Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Nature ; 627(8002): 165-173, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38326613

RESUMEN

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Asunto(s)
Aracnoides , Encéfalo , Duramadre , Animales , Humanos , Ratones , Aracnoides/anatomía & histología , Aracnoides/irrigación sanguínea , Aracnoides/inmunología , Aracnoides/metabolismo , Transporte Biológico , Encéfalo/anatomía & histología , Encéfalo/irrigación sanguínea , Encéfalo/inmunología , Encéfalo/metabolismo , Duramadre/anatomía & histología , Duramadre/irrigación sanguínea , Duramadre/inmunología , Duramadre/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Perfilación de la Expresión Génica , Imagen por Resonancia Magnética , Ratones Transgénicos , Espacio Subaracnoideo/anatomía & histología , Espacio Subaracnoideo/irrigación sanguínea , Espacio Subaracnoideo/inmunología , Espacio Subaracnoideo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Venas/metabolismo
2.
Fluids Barriers CNS ; 20(1): 93, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098084

RESUMEN

Traditionally, the meninges are described as 3 distinct layers, dura, arachnoid and pia. Yet, the classification of the connective meningeal membranes surrounding the brain is based on postmortem macroscopic examination. Ultrastructural and single cell transcriptome analyses have documented that the 3 meningeal layers can be subdivided into several distinct layers based on cellular characteristics. We here re-examined the existence of a 4th meningeal membrane, Subarachnoid Lymphatic-like Membrane or SLYM in Prox1-eGFP reporter mice. Imaging of freshly resected whole brains showed that SLYM covers the entire brain and brain stem and forms a roof shielding the subarachnoid cerebrospinal fluid (CSF)-filled cisterns and the pia-adjacent vasculature. Thus, SLYM is strategically positioned to facilitate periarterial influx of freshly produced CSF and thereby support unidirectional glymphatic CSF transport. Histological analysis showed that, in spinal cord and parts of dorsal cortex, SLYM fused with the arachnoid barrier layer, while in the basal brain stem typically formed a 1-3 cell layered membrane subdividing the subarachnoid space into two compartments. However, great care should be taken when interpreting the organization of the delicate leptomeningeal membranes in tissue sections. We show that hyperosmotic fixatives dehydrate the tissue with the risk of shrinkage and dislocation of these fragile membranes in postmortem preparations.


Asunto(s)
Duramadre , Meninges , Ratones , Animales , Meninges/metabolismo , Duramadre/metabolismo , Aracnoides/metabolismo , Espacio Subaracnoideo , Corteza Cerebral
3.
Pharm Res ; 39(7): 1393-1413, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35488144

RESUMEN

PURPOSE: The purpose of the present study was to quantitatively determine the expression of transporters, receptors and tight junction molecules at the blood-arachnoid barrier (BAB) and blood-spinal cord barrier (BSCB) in cervical, thoracic and lumbar spines from dogs. METHODS: The expression levels of 31 transporters, 3 receptors, 1 tight junction protein, and 3 marker proteins in leptomeninges and capillaries isolated from spines (3 male and 2 female dogs) were determined by quantitative Targeted Absolute Proteomics (qTAP). The units were converted from fmol/µg protein to pmol/cm (absolute abundance at the BAB and the BSCB in a 1 cm section of spine). RESULTS: The expression of MDR1 and BCRP were greater at the BSCB compared to the BAB (especially in the cervical cord), and the expressions at the lumbar BSCB were lower than that for the cervical BSCB. Among the organic anionic and cationic drug transporters, OAT1, OAT3, MRP1, OCT2 and MATE1/2 were detected only in the BAB, and not at the BSCB). The expression of these transporters was higher in the order: lumbar > thoracic > cervical BAB. The expressions of GLUT1, 4F2hc, EAAT1, 2, PEPT2, CTL1, and MCT1 at the BSCB of the cervical cord were higher than the corresponding values for the cervical BAB, and these values decreased in going down the spinal cord. CONCLUSION: These results provide a better understanding of the molecular mechanisms underlying the concentration gradients of drugs and endogenous substances in the cerebrospinal fluid and parenchyma of the spinal cord.


Asunto(s)
Barrera Hematoencefálica , Uniones Estrechas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Aracnoides/metabolismo , Barrera Hematoencefálica/metabolismo , Perros , Femenino , Masculino , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Médula Espinal/metabolismo , Uniones Estrechas/metabolismo
4.
J Neurochem ; 161(2): 187-208, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35226354

RESUMEN

The purpose of this study was to elucidate the absolute abundance of transporters, enzymes, receptors, and tight junction and marker proteins at human blood-arachnoid barrier (BAB) and compare with those of dogs and pigs. Protein expression levels in plasma membrane fractions of brain leptomeninges were determined by quantitative targeted absolute proteomics. To realistically compare the absolute abundance of target molecules at the BAB among humans, dogs, and pigs, the unit was converted from fmol/µg-protein to pmol/cm2 -leptomeninges. Of a total of 70 proteins, 52 were detected. OAT1, OAT3, GLUT1, 4F2hc, EAAT1, EAAT2, MCT8, SMVT, CTL2, GFAP, Claudin-5, Na+ /K+ -ATPase, COMT, GSTP1, and CES1 were abundantly expressed at the human BAB (>1 pmol/cm2 ). The protein expression levels were within a 3-fold difference for 16 out of 33 proteins between humans and dogs and for 13 out of 28 proteins between humans and pigs. Both human-dog and human-pig differences in protein expression levels were within 3-fold for OAT1, OAT3, 4F2hc, xCT, OCT2, MDR1, BCRP, PEPT2, SYP, and MCT1. In contrast, OCT3, MCT4, and OATP1A2 were detected in humans but not in dogs or pigs. MRP3 was detected in dogs and pigs but not in humans. The absolute level of GLUT1 in humans was nearly the same as that in dogs but was 6.14-fold greater in pigs. No significant differences in the levels were observed between male and female dogs for nearly all molecules. These results should be helpful in understanding the physiological roles of BAB and cerebrospinal fluid pharmacokinetics in humans and their differences from dogs and pigs.


Asunto(s)
Barrera Hematoencefálica , Uniones Estrechas , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Aracnoides/metabolismo , Biomarcadores/metabolismo , Barrera Hematoencefálica/metabolismo , Perros , Femenino , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Porcinos , Uniones Estrechas/metabolismo
5.
J Cereb Blood Flow Metab ; 42(1): 162-174, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34474613

RESUMEN

Growing evidence indicates that perivascular tissue is critical to modulate vessel function. We hypothesized that the arachnoid membrane surrounding middle cerebral artery (MCA) regulates its function via sphingosine-1-phosphate (S1P)-induced vasoconstriction. The MCA from 3- to 9-month-old male and female wild-type (Oncine France 1 and C57BL/6) mice and sphingosine kinase 2 knockout (SphK2-/-) mice in the C57BL/6 background was mounted in pressure myographs with and without arachnoid membrane. Raman microspectroscopy and imaging were used for in situ detection of S1P. The presence of arachnoid tissue was associated with reduced external and lumen MCA diameters, and with an increase in basal tone regardless of sex and strain background. Strong S1P-positive signals were detected in the arachnoid surrounding the MCA wall in both mice models, as well as in a human post-mortem specimen. Selective S1P receptor 3 antagonist TY 52156 markedly reduced both MCA vasoconstriction induced by exogenous S1P and arachnoid-dependent basal tone increase. Compared to 3-month-old mice, the arachnoid-mediated contractile influence persisted in 9-month-old mice despite a decline in arachnoid S1P deposits. Genetic deletion of SphK2 decreased arachnoid S1P content and vasoconstriction. This is the first experimental evidence that arachnoid membrane regulates the MCA tone mediated by S1P.


Asunto(s)
Aracnoides/metabolismo , Lisofosfolípidos/metabolismo , Arteria Cerebral Media/metabolismo , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/metabolismo , Esfingosina/análogos & derivados , Vasoconstricción , Animales , Femenino , Hidrazonas/farmacología , Lisofosfolípidos/genética , Masculino , Ratones , Ratones Noqueados , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/genética , Esfingosina/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores , Receptores de Esfingosina-1-Fosfato/genética
6.
J Neuropathol Exp Neurol ; 80(8): 769-775, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34272938

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNAs that play key roles in tumorigenesis as modulators of cell signaling pathways. miRNA expression has been found to be dysregulated in several human and canine tumors, but data are not yet available on canine meningioma. In this study, we analyzed the expression of 12 miRNAs (i.e. miR-335, miR-200a, miR-98, miR-96, miR-190a, miR-29c, miR-219-5p, miR-155, miR-146a, miR-145, miR-136, miR-451) by RT-qPCR in a series of 41 formalin-fixed, paraffin-embedded canine meningiomas, and normal arachnoid samples. We identified 8 dysregulated miRNAs that might be involved in canine meningioma pathogenesis. Five miRNAs (i.e. miR-96, miR-145, miR-335, miR-200a, miR-29c), were downregulated in tumor samples and 3 (i.e. miR-136, miR-155, miR-146a) were upregulated. Moreover, miR-200a was overexpressed in grade III compared to grade I and grade II meningiomas, suggesting that it might have a dual role in tumor initiation and progression. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses suggest that dysregulated miRNAs might influence cellular processes and pathways mainly involved in tumor cell migration, extracellular matrix interactions, cell proliferation, and inflammatory responses. The characterization of miRNA functions in canine meningiomas is needed to assess their potential clinical utility, also in view of the relevance of the dog as a potential spontaneous animal model of human disease.


Asunto(s)
Enfermedades de los Perros/genética , Neoplasias Meníngeas/veterinaria , Meningioma/veterinaria , MicroARNs/genética , Animales , Aracnoides/metabolismo , Aracnoides/patología , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/patología , Perros , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/patología , Meningioma/genética , Meningioma/metabolismo , Meningioma/patología , MicroARNs/metabolismo , Adhesión en Parafina/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Fijación del Tejido/métodos
7.
Nat Commun ; 11(1): 354, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953399

RESUMEN

The mechanisms behind molecular transport from cerebrospinal fluid to dural lymphatic vessels remain unknown. This study utilized magnetic resonance imaging along with cerebrospinal fluid tracer to visualize clearance pathways to human dural lymphatics in vivo. In 18 subjects with suspicion of various types of cerebrospinal fluid disorders, 3D T2-Fluid Attenuated Inversion Recovery, T1-black-blood, and T1 gradient echo acquisitions were obtained prior to intrathecal administration of the contrast agent gadobutrol (0.5 ml, 1 mmol/ml), serving as a cerebrospinal fluid tracer. Propagation of tracer was followed with T1 sequences at 3, 6, 24 and 48 h after the injection. The tracer escaped from cerebrospinal fluid into parasagittal dura along the superior sagittal sinus at areas nearby entry of cortical cerebral veins. The findings demonstrate that trans-arachnoid molecular passage does occur and suggest that parasagittal dura may serve as a bridging link between human brain and dural lymphatic vessels.


Asunto(s)
Líquido Cefalorraquídeo/metabolismo , Duramadre/metabolismo , Vasos Linfáticos/metabolismo , Adulto , Anciano , Aracnoides/metabolismo , Transporte Biológico/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Líquido Cefalorraquídeo/diagnóstico por imagen , Medios de Contraste , Duramadre/diagnóstico por imagen , Duramadre/patología , Humanos , Sistema Linfático/fisiología , Vasos Linfáticos/diagnóstico por imagen , Imagen por Resonancia Magnética , Persona de Mediana Edad , Compuestos Organometálicos , Adulto Joven
8.
Mol Neurobiol ; 57(3): 1484-1501, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31773411

RESUMEN

The leptomeninges, referring to the arachnoid and pia mater and their projections into the perivascular compartments in the central nervous system, actively participate in diverse biological processes including fluid homeostasis, immune cell infiltrations, and neurogenesis, yet their detailed cellular and molecular identities remain elusive. This study aimed to characterize platelet-derived growth factor beta (PDGFR-ß)-expressing cells in the leptomeninges in the adult rat brain using light and electron microscopy. PDGFR-ß+ cells were observed in the inner arachnoid, arachnoid trabeculae, pia mater, and leptomeningeal sheath of the subarachnoid vessels, thereby forming a cellular network throughout the leptomeninges. Leptomeningeal PDGFR-ß+ cells were commonly characterized by large euchromatic nuclei, thin branching processes forming web-like network, and the expression of the intermediate filaments nestin and vimentin. These cells were typical of active fibroblasts with a well-developed rough endoplasmic reticulum and close spatial correlation with collagen fibrils. Leptomeningeal PDGFR-ß+ cells ensheathing the vasculature in the subarachnoid space joined with pial PDGFR-ß+ cells upon entering the cortical parenchyma, yet perivascular PDGFR-ß+ cells in these penetrating vessels underwent abrupt changes in their morphological and molecular characteristics: they became more flattened with loss of immunoreactivity for nestin and vimentin and deficient collagen deposition, which was indicative of inactive fibroblasts termed fibrocytes. In the cortical parenchyma, PDGFR-ß immunoreactivity was almost exclusively localized to larger caliber vessels, and significantly decreased in capillary-like microvessels. Collectively, our data identify PDGFR-ß as a novel cellular marker for leptomeningeal fibroblasts comprising the leptomeninges and perivascular adventitial cells of the subarachnoid and penetrating large-sized cortical vasculatures.


Asunto(s)
Aracnoides/metabolismo , Encéfalo/ultraestructura , Meninges/metabolismo , Meninges/ultraestructura , Animales , Aracnoides/ultraestructura , Encéfalo/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Microscopía Electrónica/métodos , Piamadre/patología , Piamadre/ultraestructura , Proteínas Proto-Oncogénicas c-sis/metabolismo , Ratas , Vimentina/metabolismo , Vimentina/ultraestructura
9.
Drug Metab Dispos ; 48(2): 135-145, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31771948

RESUMEN

The physiologic and pharmacologic roles of the blood-arachnoid barrier (BAB) remain unclear. Therefore, the purpose of the present study was to comprehensively evaluate and compare the absolute protein expression levels of transporters in the leptomeninges and plexus per cerebrum, and to determine the localizations of transporters at the cerebrospinal fluid (CSF)-facing and blood (dura)-facing plasma membranes of the BAB in pig. Using multidrug resistance protein 1 (MDR1) and organic anion transporter (OAT) 1 as blood (dura)-facing and CSF-facing plasma membrane marker proteins, respectively, we established that breast cancer resistance protein (BCRP), multidrug resistance-associated protein (MRP) 4, organic anion-transporting polypeptide (OATP) 2B1, multidrug and toxin extrusion protein 1 (MATE1), and glucose transporter 1 (GLUT1) are localized at the blood-facing plasma membrane, and OAT3, peptide transporter (PEPT) 2, MRP3, organic cation transporter (OCT) 2, xCT, monocarboxylate transporter (MCT) 1, MCT4, and MCT8 are localized at the CSF-facing plasma membrane of the BAB. The absolute protein expression levels of OAT1, OAT3, MDR1, BCRP, PEPT2, xCT, MATE1, OCT2, and 4f2hc in the whole BAB surrounding the entire cerebrum were much larger than those in the total of the choroid plexuses forming the blood-cerebrospinal fluid barrier (BCSFB). Although MRP4, OATP2B1, MCT8, GLUT1, and MCT1 were also statistically significantly more abundant in the BAB than in the choroid plexuses per porcine cerebrum, these transporters were nevertheless almost equally distributed between the two barriers. In contrast, OATP1A2, MRP1, OATP3A1, and OCTN2 were specifically expressed in the choroid plexus. These results should be helpful in understanding the relative overall importance of transport at the BAB compared with that at the BCSFB, as well as the rank order of transport capacities among different transporters at the BAB, and the directions of transport mediated by individual transporters. SIGNIFICANCE STATEMENT: We found that BCRP, MRP4, OATP2B1, MATE1, and GLUT1 localize at the blood-facing plasma membrane of the blood-arachnoid barrier (BAB), while OAT3, PEPT2, MRP3, OCT2, xCT, MCT1, MCT4, and MCT8 localize at the CSF-facing plasma membrane. 4F2hc is expressed in both membranes. For OAT1, OAT3, MDR1, BCRP, PEPT2, xCT, MATE1, OCT2, and 4f2hc, the absolute protein expression levels in the whole BAB surrounding the entire cerebrum are much greater than the total amounts in the choroid plexuses.


Asunto(s)
Aracnoides/metabolismo , Barrera Hematoencefálica/metabolismo , Membrana Celular/metabolismo , Líquido Cefalorraquídeo/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Animales , Transporte Biológico/fisiología , Plexo Coroideo/metabolismo , Porcinos
10.
Fluids Barriers CNS ; 16(1): 12, 2019 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-31092261

RESUMEN

The blood brain barrier (BBB) is the main barrier that separates the blood from the brain. Because of the BBB, the drug concentration-time profile in the brain may be substantially different from that in the blood. Within the brain, the drug is subject to distributional and elimination processes: diffusion, bulk flow of the brain extracellular fluid (ECF), extra-intracellular exchange, bulk flow of the cerebrospinal fluid (CSF), binding and metabolism. Drug effects are driven by the concentration of a drug at the site of its target and by drug-target interactions. Therefore, a quantitative understanding is needed of the distribution of a drug within the brain in order to predict its effect. Mathematical models can help in the understanding of drug distribution within the brain. The aim of this review is to provide a comprehensive overview of system-specific and drug-specific properties that affect the local distribution of drugs in the brain and of currently existing mathematical models that describe local drug distribution within the brain. Furthermore, we provide an overview on which processes have been addressed in these models and which have not. Altogether, we conclude that there is a need for a more comprehensive and integrated model that fills the current gaps in predicting the local drug distribution within the brain.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Teóricos , Preparaciones Farmacéuticas/metabolismo , Distribución Tisular/fisiología , Animales , Aracnoides/efectos de los fármacos , Aracnoides/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo , Humanos , Preparaciones Farmacéuticas/administración & dosificación , Distribución Tisular/efectos de los fármacos
11.
Mol Pharm ; 16(5): 2021-2027, 2019 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-30977661

RESUMEN

The blood-arachnoid barrier (BAB), which is formed by arachnoid epithelial cells linked by tight junctions, has generally been considered impermeable to water-soluble substances. However, we recently demonstrated that organic anion transporters 1 and 3 (Oat1 and Oat3) play roles in drug clearance at the BAB. Here, we examined whether an organic anion-transporting polypeptide (Oatp) also plays a role, using the fluorescent organic anion sulforhodamine-101 (SR-101) as a model substrate. SR-101 was injected into the cisterna magna of rats in order to minimize the contribution of choroid plexus transport. The in vivo cerebrospinal fluid (CSF) elimination clearance of SR-101 after intracisternal administration was ninefold greater than that of fluorescein-labeled inulin, a bulk flow marker. In the case of pre-administration of taurocholate, a broad-spectrum inhibitor of Oatps, or digoxin, a strong substrate/inhibitor for Oatp1a4 but not for Oatp1a1, Oat1, and Oat3, the CSF elimination of SR-101 was significantly reduced, becoming similar to that of inulin, and thus indicating complete inhibition of SR-101 clearance from the CSF. The distribution of SR-101 fluorescence was restricted to the arachnoid mater in the absence of inhibitor, whereas the fluorescence was increased in the parenchyma of the spinal cord after co-injection of taurocholate or digoxin. Immunostaining confirmed the localization of Oatp1a4 in the arachnoid mater. These results indicate that Oatp1a4 at the BAB acts as an avid clearance pathway of SR-101 in the CSF to the blood. Thus, Oatp1a4 appears to play a major role in CSF detoxification by limiting the distribution of organic anions to the brain and spinal cord.


Asunto(s)
Aracnoides/metabolismo , Barrera Hematoencefálica/metabolismo , Líquido Cefalorraquídeo/metabolismo , Transportadores de Anión Orgánico/metabolismo , Rodaminas/farmacocinética , Animales , Encéfalo/metabolismo , Digoxina/farmacología , Colorantes Fluorescentes/farmacocinética , Masculino , Tasa de Depuración Metabólica , Transportadores de Anión Orgánico/antagonistas & inhibidores , Proteínas de Transporte de Catión Orgánico/metabolismo , Compuestos Orgánicos/farmacocinética , Ratas , Ratas Wistar , Rodaminas/administración & dosificación , Médula Espinal/metabolismo , Ácido Taurocólico/farmacología , Distribución Tisular
12.
Genesis ; 57(5): e23288, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30801905

RESUMEN

The meninges are membranous layers surrounding the central nervous system. In the head, the meninges lie between the brain and the skull, and interact closely with both during development. The cranial meninges originate from a mesenchymal sheath on the surface of the developing brain, called primary meninx, and undergo differentiation into three layers with distinct histological characteristics: the dura mater, the arachnoid mater, and the pia mater. While genetic regulation of meningeal development is still poorly understood, mouse mutants and other models with meningeal defects have demonstrated the importance of the meninges to normal development of the calvaria and the brain. For the calvaria, the interactions with the meninges are necessary for the progression of calvarial osteogenesis during early development. In later stages, the meninges control the patterning of the skull and the fate of the sutures. For the brain, the meninges regulate diverse processes including cell survival, cell migration, generation of neurons from progenitors, and vascularization. Also, the meninges serve as a stem cell niche for the brain in the postnatal life. Given these important roles of the meninges, further investigation into the molecular mechanisms underlying meningeal development can provide novel insights into the coordinated development of the head.


Asunto(s)
Meninges/embriología , Meninges/metabolismo , Meninges/fisiología , Animales , Aracnoides/embriología , Aracnoides/metabolismo , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Biología Evolutiva/métodos , Duramadre/embriología , Duramadre/metabolismo , Humanos , Piamadre/embriología , Piamadre/metabolismo , Cráneo/embriología , Cráneo/metabolismo
13.
J Cereb Blood Flow Metab ; 39(10): 2061-2073, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29798726

RESUMEN

Hydrocephalus (HC) is an imbalance in cerebrospinal fluid (CSF) secretion/absorption resulting in fluid accumulation within the brain with consequential pathophysiology. Our research has identified a unique cerebral folate system in which depletion of CSF 10-formyl-tetrahydrofolate-dehydrogenase (FDH) is associated with cortical progenitor cell-cycle arrest in hydrocephalic Texas (H-Tx) rats. We used tissue culture, immunohistochemistry, in-situ PCR and RT-PCR and found that the in-vitro proliferation of arachnoid cells is highly folate-dependent with exacerbated proliferation occurring in hydrocephalic CSF that has low FDH but high folate-receptor-alpha (FRα) and folate. Adding FDH to this CSF prevented aberrant proliferation indicating a regulatory function of FDH on CSF folate concentration. Arachnoid cells have no detectable mRNA for FRα or FDH, but FDH mRNA is found in the choroid plexus (CP) and CSF microvesicles. Co-localization of FDH, FRα and folate suggests important functions of FDH in cerebral folate transport, buffering and function. In conclusion, abnormal CSF levels of FDH, FRα and folate inhibit cortical cell proliferation but allow uncontrolled arachnoid cell division that should increase fluid absorption by increasing the arachnoid although this fails in the hydrocephalic brain. FDH appears to buffer available folate to control arachnoid proliferation and function.


Asunto(s)
Ácido Fólico/metabolismo , Hidrocefalia/patología , Animales , Aracnoides/citología , Aracnoides/metabolismo , Aracnoides/patología , Proliferación Celular , Células Cultivadas , Femenino , Receptor 1 de Folato/líquido cefalorraquídeo , Receptor 1 de Folato/metabolismo , Ácido Fólico/líquido cefalorraquídeo , Hidrocefalia/líquido cefalorraquídeo , Hidrocefalia/metabolismo , Masculino , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/líquido cefalorraquídeo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Adv Rheumatol ; 59: 20, 2019. tab
Artículo en Inglés | LILACS | ID: biblio-1088591

RESUMEN

Abstract Background: To date there are no specific classification criteria for childhood-onset systemic lupus erythematosus (cSLE). This study aims to compare the performance among the American College of Rheumatology (ACR) 1997, the Systemic Lupus International Collaborating Clinics criteria (SLICC) and the new European League Against Rheumatism (EULAR)/ACR criteria, in a cSLE cohort. Methods: We conducted a medical chart review study of cSLE cases and controls with defined rheumatic diseases, both ANA positive, to establish each ACR1997, SLICC and EULAR/ACR criterion fulfilled, at first visit and 1-year-follow-up. Results: Study population included 122 cSLE cases and 89 controls. At first visit, SLICC criteria had higher sensitivity than ACR 1997 (89.3% versus 70.5%, p < 0.001), but similar specificity (80.9% versus 83.2%, p = 0.791), however performance was not statistically different at 1-year-follow-up. SLICC better scored in specificity compared to EULAR/ACR score ≥ 10 at first visit (80.9% versus 67.4%, p = 0.008) and at 1-year (76.4% versus 58.4%, p = 0.001), although sensitivities were similar. EULAR/ACR criteria score ≥ 10 exhibited higher sensitivity than ACR 1997 (87.7% versus 70.5%, p < 0.001) at first visit, but comparable at 1-year, whereas specificity was lower at first visit (67.4% versus 83.2%, p = 0.004) and 1-year (58.4% versus 76.4%, p = 0.002). A EULAR/ACR score ≥ 13 against a score ≥ 10, resulted in higher specificity, positive predictive value, and cut-off point accuracy. Compared to SLICC, a EULAR/ACR score ≥ 13 resulted in lower sensitivity at first visit (76.2% versus 89.3%, p < 0.001) and 1-year (91% versus 97.5%, p = 0.008), but similar specificities at both assessments. When compared to ACR 1997, a EULAR/ACR total score ≥ 13, resulted in no differences in sensitivity and specificity at both observation periods. Conclusions: In this cSLE population, SLICC criteria better scored at first visit and 1-year-follow-up. The adoption of a EULAR/ACR total score ≥ 13 in this study, against the initially proposed ≥10 score, was most appropriate to classify cSLE. Further studies are necessary to address if SLICC criteria might allow fulfillment of cSLE classification earlier in disease course and may be more inclusive of cSLE subjects for clinical studies.


Asunto(s)
Animales , Humanos , Encéfalo/metabolismo , Preparaciones Farmacéuticas/metabolismo , Barrera Hematoencefálica/metabolismo , Distribución Tisular/fisiología , Modelos Teóricos , Aracnoides/efectos de los fármacos , Aracnoides/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/fisiología , Encéfalo/efectos de los fármacos , Preparaciones Farmacéuticas/administración & dosificación , Barrera Hematoencefálica/efectos de los fármacos , Distribución Tisular/efectos de los fármacos , Líquido Extracelular/efectos de los fármacos , Líquido Extracelular/metabolismo
15.
Mol Pharm ; 15(3): 911-922, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29436232

RESUMEN

Although arachnoid mater epithelial cells form the blood-arachnoid barrier (BAB), acting as a blood-CSF interface, it has been generally considered that the BAB is impermeable to water-soluble substances and plays a largely passive role. Here, we aimed to clarify the function of transporters at the BAB in regulating CSF clearance of water-soluble organic anion drugs based on quantitative targeted absolute proteomics (QTAP) and in vivo analyses. Protein expression levels of 61 molecules, including 19 ATP-binding-cassette (ABC) transporters and 32 solute-carrier (SLC) transporters, were measured in plasma membrane fraction of rat leptomeninges using QTAP. Thirty-three proteins were detected; others were under the quantification limits. Expression levels of multidrug resistance protein 1 (Mdr1a/P-gp/Abcb1a) and breast cancer resistance protein (Bcrp/Abcg2) were 16.6 and 3.27 fmol/µg protein (51.9- and 9.82-fold greater than in choroid plexus, respectively). Among those organic anion transporters detected only at leptomeninges, not choroid plexus, organic anion transporter 1 (oat1/Slc22a6) showed the greatest expression (2.73 fmol/µg protein). On the other hand, the protein expression level of oat3 at leptomeninges was 6.65 fmol/µg protein, and the difference from choroid plexus was within two-fold. To investigate oat1's role, we injected para-aminohippuric acid (PAH) with or without oat1 inhibitors into cisterna magna (to minimize the contribution of choroid plexus function) of rats. A bulk flow marker, FITC-inulin, was not taken up from CSF up to 15 min, whereas uptake clearance of PAH was 26.5 µL/min. PAH uptake was completely blocked by 3 mM cephalothin (inhibits both oat1 and oat3), while 17% of PAH uptake was inhibited by 0.2 mM cephalothin (selectively inhibits oat3). These results indicate that oat1 and oat3 at the BAB provide a distinct clearance pathway of organic anion drugs from CSF independently of choroid plexus.


Asunto(s)
Aniones/farmacocinética , Aracnoides/metabolismo , Barrera Hematoencefálica/metabolismo , Proteína 1 de Transporte de Anión Orgánico/metabolismo , Transportadores de Anión Orgánico Sodio-Independiente/metabolismo , Animales , Aniones/administración & dosificación , Aniones/líquido cefalorraquídeo , Aracnoides/irrigación sanguínea , Barrera Hematoencefálica/efectos de los fármacos , Cefalotina/farmacología , Líquido Cefalorraquídeo/química , Plexo Coroideo/irrigación sanguínea , Plexo Coroideo/metabolismo , Colorantes Fluorescentes/administración & dosificación , Colorantes Fluorescentes/farmacocinética , Inyecciones Intraventriculares , Masculino , Tasa de Depuración Metabólica , Proteína 1 de Transporte de Anión Orgánico/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Independiente/antagonistas & inhibidores , Proteómica/métodos , Ratas , Ratas Wistar , Rodamina 123/administración & dosificación , Rodamina 123/líquido cefalorraquídeo , Rodamina 123/farmacocinética
16.
J Cereb Blood Flow Metab ; 38(4): 669-686, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29283289

RESUMEN

Perivascular compartments surrounding central nervous system (CNS) vessels have been proposed to serve key roles in facilitating cerebrospinal fluid flow into the brain, CNS waste transfer, and immune cell trafficking. Traditionally, these compartments were identified by electron microscopy with limited molecular characterization. Using cellular markers and knowledge on cellular sources of basement membrane laminins, we here describe molecularly distinct compartments surrounding different vessel types and provide a comprehensive characterization of the arachnoid and pial compartments and their connection to CNS vessels and perivascular pathways. We show that differential expression of plectin, E-cadherin and laminins α1, α2, and α5 distinguishes pial and arachnoid layers at the brain surface, while endothelial and smooth muscle laminins α4 and α5 and smooth muscle actin differentiate between arterioles and venules. Tracer studies reveal that interconnected perivascular compartments exist from arterioles through to veins, potentially providing a route for fluid flow as well as the transport of large and small molecules.


Asunto(s)
Vasos Sanguíneos/fisiología , Encéfalo/fisiología , Líquido Cefalorraquídeo/fisiología , Animales , Aracnoides/anatomía & histología , Aracnoides/metabolismo , Arteriolas/metabolismo , Membrana Basal/metabolismo , Transporte Biológico , Células Endoteliales/metabolismo , Femenino , Inmunidad Celular , Laminina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Liso/metabolismo , Piamadre/metabolismo , Vénulas/metabolismo
17.
Sci Rep ; 7(1): 11603, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28912477

RESUMEN

Adult brain is protected from entry of drugs and toxins by specific mechanisms such as ABC (ATP-binding Cassette) efflux transporters. Little is known when these appear in human brain during development. Cellular distribution of three main ABC transporters (ABCC1, ABCG2, ABCB1) was determined at blood-brain barriers and interfaces in human embryos and fetuses in first half of gestation. Antibodies against claudin-5 and -11 and antibodies to α-fetoprotein were used to describe morphological and functional aspects of brain barriers. First exchange interfaces to be established, probably at 4-5 weeks post conception, are between brain and embryonic cerebrospinal fluid (eCSF) and between outer surface of brain anlage and primary meninx. They already exclude α-fetoprotein and are immunopositive for both claudins, ABCC1 and ABCG2. ABCB1 is detectable within a week of blood vessels first penetrating into brain parenchyma (6-7 weeks post conception). ABCC1, ABCB1 and ABCG2 are present at blood-CSF barrier in all choroid plexuses from first appearance (7 weeks post conception). Outer CSF-brain interfaces are established between 9-11 weeks post conception exhibiting immunoreactivity for all three transporters. Results provide evidence for sequential establishment of brain exchange interfaces and spatial and temporal timetable for three main ABC transporters in early human brain.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Desarrollo Embrionario , Transportadoras de Casetes de Unión a ATP/genética , Aracnoides/metabolismo , Biomarcadores , Encéfalo/embriología , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Feto , Humanos , Inmunohistoquímica , Factores de Tiempo
19.
Exp Brain Res ; 235(6): 1749-1758, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28285405

RESUMEN

After traumatic brain injury (TBI), large amounts of red blood cells and hemolytic products are deposited intracranially creating debris in the cerebrospinal fluid (CSF). This debris, which includes heme and bilirubin, is cleared via the arachnoid granulations and lymphatic systems. However, the mechanisms by which erythrocytes and their breakdown products interfere with normal CSF dynamics remain poorly defined. The purpose of this study was to model in vitro how blood breakdown products affect arachnoid cells at the CSF-blood barrier, and the extent to which the resorption of CSF into the venous drainage system is mechanically impaired following TBI. Arachnoid cells were grown to confluency on permeable membranes. Rates of growth and apoptosis were measured in the presence of blood and lysed blood, changes in transepithelial electrical resistance (TEER) was measured in the presence of blood and hemoglobin, and small molecule permeability was determined in the presence of blood, lysed blood, bilirubin, and biliverdin. These results were directly compared with an established rat brain endothelial cell line (RBEC4) co-cultured with rat brain astrocytes. We found that arachnoid cells grown in the presence of whole or lysed erythrocytes had significantly slower growth rates than controls. Bilirubin and biliverdin, despite their low solubilities, altered the paracellular transport of arachnoid cells more than the acute blood breakdown components of whole and lysed blood. Mannitol permeability was up to four times higher in biliverdin treatments than controls, and arachnoid membranes demonstrated significantly decreased small molecule permeabilities in the presence of whole and lysed blood. We conclude that short-term (<24 h) arachnoid cell transport and long-term (>5 days) arachnoid cell viability are affected by blood and blood breakdown products, with important consequences for CSF flow and blood clearance after TBI.


Asunto(s)
Aracnoides/citología , Aracnoides/metabolismo , Bilirrubina/metabolismo , Biliverdina/metabolismo , Transporte Biológico Activo/fisiología , Barrera Hematoencefálica/metabolismo , Sangre/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Eritrocitos/metabolismo , Hemorragia Subaracnoidea/metabolismo , Animales , Apoptosis , Línea Celular , Proliferación Celular , Supervivencia Celular , Diuréticos Osmóticos/farmacocinética , Masculino , Manitol/farmacocinética , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
20.
Oncotarget ; 6(32): 32713-22, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26418719

RESUMEN

The role of PDGF-B and its receptor in meningeal tumorigenesis is not clear. We investigated the role of PDGF-B in mouse meningioma development by generating autocrine stimulation of the arachnoid through the platelet-derived growth factor receptor (PDGFR) using the RCAStv-a system. To specifically target arachnoid cells, the cells of origin of meningioma, we generated the PGDStv-a mouse (Prostaglandin D synthase). Forced expression of PDGF-B in arachnoid cells in vivo induced the formation of Grade I meningiomas in 27% of mice by 8 months of age. In vitro, PDGF-B overexpression in PGDS-positive arachnoid cells lead to increased proliferation.We found a correlation of PDGFR-B expression and NF2 inactivation in a cohort of human meningiomas, and we showed that, in mice, Nf2 loss and PDGF over-expression in arachnoid cells induced meningioma malignant transformation, with 40% of Grade II meningiomas. In these mice, additional loss of Cdkn2ab resulted in a higher incidence of malignant meningiomas with 60% of Grade II and 30% of Grade III meningiomas. These data suggest that chronic autocrine PDGF signaling can promote proliferation of arachnoid cells and is potentially sufficient to induce meningiomagenesis. Loss of Nf2 and Cdkn2ab have synergistic effects with PDGF-B overexpression promoting meningioma malignant transformation.


Asunto(s)
Aracnoides/metabolismo , Transformación Celular Neoplásica/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Oxidorreductasas Intramoleculares/metabolismo , Lipocalinas/metabolismo , Neoplasias Meníngeas/metabolismo , Meningioma/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Animales , Aracnoides/patología , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Cultivadas , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Oxidorreductasas Intramoleculares/genética , Lipocalinas/genética , Neoplasias Meníngeas/genética , Neoplasias Meníngeas/patología , Meningioma/genética , Meningioma/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Clasificación del Tumor , Proteínas Proto-Oncogénicas c-sis/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Estudios Retrospectivos , Transducción de Señal , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...