies extensive beach environments, which present many navigational challenges. Despite their potential, there are currently no studies that investigate forms of spatial cognition in these animals. To better diversify our knowledge of this trait, the current research exposed ghost crab to a maze with seven intersections. Animals were given multiple trials to learn the location of a reward destination to a specific criterion proficiency. In one condition several landmarks were distributed throughout the maze, and in another the environment was completely empty. Results showed that ghost crab in the landmark present group were able to learn the maze faster, they required significantly fewer trials to reach the learning criterion than those in the landmark absent group. However, only approximately half of the total sample met the learning criterion, indicating the maze was rather difficult. These findings are interpreted through theories of route learning that suggest animals may navigate by establishing landmark-turn associations. Such processes have implications for the cognitive ability of ghost crab, and spatial learning in this species may support the notion of convergent evolution for this trait.


Asunto(s)
Braquiuros , Aprendizaje por Laberinto , Navegación Espacial , Animales , Braquiuros/fisiología , Aprendizaje por Laberinto/fisiología , Navegación Espacial/fisiología , Masculino , Percepción Espacial/fisiología , Señales (Psicología) , Aprendizaje Espacial/fisiología
12.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38641405

RESUMEN

Structural differences along the hippocampal long axis are believed to underlie meaningful functional differences. Yet, recent data-driven parcellations of the hippocampus subdivide the hippocampus into a 10-cluster map with anterior-medial, anterior-lateral, and posteroanterior-lateral, middle, and posterior components. We tested whether task and experience could modulate this clustering using a spatial learning experiment where male and female participants were trained to virtually navigate a novel neighborhood in a Google Street View-like environment. Participants were scanned while navigating routes early in training and after a 2 week training period. Using the 10-cluster map as the ideal template, we found that participants who eventually learn the neighborhood well have hippocampal cluster maps consistent with the ideal-even on their second day of learning-and their cluster mappings do not deviate over the 2 week training period. However, participants who eventually learn the neighborhood poorly begin with hippocampal cluster maps inconsistent with the ideal template, though their cluster mappings may become more stereotypical after the 2 week training. Interestingly this improvement seems to be route specific: after some early improvement, when a new route is navigated, participants' hippocampal maps revert back to less stereotypical organization. We conclude that hippocampal clustering is not dependent solely on anatomical structure and instead is driven by a combination of anatomy, task, and, importantly, experience. Nonetheless, while hippocampal clustering can change with experience, efficient navigation depends on functional hippocampal activity clustering in a stereotypical manner, highlighting optimal divisions of processing along the hippocampal anterior-posterior and medial-lateral axes.


Asunto(s)
Hipocampo , Navegación Espacial , Realidad Virtual , Hipocampo/fisiología , Masculino , Humanos , Femenino , Navegación Espacial/fisiología , Adulto , Adulto Joven , Imagen por Resonancia Magnética/métodos , Aprendizaje Espacial/fisiología , Análisis por Conglomerados
13.
Brain Struct Funct ; 229(3): 639-655, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37690045

RESUMEN

Hippocampal afferent inputs, terminating on proximal and distal subfields of the cornus ammonis (CA), enable the functional discrimination of 'what' (item identity) and 'where' (spatial location) elements of a spatial representation. This kind of information is supported by structures such as the retrosplenial cortex (RSC). Spatial content learning promotes the expression of hippocampal synaptic plasticity, particularly long-term depression (LTD). In the CA1 region, this is specifically facilitated by the learning of item-place features of a spatial environment. Gene-tagging, by means of time-locked fluorescence in situ hybridization (FISH) to detect nuclear expression of immediate early genes, can reveal neuronal populations that engage in experience-dependent information encoding. In the current study, using FISH, we examined if learning-facilitated LTD results in subfield-specific information encoding in the hippocampus and RSC. Rats engaged in novel exploration of small items during stimulation of Schaffer collateral-CA1 synapses. This resulted in LTD (> 24 h). FISH, to detect nuclear expression of Homer1a, revealed that the distal-CA1 and proximal-CA3 subcompartments were particularly activated by this event. By contrast, all elements of the proximodistal cornus ammonis-axis showed equal nuclear Homer1a expression following LTD induction solely by means of afferent stimulation. The RSC exhibited stronger nuclear Homer1a expression in response to learning-facilitated LTD, and to novel item-place experience, compared to LTD induced by sole afferent stimulation in CA1. These results show that both the cornus ammonis and RSC engage in differentiated information encoding of item-place learning that is salient enough, in its own right, to drive the expression of hippocampal LTD. These results also reveal a novel role of the RSC in item-place learning.


Asunto(s)
Giro del Cíngulo , Depresión Sináptica a Largo Plazo , Ratas , Animales , Hibridación Fluorescente in Situ , Depresión Sináptica a Largo Plazo/fisiología , Hipocampo/metabolismo , Aprendizaje Espacial/fisiología , Plasticidad Neuronal , Sinapsis , Expresión Génica , Potenciación a Largo Plazo/fisiología , Región CA1 Hipocampal/metabolismo
14.
Mol Neurobiol ; 61(4): 2249-2264, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37870676

RESUMEN

A ketogenic diet (KD) is often used in the treatment of refractory epilepsy. Many studies have found that it also has a positive impact on cognitive comorbidities, but the specific mechanism remains unclear. In many disease models, endoplasmic reticulum stress (ERS) and synaptic plasticity is considered a new therapeutic target for improving cognitive impairment, and it has become a research focus in recent years. Recently, studies have found that a KD has a certain regulatory effect on both ERS and synaptic plasticity, but this result has not been confirmed in epilepsy. To investigate the effect of a KD on ERS and synaptic plasticity. In this study, a rat model of temporal lobe epilepsy (TLE) induced by lithium chloride-pilocarpine was used. After the model was successfully established, the rats in each group were fed a normal diet or a KD for 28 days, and the effect of a KD on the latency and seizure frequency of spontaneous recurrent seizures (SRSs) was observed via video monitoring. Subsequently, a Morris water maze was used to evaluate the spatial learning and memory abilities of the rats in each group; the ultrastructure of the ER and the synapses of the hippocampus were observed by transmission electron microscopy, and the dendritic spine density of the hippocampus was analysed by Golgi staining. Long-term potentiation (LTP) was used to detect the synaptic plasticity of the rats' hippocampi, and the expression of ERS-related proteins and synapse-related proteins was detected by Western blotting. A KD effectively reduced the frequency of SRSs in rats with TLE and improved their learning and memory impairment. Further investigations found that a KD inhibited the up-regulation of glucose-regulated protein 78, phospho-protein kinase-like ER kinase, phosphorylated α subunit of eukaryotic initiation factor 2, activating transcription factor 4 and C/EBP homologous protein expression in the hippocampi of rats with TLE and protected the ultrastructure of the neuronal ER, suggesting that a KD suppressed excessive ERS induced by epilepsy. Concurrently, we also found that a KD not only improved the synaptic ultrastructure and increased the density of dendritic spines in rats with TLE but also reversed the epilepsy-induced LTP deficit to some extent. More importantly, the expression of postsynaptic density protein 95, synaptotagmin-1 and synaptosomal-associated protein 25 in the hippocampi of rats with epilepsy was significantly increased after KD intervention. The study findings indicate that a KD improves learning and memory impairment in rats with epilepsy, possibly by regulating ERS and synaptic plasticity.


Asunto(s)
Dieta Cetogénica , Epilepsia del Lóbulo Temporal , Epilepsia , Ratas , Animales , Epilepsia del Lóbulo Temporal/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Cognición , Convulsiones/metabolismo , Epilepsia/metabolismo , Aprendizaje Espacial/fisiología , Estrés del Retículo Endoplásmico , Modelos Animales de Enfermedad
15.
Neuroimmunomodulation ; 31(1): 12-24, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38151008

RESUMEN

INTRODUCTION: Both sleep deprivation (SD) and inflammation can negatively affect cognitive function. This study aimed to investigate how SD impacts the brain's inflammatory response to lipopolysaccharide (LPS) and its subsequent effects on cognitive functions. METHODS: To this end, male rats were tested through a Morris water maze (MWM) to assess their spatial learning and memory. Also, in vivo field potential recordings (to evaluate synaptic plasticity) were done in the Saline, SD, LPS1 (1 mg/kg/7 days), and LPS1+SD groups. Cytokine levels were measured using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Based on the results, the LPS1+SD group showed increased total distance and escape latency compared to the other groups in the MWM test. Besides, the LPS1+SD group exhibited a significant decrease in long-term potentiation (LTP) induction and maintenance in the CA1 area of the brain. Finally, the inflammatory cytokine interleukin-1ß (IL-1ß) levels were significantly higher in the LPS1+SD group than in the Saline group. CONCLUSION: These findings suggest that the combined effects of SD and brain inflammatory response can have more harmful effects on cognitive function, LTP, and inflammatory factors than either SD or LPS1 alone.


Asunto(s)
Potenciación a Largo Plazo , Aprendizaje Espacial , Ratas , Masculino , Animales , Potenciación a Largo Plazo/fisiología , Aprendizaje Espacial/fisiología , Privación de Sueño/psicología , Lipopolisacáridos/toxicidad , Aprendizaje por Laberinto , Encéfalo , Citocinas , Hipocampo
16.
Biomed Res Int ; 2023: 6625491, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38149091

RESUMEN

The Barnes maze, a well-known spatial-learning paradigm, is based on the innate fear of rodents of large open spaces and their drive to hide. However, additional aversive stimuli (strong light and threatening sounds) are often necessary to provoke the hiding response while rendering the method cumbersome and more stressful. Our objective was to establish a Barnes maze-learning paradigm in mice using palatable food as a reward. After habituating male C57BL6/J or NMRI mice to the reward, the experimenter and the apparatus, either a slow (2 trials/day) or a massive conditioning schedule (4 trials/day), was run. Acquisition training was carried out until mice could locate the reward box with a maximum of one hole error. Then, the box was replaced to another location (reversal phase). Mice needed to relearn the new position with the same criterion. One week later, retention trials were performed. Both strains could reach the learning criteria; in the massive training within a shorter period. Spatial memory was demonstrated in the reversal and retention trials. Our results show that palatable food can be used as an efficient motivator to acquire allocentric navigation in the Barnes maze with the additional advantage of being less stressful.


Asunto(s)
Motivación , Aprendizaje Espacial , Ratones , Animales , Masculino , Aprendizaje Espacial/fisiología , Percepción Espacial/fisiología , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos , Memoria Espacial
17.
Cell Rep ; 42(12): 113467, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-37979171

RESUMEN

The hippocampus is broadly impacted by neuromodulations. However, how neuropeptides shape the function of the hippocampus and the related spatial learning and memory remains unclear. Here, we discover the crucial role of cholecystokinin (CCK) in heterosynaptic neuromodulation from the medial entorhinal cortex (MEC) to the hippocampus. Systematic knockout of the CCK gene impairs CA3-CA1 LTP and space-related performance. The MEC provides most of the CCK-positive neurons projecting to the hippocampal region, which potentiates CA3-CA1 long-term plasticity heterosynaptically in a frequency- and NMDA receptor (NMDAR)-dependent manner. Selective inhibition of MEC CCKergic neurons or downregulation of their CCK mRNA levels also impairs CA3-CA1 LTP formation and animals' performance in the water maze. This excitatory extrahippocampal projection releases CCK upon high-frequency excitation and is active during animal exploration. Our results reveal the critical role of entorhinal CCKergic projections in bridging intra- and extrahippocampal circuitry at electrophysiological and behavioral levels.


Asunto(s)
Región CA1 Hipocampal , Región CA2 Hipocampal , Región CA3 Hipocampal , Colecistoquinina , Corteza Entorrinal , Plasticidad Neuronal , Aprendizaje Espacial , Colecistoquinina/genética , Colecistoquinina/metabolismo , Corteza Entorrinal/metabolismo , Región CA3 Hipocampal/fisiología , Región CA1 Hipocampal/fisiología , Región CA2 Hipocampal/fisiología , Sinapsis/fisiología , Aprendizaje Espacial/fisiología , Animales , Ratones , Ratones Noqueados , Potenciación a Largo Plazo
18.
Behav Neurosci ; 137(6): 356-363, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37326524

RESUMEN

Improving cognitive health for older adults requires understanding the neurobiology of age-related cognitive decline and the mechanisms underlying preserved cognition in old age. During spatial learning tasks, aged humans and rodents shift navigation preferences in favor of a stimulus-response learning strategy. This has been hypothesized to result from competitive interactions of the caudate nucleus/dorsal striatum (DS) memory system with the hippocampus (HPC)-dependent spatial/allocentric memory system. In support of this hypothesis, a recent study reported that inactivation of the DS in aged rodents rescued HPC-dependent spatial learning on a T-maze (Gardner, Gold, & Korol, 2020). Currently, it is unclear whether a shift from HPC-dependent to DS-dependent behavior also contributes to age-related cognitive decline outside of spatial learning and memory. To test the hypothesis that inactivation of the DS can restore age-related cognitive function outside of spatial behavior, the present study bilaterally inactivated the DS of young (n = 8) and aged (n = 7) rats during visuospatial paired associates learning (PAL). This study found that inactivation of the DS did not alter PAL performance in young or aged rats, but did alter a positive control, DS-dependent spatial navigation task. This observation suggests that elevated DS activity does not play a role in the decline of HPC-dependent PAL performance in aged male rats. Given the persistent tendencies of aged rodents toward DS-dependent learning, it will be worthwhile to explore further the coordination dynamics between the HPC and DS that may contribute to age-related cognitive decline. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Asunto(s)
Aprendizaje Espacial , Navegación Espacial , Humanos , Ratas , Masculino , Animales , Anciano , Muscimol/farmacología , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología , Cognición , Hipocampo/fisiología , Aprendizaje por Laberinto/fisiología
19.
Neurobiol Learn Mem ; 200: 107733, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36804592

RESUMEN

Protein palmitoylation regulates trafficking, mobilization, localization, interaction, and distribution of proteins through the palmitoyl acyltransferases (PATs) enzymes. Protein palmitoylation controls rapid and dynamic changes of the synaptic architecture that modifies the efficiency and strength of synaptic connections, a fundamental mechanism to generate stable and long-lasting memory traces. Although protein palmitoylation in functional synaptic plasticity has been widely described, its role in learning and memory processes is poorly understood. In this work, we found that PATs inhibition into the hippocampus before and after the training of Morris water maze (MWM) and object location memory (OLM) impaired spatial learning. However, we demonstrated that PATs inhibition during the retrieval does not affect the expression of spatial memory in both MWM and OLM. Accordingly, long-term potentiation induction is impaired by inhibiting PATs into the hippocampus before high-frequency electrical stimulation but not after. These findings suggest that PATs activity is necessary to modify neural plasticity, a mechanism required for memory acquisition and consolidation. Like phosphorylation, active palmitoylation is required to regulate the function of already existing proteins that change synaptic strength in the hippocampus to acquire and later consolidate spatial memories.


Asunto(s)
Consolidación de la Memoria , Aprendizaje Espacial , Aprendizaje Espacial/fisiología , Consolidación de la Memoria/fisiología , Hipocampo/fisiología , Memoria Espacial/fisiología , Aciltransferasas/metabolismo , Aprendizaje por Laberinto/fisiología
20.
Psychon Bull Rev ; 30(1): 235-249, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35915381

RESUMEN

Human perceptual learning, experience-induced gains in sensory discrimination, typically yields long-term performance improvements. Recent research revealed long-lasting transfer at the untrained location enabled by feature-based attention (FBA), reminiscent of its global effect (Hung & Carrasco, Scientific Reports, 11(1), 13914, (2021)). Visual Perceptual Learning (VPL) is typically studied while observers maintain fixation, but the role of fixational eye movements is unknown. Microsaccades - the largest of fixational eye movements - provide a continuous, online, physiological measure from the oculomotor system that reveals dynamic processing, which is unavailable from behavioral measures alone. We investigated whether and how microsaccades change after training in an orientation discrimination task. For human observers trained with or without FBA, microsaccade rates were significantly reduced during the response window in both trained and untrained locations and orientations. Critically, consistent with long-term training benefits, this microsaccade-rate reduction persisted over a year. Furthermore, microsaccades were biased toward the target location prior to stimulus onset and were more suppressed for incorrect than correct trials after observers' responses. These findings reveal that fixational eye movements and VPL are tightly coupled and that learning-induced microsaccade changes are long lasting. Thus, microsaccades reflect functional dynamics of the oculomotor system during information encoding, maintenance and readout, and may serve as a reliable long-term physiological correlate in VPL.


Asunto(s)
Atención , Aprendizaje , Movimientos Sacádicos , Percepción Visual , Humanos , Atención/fisiología , Movimientos Oculares/fisiología , Fijación Ocular/fisiología , Movimientos Sacádicos/fisiología , Aprendizaje Espacial/fisiología , Percepción Visual/fisiología , Aprendizaje/fisiología , Análisis y Desempeño de Tareas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA