Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 482
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731802

RESUMEN

5-azacytidine (AZA), a representative DNA-demethylating drug, has been widely used to treat myelodysplastic syndromes (MDS). However, it remains unclear whether AZA's DNA demethylation of any specific gene is correlated with clinical responses to AZA. In this study, we investigated genes that could contribute to the development of evidence-based epigenetic therapeutics with AZA. A DNA microarray identified that AZA specifically upregulated the expression of 438 genes in AZA-sensitive MDS-L cells but not in AZA-resistant counterpart MDS-L/CDA cells. Of these 438 genes, the ALOX12 gene was hypermethylated in MDS-L cells but not in MDS-L/CDA cells. In addition, we further found that (1) the ALOX12 gene was hypermethylated in patients with MDS compared to healthy controls; (2) MDS classes with excess blasts showed a relatively lower expression of ALOX12 than other classes; (3) a lower expression of ALOX12 correlated with higher bone marrow blasts and a shorter survival in patients with MDS; and (4) an increased ALOX12 expression after AZA treatment was associated with a favorable response to AZA treatment. Taking these factors together, an enhanced expression of the ALOX12 gene may predict favorable therapeutic responses to AZA therapy in MDS.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Azacitidina , Metilación de ADN , Síndromes Mielodisplásicos , Humanos , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/tratamiento farmacológico , Azacitidina/uso terapéutico , Azacitidina/farmacología , Masculino , Femenino , Metilación de ADN/efectos de los fármacos , Anciano , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Persona de Mediana Edad , Anciano de 80 o más Años , Adulto
2.
BMJ Case Rep ; 17(3)2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514164

RESUMEN

Autosomal recessive congenital ichthyosis is a type of inherited ichthyosis which is a rare cluster of genetic disorders leading to defective keratinisation. The combined prevalence for lamellar ichthyosis and congenital ichthyosiform erythroderma is almost 1 per 200 000-300 000 people. Among all the mutations in this gene, missense and frameshift mutations are most common which account for 80% of the cases. Our patient had a mutation in R-type arachidonate 12-lipoxygenase gene (ALOX12B, OMIM*603741).


Asunto(s)
Eritrodermia Ictiosiforme Congénita , Ictiosis Lamelar , Ictiosis , Lactante , Humanos , Ictiosis Lamelar/genética , Colodión , Araquidonato 12-Lipooxigenasa/genética , Eritrodermia Ictiosiforme Congénita/genética , Mutación , Genes Recesivos
3.
Ren Fail ; 46(1): 2313182, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38345057

RESUMEN

Diabetic kidney disease (DKD) is one of the major causes of end-stage renal disease and one of the significant complications of diabetes. This study aims to identify the main differentially expressed genes in DKD from transcriptome sequencing results and analyze their diagnostic value. The present study sequenced db/m mouse and db/db mouse to determine the ALOX12 genetic changes related to DKD. After preliminary validation, ALOX12 levels were significantly elevated in the blood of DKD patients, but not during disease progression. Moreover, urine ALOX12 was increased only in macroalbuminuria patients. Therefore, to visualize the diagnostic efficacy of ALOX12 on the onset and progression of renal injury in DKD, we collected kidney tissue from patients for immunohistochemical staining. ALOX12 was increased in the kidneys of patients with DKD and was more elevated in macroalbuminuria patients. Clinical chemical and pathological data analysis indicated a correlation between ALOX12 protein expression and renal tubule injury. Further immunofluorescence double staining showed that ALOX12 was expressed in both proximal tubules and distal tubules. Finally, the diagnostic value of the identified gene in the progression of DKD was assessed using receiver operating characteristic (ROC) curve analysis. The area under the curve (AUC) value for ALOX12 in the diagnosis of DKD entering the macroalbuminuria stage was 0.736, suggesting that ALOX12 has good diagnostic efficacy. During the development of DKD, the expression levels of ALOX12 in renal tubules were significantly increased and can be used as one of the predictors of the progression to macroalbuminuria in patients with DKD.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Fallo Renal Crónico , Humanos , Animales , Ratones , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/metabolismo , Riñón , Fallo Renal Crónico/complicaciones , Túbulos Renales Proximales/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Progresión de la Enfermedad , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo
4.
Arch Dermatol Res ; 316(1): 24, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060040

RESUMEN

BACKGROUND: Hereditary ichthyosis is a clinically and genetically heterogeneous disorder associated with more than 50 genes with TGM1, ALOX12B, and ALOXE3 being the most prevalent. Establishing an accurate diagnosis is important for effective genetic counseling and optimal patient management. OBJECTIVE: We studied the diagnostic value of whole exome sequencing (WES) in a small case series with hereditary ichthyosis. METHODS: During a 1-year period, index cases of 5 unrelated families clinically diagnosed with hereditary ichthyosis went through WES, followed by extensive segregation analysis. Prenatal diagnosis (PND) was conducted where indicated. RESULTS: We identified 4 homozygous variants-2 in TGM1 (c.655A > G and c.797A > G) and 2 in ALOX12B (c.527 + 2 T > G and c.1654G > T)-alongside a heterozygous variant in TGM1 (c.428G > A) in 5 families. The variants were all pathogenic/likely pathogenic according to the ACMG classification and segregation analysis, except for c.797A > G in TGM1 which remained a variant of unknown clinical significance. Four variants were novel. All families were referred either during pregnancy or before reproductive planning; 4 benefited from WES as it identified the mutation in the probands and enabled carrier detection in at-risk relatives; PND was conducted in 2 families. CONCLUSION: Our findings further support WES is a powerful tool for the comprehensive, accurate, and rapid molecular diagnosis of hereditary ichthyosis and can offer opportunities for reproductive planning, carrier screening and prenatal diagnosis to at-risk families.


Asunto(s)
Ictiosis Lamelar , Ictiosis , Humanos , Araquidonato 12-Lipooxigenasa/genética , Secuenciación del Exoma , Asesoramiento Genético , Ictiosis/diagnóstico , Ictiosis Lamelar/diagnóstico , Ictiosis Lamelar/genética , Mutación
5.
Cell Mol Biol Lett ; 28(1): 97, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030974

RESUMEN

Arachidonic acid 15-lipoxygenases (ALOX15) play a role in mammalian erythropoiesis but they have also been implicated in inflammatory processes. Seven intact Alox genes have been detected in the mouse reference genome and the mouse Alox15 gene is structurally similar to the orthologous genes of other mammals. However, mouse and human ALOX15 orthologs have different functional characteristics. Human ALOX15 converts C20 polyenoic fatty acids like arachidonic acid mainly to the n-6 hydroperoxide. In contrast, the n-9 hydroperoxide is the major oxygenation product formed by mouse Alox15. Previous experiments indicated that Leu353Phe exchange in recombinant mouse Alox15 humanized the catalytic properties of the enzyme. To investigate whether this functional humanization might also work in vivo and to characterize the functional consequences of mouse Alox15 humanization we generated Alox15 knock-in mice (Alox15-KI), in which the Alox15 gene was modified in such a way that the animals express the arachidonic acid 15-lipoxygenating Leu353Phe mutant instead of the arachidonic acid 12-lipoxygenating wildtype enzyme. These mice develop normally, they are fully fertile but display modified plasma oxylipidomes. In young individuals, the basic hematological parameters were not different when Alox15-KI mice and outbred wildtype controls were compared. However, when growing older male Alox15-KI mice develop signs of dysfunctional erythropoiesis such as reduced hematocrit, lower erythrocyte counts and attenuated hemoglobin concentration. These differences were paralleled by an improved ex vivo osmotic resistance of the peripheral red blood cells. Interestingly, such differences were not observed in female individuals suggesting gender specific effects. In summary, these data indicated that functional humanization of mouse Alox15 induces defective erythropoiesis in aged male individuals.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Peróxido de Hidrógeno , Animales , Femenino , Humanos , Masculino , Ratones , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Ácido Araquidónico , Mamíferos
6.
Arterioscler Thromb Vasc Biol ; 43(10): 1990-2007, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37650322

RESUMEN

BACKGROUND: Platelets for transfusion are stored for 5 to 7 days. Previous studies have shown that HETE levels in the storage bag negatively correlate with platelet performance in vivo, suggesting that the dysregulation of bioactive lipid mediators may contribute to the storage lesion. In the current study, we sought to understand how genetic deletion and pharmacological inhibition of 12-LOX (12-lipoxygenase) affects platelets during storage and after transfusion. METHODS: Platelets from 12-LOX+/+ (wild-type [WT]) and 12-LOX-/- mice were stored for 24 and 48 hours and profiled using liquid chromatography-tandem mass spectrometry-multiple reaction monitoring or transfused into thrombocytopenic hIL4R (human interleukin 4 receptor)-transgenic mice. Platelet function was assessed by flow cytometry and in vivo thrombosis and hemostasis models. To test the role of the COX-1 (cyclooxygenase-1) pathway, donor mice were treated with acetylsalicylic acid. Human platelets were treated with the 12-LOX inhibitor, VLX-1005, or vehicle, stored, and transfused to NOD/SCID (nonobese diabetic/severe combined immunodeficiency) mice. RESULTS: Polyunsaturated fatty acids increased significantly in stored platelets from 12-LOX-/- mice, whereas oxylipin concentrations were significantly higher in WT platelets. After transfusion to thrombocytopenic mice, we observed significantly more baseline αIIbß3 integrin activation in 12-LOX-/- platelets than in WT platelets. Stored platelets from 12-LOX-/- mice occluded vessels significantly faster than stored WT platelets. In hemostasis models, significantly more stored 12-LOX-/- than WT platelets accumulated at the site of venous injury leading to reduced blood loss. Inhibition of COX-1 abrogated both increased integrin activation and thromboxane generation in stored 12-LOX-/- platelets, highlighting the critical role of this pathway for improved post-transfusion function. Consistent with our mouse studies, human platelets stored with VLX-1005, showed increased integrin activation compared with vehicle-treated platelets after transfusion. CONCLUSIONS: Deleting 12-LOX improves the post-transfusion function of stored murine platelets by increasing thromboxane generation through COX-1-dependent arachidonic acid metabolism. Future studies should determine the feasibility and safety of 12-LOX-inhibited platelets transfused to humans.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Plaquetas , Humanos , Ratones , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Plaquetas/metabolismo , Ratones Transgénicos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Tromboxanos/metabolismo
7.
Dermatol Online J ; 29(1)2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37040911

RESUMEN

Collodion baby is usually a manifestation of autosomal recessive congenital ichthyosis, a heterogeneous group of congenital hyperkeratotic genodermatoses with highly variable severity and genetic background. Herein, we report a case of self-improving collodion ichthyosis, a rare subtype of autosomal recessive congenital ichthyosis, characterized by an almost-complete spontaneous resolution of symptoms.


Asunto(s)
Ictiosis Lamelar , Ictiosis , Lactante , Humanos , Colodión , Ictiosis Lamelar/diagnóstico , Ictiosis/genética , Araquidonato 12-Lipooxigenasa/genética
8.
Cell Death Dis ; 14(3): 185, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36882395

RESUMEN

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by eczema-like skin lesions, dry skin, severe itching, and recurrent recurrence. The whey acidic protein four-disulfide core domain gene WFDC12 is highly expressed in skin tissue and up-regulated in the skin lesions of AD patients, but its role and relevant mechanism in AD pathogenesis have not been studied yet. In this study, we found that the expression of WFDC12 was closely related to clinical symptoms of AD and the severity of AD-like lesions induced by DNFB in transgenic mice. WFDC12-overexpressing in the epidermis might promote the migration of skin-presenting cells to lymph nodes and increase Th cell infiltration. Meanwhile, the number and ratio of immune cells and mRNA levels of cytokines were significantly upregulated in transgenic mice. In addition, we found that ALOX12/15 gene expression was upregulated in the arachidonic acid metabolism pathway, and the corresponding metabolite accumulation was increased. The activity of epidermal serine hydrolase decreased and the accumulation of platelet-activating factor (PAF) increased in the epidermis of transgenic mice. Collectively, our data demonstrate that WFDC12 may contribute to the exacerbation of AD-like symptoms in DNFB-induced mouse model by enhancing arachidonic acid metabolism and PAF accumulation and that WFDC12 may be a potential therapeutic target for human atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Animales , Ratones , Humanos , Dermatitis Atópica/genética , Factor de Activación Plaquetaria , Ácido Araquidónico , Dinitrofluorobenceno , Piel , Proteínas , Araquidonato 12-Lipooxigenasa/genética
9.
Arch Biochem Biophys ; 733: 109472, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36442529

RESUMEN

Human platelet 12-lipoxygenase (h12-LOX) is responsible for the formation of oxylipin products that play an important role in platelet aggregation. Single nucleotide polymorphisms (SNPs) of h12-LOX have been implicated in several diseases. In this study, we investigate the structural, dynamical, and functional impact of a h12-LOX SNP that generates a tyrosine-to-cysteine mutation at a buried site (Y649C h12-LOX) and was previously ascribed with reduced levels of 12(S)-hydroxyeicosatetraenoic acid (12S-HETE) production in isolated platelets. Herein, in vitro Michaelis-Menten kinetics show reduced catalytic rates for Y649C compared to WT h12-LOX at physiological or lower temperatures. Both proteins exhibited similar melting temperatures, metal content, and oligomerization state. Liposome binding for both proteins was also dependent upon the presence of calcium, temperature, and liposome composition; however, the Y649C variant was found to have lowered binding capacity to liposomes compared to WT at physiological temperatures. Further, hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments revealed a regional defined enhancement in the peptide mobility caused by the mutation. This increased instability for the mutation stemmed from a change in an interaction with an arched helix that lines the substrate binding site, located ≥15 Å from the mutation site. Finally, differential scanning calorimetry demonstrated a reduced protein (un)folding enthalpy, consistent with the HDX results. Taken together, these results demonstrate remarkable similarity between the mutant and WT h12-LOX, and yet, subtle changes in activity, membrane affinity and protein stability may be responsible for the significant physiological changes that the Y649C SNP manifests in platelet biology.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Plaquetas , Humanos , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Plaquetas/metabolismo , Polimorfismo de Nucleótido Simple , Deuterio , Medición de Intercambio de Deuterio , Liposomas/metabolismo , Hidrógeno/metabolismo
12.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012263

RESUMEN

This study aimed to discuss the role of 12/15-lipoxygenase (12/15-LOX) regulation involved in diabetes cognitive dysfunction. First, Mini Mental State Examination (MMSE) test was used to evaluate cognitive ability in diabetic patients and normal controls. The plasma test showed that the plasma level of 12/15-LOX in patients with MMSE scores below 27 was significantly increased compared with that of the normal group. Second, 12/15-LOX inhibitor was administered to diabetic rats. Behavioral tests, biochemistry, enzyme-linked immunosorbent assays, and Western blotting were used in this study. We found that the levels of fasting and random blood glucose increased rapidly in diabetic rats, the levels of triglycerides and total cholesterol in the diabetic group increased, and insulin levels decreased significantly. In the Morris water maze test, the escape latency was prolonged, and the crossing times decreased in the diabetic group. Under the microscope, the apoptosis of hippocampal neurons in diabetic rats increased significantly. The levels of TNF-α, IL-6 and 12-hydroxyindoleic acid (12(S)-HETE) significantly increased, and the protein expression of 12/15-LOX, p38 MAPK, Aß1-42, caspase-3, caspase-9 and cPLA2 increased, while that of Bcl-2 decreased. However, the use of 12/15-LOX inhibitor reversed these results. Third, 12/15-LOX shRNA and p38MAPK inhibitor were administered to HT22 cells in high-glucose medium. The results of the cell experiment were consistent with those of the animal experiment. Our results indicated that the 12/15-LOX pathway participates in diabetic brain damage by activating p38MAPK to promote inflammation and neuronal apoptosis, and intervention 12/15-LOX can improve diabetic cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Diabetes Mellitus Experimental , Animales , Apoptosis , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Disfunción Cognitiva/etiología , Diabetes Mellitus Experimental/complicaciones , Inflamación/metabolismo , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Exp Neurol ; 358: 114212, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36029808

RESUMEN

The purpose of this study was to investigate the effect of miR-702-5p on diabetic encephalopathy (DE) and the interaction of miR-702-5p/12/15-LOX in the central nervous system (CNS). In this study, db/db mice were used as DE animal model and HT22 cells were treated with high-glucose (HG). Based on the bioinformatics prediction of possible binding sites between miR-702-5p and 12/15-LOX, we found that the expression of miR-702-5p was significantly down-regulated while 12/15-LOX up-regulated in vivo and in vitro, and the expression changes were inversely correlated. In vivo, diabetic mice with cognitive dysfunction and hippocampal neuronal damage had a concomitant increase in amyloid precursor protein (APP), amyloid beta(Aß), tau, BAX protein expressions; by contrast, Bcl-2 protein expression was significantly decreased. Overexpression of miR-702-5p significantly reduced the histopathological damage of the hippocampus, improved the learning and memory function of db/db mice, down-regulated 12/15-LOX, APP, Aß, tau, BAX protein expressions significantly and up-regulated the expression of Bcl-2. In vitro, miR-702-5p mimic reversed the decline in cell viability and the increase in cell apoptosis induced by HG. Simultaneously, reduced 12/15-LOX, APP, Aß, BAX protein expressions, and increased Bcl-2 protein expression were detected in the miR-702-5p mimic group. Moreover, combined administration of miR-702-5p mimic and 12/15-LOX overexpression lentivirus significantly reversed the protective effect of up-regulation of miR-702-5p. In conclusion, miR-702-5p has a neuroprotective effect on DE, and this effect was achieved by inhibiting 12/15-LOX. However, miR-702-5p had an endogenous regulatory effect on 12/15-LOX rather than a direct targeting relationship.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Araquidonato 15-Lipooxigenasa , Encefalopatías , Diabetes Mellitus Experimental , MicroARNs , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/farmacología , Animales , Apoptosis , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Encefalopatías/genética , Diabetes Mellitus Experimental/complicaciones , Glucosa/metabolismo , Ratones , MicroARNs/genética , Neuroprotección , Proteínas Proto-Oncogénicas c-bcl-2 , Proteína X Asociada a bcl-2
14.
Front Immunol ; 13: 910582, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833141

RESUMEN

Colorectal cancer is a highly malignant cancer with poor prognosis and mortality rates. As the first biological agent approved for metastatic colorectal cancer (mCRC), bevacizumab was confirmed to exhibit good performance when combined with chemotherapy and immunotherapy. However, the efficacy of both bevacizumab and immunotherapy is highly heterogeneous across CRC patients with different stages. Thus, exploring a novel biomarker to comprehensively assess the prognosis and bevacizumab and immunotherapy response of CRC is of great significance. In our study, weighted gene co-expression network analysis (WGCNA) and the receiver operating characteristic (ROC) curves were employed to identify bevacizumab-related genes. After verification in four public cohorts and our internal cohort, ALOX12 was identified as a key gene related to bevacizumab response. Prognostic analysis and in vitro experiments further demonstrated that ALOX12 was closely associated with the prognosis, tumor proliferation, invasion, and metastasis. Multi-omics data analysis based on mutation and copy number variation (CNV) revealed that RYR3 drove the expression of ALOX12 and the deletion of 17p12 inhibited ALOX12 expression, respectively. Moreover, we interrogated the relationship between ALOX12 and immune cells and checkpoints. The results exhibited that high ALOX12 expression predicted a higher immune infiltration and better immunotherapy response, which was further validated in Tumor Immune Dysfunction and Exclusion (TIDE) and Subclass Mapping (SubMap) methods. Above all, our study provides a stable biomarker for clinical protocol optimization, prognostic assessment, precise treatment, and individualized treatment of CRC.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Bevacizumab , Neoplasias Colorrectales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Bevacizumab/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Variaciones en el Número de Copia de ADN , Humanos , Inmunoterapia , Pronóstico
15.
BMC Cancer ; 22(1): 714, 2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35768785

RESUMEN

OBJECTIVES: To investigate prognostic-related gene signature based on DNA damage repair and tumor microenvironment statue in human papillomavirus 16 negative (HPV16-) head and neck squamous cell carcinoma (HNSCC). METHODS: For the RNA-sequence matrix in HPV16- HNSCC in the Cancer Genome Atlas (TCGA) cohort, the DNA damage response (DDR) and tumor microenvironment (TM) status of each patient sample was estimated by using the ssGSEA algorithm. Through bioinformatics analysis in DDR_high/TM_high (n = 311) and DDR_high/TM_low (n = 53) groups, a survival-related gene signature was selected in the TCGA cohort. Two independent external validation cohorts (GSE65858 (n = 210) and GSE41613 (n = 97)) with HPV16- HNSCC patients validated the gene signature. Correlations among the clinical-related hub differentially expressed genes (DEGs) and infiltrated immunocytes were explored with the TIMER2.0 server. Drug screening based on hub DEGs was performed using the CellMiner and GSCALite databases. The loss-of-function studies were used to evaluate the effect of screened survival-related gene on the motility of HPV- HNSCC cells in vitro. RESULTS: A high DDR level (P = 0.025) and low TM score (P = 0.012) were independent risk factors for HPV16- HNSCC. Downregulated expression of ALOX12B or SPRR1A was associated with poor survival rate and advanced cancer stages. The pathway enrichment analysis showed the DDR_high/TM_low samples were enriched in glycosphingolipid biosynthesis-lacto and neolacto series, glutathione metabolism, platinum drug resistance, and ferroptosis pathways, while the DDR_high/TM_low samples were enriched in Th17 cell differentiation, Neutrophil extracellular trap formation, PD - L1 expression and PD - 1 checkpoint pathway in cancer. Notably, the expression of ALOX12B and SPRR1A were negatively correlated with cancer-associated fibroblasts (CAFs) infiltration and CAFs downstream effectors. Sensitivity to specific chemotherapy regimens can be derived from gene expressions. In addition, ALOX12B and SPRR1A expression was associated with the mRNA expression of insulin like growth factor 1 receptor (IGF1R), AKT serine/threonine kinase 1 (AKT1), mammalian target of rapamycin (MTOR), and eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) in HPV negative HNSCC. Down-regulation of ALOX12B promoted HPV- HNSCC cells migration and invasion in vitro. CONCLUSIONS: ALOX12B and SPRR1A served as a gene signature for overall survival in HPV16- HNSCC patients, and correlated with the amount of infiltrated CAFs. The specific drug pattern was determined by the gene signature.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Proteínas Ricas en Prolina del Estrato Córneo , Reparación del ADN , Neoplasias de Cabeza y Cuello , Papillomavirus Humano 16 , Infecciones por Papillomavirus , Carcinoma de Células Escamosas de Cabeza y Cuello , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Proteínas Ricas en Prolina del Estrato Córneo/metabolismo , Daño del ADN , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/virología , Papillomavirus Humano 16/aislamiento & purificación , Humanos , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/patología , Infecciones por Papillomavirus/virología , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Microambiente Tumoral/genética
16.
Arch Biochem Biophys ; 727: 109317, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35709965

RESUMEN

Human 15-lipoxygenases (LOX) are critical enzymes in the inflammatory process, producing various pro-resolution molecules, such as lipoxins and resolvins, but the exact role each of the two 15-LOXs in these biosynthetic pathways remains elusive. Previously, it was observed that h15-LOX-1 reacted with 5S-HETE in a non-canonical manner, producing primarily the 5S,12S-diHETE product. To determine the active site constraints of h15-LOX-1 in achieving this reactivity, amino acids involved in the fatty acid binding were investigated. It was observed that R402L did not have a large effect on 5S-HETE catalysis, but F414 appeared to π-π stack with 5S-HETE, as seen with AA binding, indicating an aromatic interaction between a double bond of 5S-HETE and F414. Decreasing the size of F352 and I417 shifted oxygenation of 5S-HETE to C12, while increasing the size of these residues reversed the positional specificity of 5S-HETE to C15. Mutants at these locations demonstrated a similar effect with 7S-HDHA as the substrate, indicating that the depth of the active site regulates product specificity for both substrates. Together, these data indicate that of the three regions proposed to control positional specificity, π-π stacking and active site cavity depth are the primary determinants of positional specificity with 5S-HETE and h15-LOX-1. Finally, the altered reactivity of h15-LOX-1 was also observed with 5S-HEPE, producing 5S,12S-diHEPE instead of 5S,15S-diHEPE (aka resolvin E4 (RvE4). However, h15-LOX-2 efficiently produces 5S,15S-diHEPE from 5S-HEPE. This result is important with respect to the biosynthesis of the RvE4 since it obscures which LOX isozyme is involved in its biosynthesis. Future work detailing the expression levels of the lipoxygenase isoforms in immune cells and selective inhibition during the inflammatory response will be required for a comprehensive understanding of RvE4 biosynthesis.


Asunto(s)
Araquidonato 15-Lipooxigenasa , Ácidos Docosahexaenoicos , Lipooxigenasa , Humanos , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/química , Araquidonato 15-Lipooxigenasa/genética , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos , Ácidos Hidroxieicosatetraenoicos/química , Lipooxigenasa/genética , Receptores Depuradores de Clase E
17.
Proc Natl Acad Sci U S A ; 119(22): e2023285119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622894

RESUMEN

Nonresolving inflammation underlies a range of chronic inflammatory diseases, and therapeutic acceleration of resolution of inflammation may improve outcomes. Neural reflexes regulate the intensity of inflammation (for example, through signals in the vagus nerve), but whether activation of the vagus nerve promotes the resolution of inflammation in vivo has been unknown. To investigate this, mice were subjected to electrical vagus nerve stimulation (VNS) or sham surgery at the cervical level followed by zymosan-induced peritonitis. The duration of inflammation resolution was significantly reduced and efferocytosis was significantly increased in mice treated with VNS as compared with sham. Lipid mediator (LM) metabololipidomics revealed that mice treated with VNS had higher levels of specialized proresolving mediators (SPMs), particularly from the omega-3 docosahexaenoic (DHA) and docosapentaenoic (n-3 DPA) metabolomes, in peritoneal exudates. VNS also shifted the ratio between proinflammatory and proresolving LMs toward a proresolving profile, but this effect by VNS was inverted in mice deficient in 12/15-lipoxgenase (Alox15), a key enzyme in this SPM biosynthesis. The significant VNS-mediated reduction of neutrophil numbers in peritoneal exudates was absent in mice deficient in the cholinergic α7-nicotinic acetylcholine receptor subunit (α7nAChR), an essential component of the inflammatory reflex. Thus, VNS increased local levels of SPM and accelerated resolution of inflammation in zymosan-induced peritonitis by a mechanism that involves Alox15 and requires the α7nAChR.


Asunto(s)
Araquidonato 12-Lipooxigenasa , Araquidonato 15-Lipooxigenasa , Inflamación , Estimulación del Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad , Inflamación/terapia , Mediadores de Inflamación/metabolismo , Ratones , Ratones Mutantes , Nervio Vago/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/genética
18.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(3): 321-324, 2022 Mar 10.
Artículo en Chino | MEDLINE | ID: mdl-35315045

RESUMEN

OBJECTIVE: To explore the clinical and genetic characteristics of a pediatric patient suspected for Autosomal Recessive Congenital Ichthyosis (ARCI). METHODS: Clinical data of the patient was analyzed. Peripheral blood samples were collected from the patient and his parents for the extraction of genomic DNA. Next-generation sequencing (NGS) was then carried out. Candidate variants were confirmed by Sanger sequencing. A variety of bioinformatic tools including Mutation Taster, PROVEAN, and PolyPhen2 were used to predict the pathogenicity of the variants based on guidelines from the American College of Medical Genetics and Genomics (ACMG). RESULTS: The patient, a 1-month-and-7-day-old male, had presented with cutaneous erythema and fine scaling of the whole body. NGS revealed that he has harbored compound heterozygous variants c.1579G>A (p.Val527Met) (paternal) and c.923T>C (p.Leu308Pro) (maternal) of the ALOX12B gene. The former was known to be likely pathogenic, while the latter was unreported previously and categorized as "likely pathogenic" based on the ACMG guidelines. Based on the clinical and genetic findings, the patient was diagnosed with ARCI. CONCLUSION: The c.1579G>A and c.923T>C variants of the ALOX12B genes probably underlay the ARCI in this patient. Above finding has enriched the spectrum of ALOX12B mutations and enabled molecular diagnosis of the patient, based on which genetic counseling and prenatal diagnosis may be provided.


Asunto(s)
Ictiosis Lamelar , Araquidonato 12-Lipooxigenasa/genética , Niño , Femenino , Genes Recesivos , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ictiosis Lamelar/genética , Masculino , Mutación , Embarazo
19.
Curr Eye Res ; 47(3): 329-335, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35129022

RESUMEN

PURPOSE: Abnormal lipid metabolism has been proved to be implicated in the complex pathogenesis of diabetic retinopathy (DR). 12-lipoxygenase (12-LOX) is a member of lipoxygenase family responsible for the oxygenation of cellular polyunsaturated fatty acids to produce lipid mediators which modulate cell inflammation. This review explores the role of 12-lipoxygenase and its products in the pathogenesis of DR. METHODS: A comprehensive medical literature search was conducted on PubMed till September 2021. RESULTS: Emerging evidence has demonstrated that 12-LOX and its main product 12- hydroxyeicosatetraenoic acid (12-HETE) activate retinal cells, especially retinal vascular endothelial cells, through the activation of NADPH oxidase and the subsequent generation of reactive oxygen species (ROS), mediating multiple pathological changes during DR. Genetic deletion or pharmacological inhibition models of 12-LOX in mice show protection from DR. CONCLUSION: 12-LOX and its product 12-HETE take important part in DR pathogenesis and show their potential as future therapeutic targets for DR. Further studies are needed on the specific mechanism including 12-LOX pathway related molecules, 12-HETE receptors and downstream signaling pathways.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Araquidonato 12-Lipooxigenasa , Diabetes Mellitus , Retinopatía Diabética , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/farmacología , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Ácidos Hidroxieicosatetraenoicos/farmacología , Ácidos Hidroxieicosatetraenoicos/uso terapéutico , Ratones
20.
Biochem Biophys Res Commun ; 595: 7-13, 2022 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-35091109

RESUMEN

The intestinal tract is an essential component of the body's immune system, and is extremely sensitive to exposure of ionizing radiation. While ionizing radiation can effectively induce multiple forms of cell death, whether it can also promote ferroptosis in intestinal cells and the possible interrelationship between ferroptosis and intestinal immune function has not been reported so far. Here, we found that radiation-induced major ultrastructural changes in mitochondria of small intestinal epithelial cells and the changes induced in iron content and MDA levels in the small intestine were consistent with that observed during cellular ferroptosis, thus suggesting occurrence of ferroptosis in radiation-induced intestinal damage. Moreover, radiation caused a substantial increase in the expression of ferroptosis-related factors such as LPCAT3 and ALOX15 mRNA, augmented the levels of immune-related factors INF-γ and TGF-ß mRNA, and decreased the levels of IL-17 mRNA thereby indicating that ionizing radiation induced ferroptosis and impairment of intestinal immune function. Liproxstatin-1 is a ferroptosis inhibitor that was found to ameliorate radiation-induced ferroptosis and promote the recovery from immune imbalances. These findings supported the role of ferroptosis in radiation-induced intestinal immune injury and provide novel strategies for protection against radiation injury through regulation of the ferroptosis pathway.


Asunto(s)
Ferroptosis/fisiología , Intestinos/patología , Quinoxalinas/farmacología , Traumatismos Experimentales por Radiación/prevención & control , Radiación Ionizante , Compuestos de Espiro/farmacología , 1-Acilglicerofosfocolina O-Aciltransferasa/genética , 1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Animales , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/metabolismo , Ferroptosis/efectos de los fármacos , Ferroptosis/efectos de la radiación , Expresión Génica/efectos de los fármacos , Expresión Génica/efectos de la radiación , Glutatión/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/metabolismo , Intestino Delgado/efectos de la radiación , Intestinos/efectos de los fármacos , Intestinos/efectos de la radiación , Masculino , Malondialdehído/metabolismo , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Mitocondrias/efectos de los fármacos , Mitocondrias/efectos de la radiación , Mitocondrias/ultraestructura , Traumatismos Experimentales por Radiación/patología , Traumatismos Experimentales por Radiación/fisiopatología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...