Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.158
Filtrar
1.
Front Public Health ; 12: 1371920, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694994

RESUMEN

Background: An increasing number of studies suggest that environmental pollution may increase the risk of vitamin D deficiency (VDD). However, less is known about arsenic (As) exposure and VDD, particularly in Chinese pregnant women. Objectives: This study examines the correlations of different urinary As species with serum 25 (OH) D and VDD prevalence. Methods: We measured urinary arsenite (As3+), arsenate (As5+), monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) levels and serum 25(OH)D2, 25(OH)D3, 25(OH) D levels in 391 pregnant women in Tianjin, China. The diagnosis of VDD was based on 25(OH) D serum levels. Linear relationship, Logistic regression, and Bayesian kernel machine regression (BKMR) were used to examine the associations between urinary As species and VDD. Results: Of the 391 pregnant women, 60 received a diagnosis of VDD. Baseline information showed significant differences in As3+, DMA, and tAs distribution between pregnant women with and without VDD. Logistic regression showed that As3+ was significantly and positively correlated with VDD (OR: 4.65, 95% CI: 1.79, 13.32). Meanwhile, there was a marginally significant positive correlation between tAs and VDD (OR: 4.27, 95% CI: 1.01, 19.59). BKMR revealed positive correlations between As3+, MMA and VDD. However, negative correlations were found between As5+, DMA and VDD. Conclusion: According to our study, there were positive correlations between iAs, especially As3+, MMA and VDD, but negative correlations between other As species and VDD. Further studies are needed to determine the mechanisms that exist between different As species and VDD.


Asunto(s)
Arsénico , Deficiencia de Vitamina D , Humanos , Femenino , Deficiencia de Vitamina D/epidemiología , Deficiencia de Vitamina D/orina , Embarazo , Estudios Transversales , China/epidemiología , Adulto , Arsénico/orina , Arsénico/sangre , Prevalencia , Arsenicales/orina , Vitamina D/sangre , Vitamina D/orina , Complicaciones del Embarazo/orina , Complicaciones del Embarazo/epidemiología , Modelos Logísticos , Pueblos del Este de Asia
2.
J Postgrad Med ; 70(2): 105-108, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38629272

RESUMEN

ABSTRACT: Arsenic compounds are colorless and odorless and toxicity can occur either acutely following ingestion of arsenicals with gastrointestinal disturbances or due to chronic exposure usually presenting with dermatologic lesions and peripheral neuropathy. We report a young couple who presented with signs and symptoms of painful sensorimotor peripheral neuropathy in a typical "stocking and glove" pattern. They had raised urinary arsenic levels with normal blood levels and thus, a diagnosis of chronic arsenic poisoning due to contaminated water intake was made after detecting elevated arsenic levels in their home water supply. Both patients underwent chelation therapy with dimercaprol for 14 days and reported subjective and objective improvement in symptoms with the reduction in urinary arsenic levels at the end of therapy.


Asunto(s)
Intoxicación por Arsénico , Enfermedades del Sistema Nervioso Periférico , Humanos , Intoxicación por Arsénico/complicaciones , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Masculino , Femenino , Adulto , Dimercaprol/uso terapéutico , Quelantes/uso terapéutico , Arsénico/orina , Resultado del Tratamiento , Enfermedad Crónica , Terapia por Quelación
3.
Nutrients ; 16(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674871

RESUMEN

This study continues the research in which we determined the concentration of aluminum in children receiving long-term parenteral nutrition (LPN). Since our results were interesting, we decided to assay arsenic (As) and cobalt (Co) in the collected material, which, like aluminum, constitute contamination in the mixtures used in parenteral nutrition. Excesses of these trace elements in the human body are highly toxic, and deficiencies, particularly in the case of Co, can lead to various complications. The aim of this study was to determine the impact of LPN in children on their serum levels of As and Co, as well as the excretion of these elements in urine, and to compare them with a control group of healthy children. The study group consisted of 83 children receiving home parenteral nutrition from two Polish centers, while the control group included 121 healthy children. In both groups, the levels of As and Co in serum and urine were measured. The elemental compositions of the samples were determined using inductively coupled plasma mass spectrometry (ICP-MS). It was demonstrated that the children receiving LPN did not have increased As exposure compared to the controls. Greater exposure compared to the control group was shown for Co. In conclusion, children receiving LPN are not exposed to As, and even though the concentrations of Co in serum and urine were higher in the LPN group than in the healthy controls, neither trace element poses a health threat to children requiring LPN.


Asunto(s)
Arsénico , Cobalto , Humanos , Cobalto/orina , Cobalto/sangre , Arsénico/orina , Arsénico/sangre , Arsénico/análisis , Femenino , Masculino , Niño , Preescolar , Lactante , Nutrición Parenteral , Polonia , Estudios de Casos y Controles , Nutrición Parenteral en el Domicilio , Oligoelementos/sangre , Oligoelementos/orina , Adolescente
4.
Ecotoxicol Environ Saf ; 277: 116323, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653024

RESUMEN

The Kakamega gold belt's natural geological enrichment and artisanal and small-scale gold mining (ASGM) have resulted in food and environmental pollution, human exposure, and subsequent risks to health. This study aimed to characterise exposure pathways and risks among ASGM communities. Human hair, nails, urine, water, and staple food crops were collected and analysed from 144 ASGM miners and 25 people from the ASGM associated communities. Exposure to PHEs was predominantly via drinking water from mine shafts, springs and shallow-wells (for As>Pb>Cr>Al), with up to 366 µg L-1 arsenic measured in shaft waters consumed by miners. Additional exposure was via consumption of locally grown crops (for As>Ni>Pb>Cr>Cd>Hg>Al) besides inhalation of Hg vapour and dust, and direct dermal contact with Hg. Urinary elemental concentrations for both ASGM workers and wider ASGM communities were in nearly all cases above bioequivalents and reference upper thresholds for As, Cr, Hg, Ni, Pb and Sb, with median concentrations of 12.3, 0.4, 1.6, 5.1, 0.7 and 0.15 µg L-1, respectively. Urinary As concentrations showed a strong positive correlation (0.958) with As in drinking water. This study highlighted the importance of a multidisciplinary approach in integrating environmental, dietary, and public health investigations to better characterise the hazards and risks associated with ASGM and better understand the trade-offs associated with ASGM activities relating to public health and environmental sustainability. Further research is crucial, and study results have been shared with Public Health and Environmental authorities to inform mitigation efforts.


Asunto(s)
Monitoreo Biológico , Minería , Salud Pública , Humanos , Kenia , Monitoreo del Ambiente/métodos , Oro , Adulto , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Cabello/química , Agua Potable/química , Agua Potable/análisis , Masculino , Arsénico/análisis , Arsénico/orina , Persona de Mediana Edad , Medición de Riesgo , Contaminación de Alimentos/análisis , Femenino , Uñas/química , Contaminantes Ambientales/análisis , Contaminantes Ambientales/orina , Adulto Joven , Exposición Profesional/análisis
5.
Arch Med Res ; 55(3): 102984, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38484488

RESUMEN

BACKGROUND: Cardiovascular disease (CVD) is one of the main causes of death and disability worldwide. The etiology of CVD is often associated with multiple risk factors, with environmental factors receiving considerable attention. Individuals with precarious jobs are among the groups most affected by chronic exposure to environmental pollutants. AIM: This study aimed to evaluate occupational exposure to heavy metals among individuals in precarious job settings and investigate atherogenic indices as biomarkers of cardiovascular risk. METHODS: A total of 137 workers participated in this cross-sectional study conducted in three work environments in San Luis Potosi, Mexico. Urine and blood samples were collected to assess metal exposure and biochemical profiles, including atherogenic indices. RESULTS: The results showed that workers in the brick sector exhibited the highest levels of metal exposure, particularly arsenic (44.06 µg/L), followed by stonecutters and garbage collectors (24.7 and 16.9 µg/L, respectively). Similarly, Castelli risk index (CRI) and the atherogenic index of plasma (AIP) were higher in brickmakers (3.883 and 0.499) compared to stonecutters (3.285 and 0.386) and garbage collectors (3.329 and 0.367). CONCLUSIONS: Evidence of exposure to heavy metals was observed in the three populations, in addition to the fact that individuals with greater exposure to arsenic also exhibited higher CRI and AIP.


Asunto(s)
Arsénico , Aterosclerosis , Enfermedades Cardiovasculares , Metales Pesados , Humanos , Arsénico/toxicidad , Arsénico/orina , México/epidemiología , Estudios Transversales , Metales Pesados/análisis , Metales Pesados/orina , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Biomarcadores
6.
Environ Health Perspect ; 132(3): 37007, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38534131

RESUMEN

BACKGROUND: Chronic arsenic exposure has been associated with an increased risk of cardiovascular disease; diabetes; cancers of the lung, pancreas and prostate; and all-cause mortality in American Indian communities in the Strong Heart Study. OBJECTIVE: The Strong Heart Water Study (SHWS) designed and evaluated a multilevel, community-led arsenic mitigation program to reduce arsenic exposure among private well users in partnership with Northern Great Plains American Indian Nations. METHODS: A cluster randomized controlled trial (cRCT) was conducted to evaluate the effectiveness of the SHWS arsenic mitigation program over a 2-y period on a) urinary arsenic, and b) reported use of arsenic-safe water for drinking and cooking. The cRCT compared the installation of a point-of-use arsenic filter and a mobile Health (mHealth) program (3 phone calls; SHWS mHealth and Filter arm) to a more intensive program, which included this same program plus three home visits (3 phone calls and 3 home visits; SHWS Intensive arm). RESULTS: A 47% reduction in urinary arsenic [geometric mean (GM)=13.2 to 7.0µg/g creatinine] was observed from baseline to the final follow-up when both study arms were combined. By treatment arm, the reduction in urinary arsenic from baseline to the final follow-up visit was 55% in the mHealth and Filter arm (GM=14.6 to 6.55µg/g creatinine) and 30% in the Intensive arm (GM=11.2 to 7.82µg/g creatinine). There was no significant difference in urinary arsenic levels by treatment arm at the final follow-up visit comparing the Intensive vs. mHealth and Filter arms: GM ratio of 1.21 (95% confidence interval: 0.77, 1.90). In both arms combined, exclusive use of arsenic-safe water from baseline to the final follow-up visit significantly increased for water used for cooking (17% to 53%) and drinking (12% to 46%). DISCUSSION: Delivery of the interventions for the community-led SHWS arsenic mitigation program, including the installation of a point-of-use arsenic filter and a mHealth program on the use of arsenic-safe water (calls only, no home visits), resulted in a significant reduction in urinary arsenic and increases in reported use of arsenic-safe water for drinking and cooking during the 2-y study period. These results demonstrate that the installation of an arsenic filter and phone calls from a mHealth program presents a promising approach to reduce water arsenic exposure among private well users. https://doi.org/10.1289/EHP12548.


Asunto(s)
Arsénico , Agua Potable , Humanos , Indio Americano o Nativo de Alaska , Arsénico/orina , Creatinina , Agua Potable/química , Telemedicina
7.
Environ Mol Mutagen ; 65(3-4): 121-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385761

RESUMEN

Elevated concentrations of arsenic, lithium and boron in drinking water have already been reported in Bolivia. Arsenic is known to cause genotoxicity but that caused by lithium and boron is less well known. The aim of the present cross-sectional study was to evaluate potential genotoxic effects of exposure to arsenic, while considering exposure to lithium and boron and genetic susceptibility. Women (n = 230) were recruited in villages located around Lake Poopó. Exposure to arsenic was determined as the sum of concentrations of arsenic metabolites inorganic arsenic, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in urine. Exposure to lithium and boron was determined based on their concentrations in urine. Genetic susceptibility was determined by GSTM1 (glutathione S-transferase-mu-1) and GSTT1 (glutathione S-transferase-theta-1) null genotypes and AS3MT (Arsenite Methyltransferase) rs3740393. Genotoxicity was measured in peripheral blood leukocytes using the comet assay. The geometric means of arsenic, lithium, and boron concentrations were 68, 897, and 3972 µg/L, respectively. GSTM1 and GSTT1 null carriers had more DNA strand breaks than gene carriers (p = .008, p = .005). We found no correlation between urinary arsenic and DNA strand breaks (rS = .03, p = .64), and only a weak non-significant positive association in the adjusted multivariate analysis (ß = .09 [-.03; .22], p = .14). Surprisingly, increasing concentrations of lithium in urine were negatively correlated with DNA strand breaks (rS = -.24, p = .0006), and the association persisted in multivariate analysis after adjusting for arsenic (ß = -.22 [-.36; -.08], p = .003). We found no association between boron and DNA strand breaks. The apparent protective effect of lithium merits further investigation.


Asunto(s)
Arsénico , Boro , Agua Potable , Glutatión Transferasa , Litio , Contaminantes Químicos del Agua , Humanos , Estudios Transversales , Femenino , Arsénico/orina , Arsénico/toxicidad , Bolivia , Glutatión Transferasa/genética , Adulto , Litio/orina , Boro/orina , Contaminantes Químicos del Agua/toxicidad , Persona de Mediana Edad , Exposición a Riesgos Ambientales , Daño del ADN/efectos de los fármacos , Ensayo Cometa , Metiltransferasas/genética , Adulto Joven
8.
Vet Comp Oncol ; 22(2): 217-229, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38388159

RESUMEN

Urothelial cell carcinoma (UCC) has been linked to environmental chemical exposures in people, but these risk factors are not well understood in dogs with UCC. We hypothesised that household chemical exposures contribute to the risk of UCC in pet dogs. This prospective cross-sectional case-control study included 37 dogs with UCC and 37 unaffected breed-, sex-, and age-matched controls. Dog owners completed an environmental questionnaire and household samples were collected and analysed for arsenic (in tap water and room dust) and acrolein (in room air). Urine samples from UCC dogs, control dogs, and consenting owners were analysed for inorganic arsenic species, the acrolein metabolite 3-HPMA, and the phenoxy herbicide 2,4-D. Public data on chlorination byproducts (total trihalomethanes) in municipal drinking water were also compared between case and control households. Dogs with UCC were more likely to swim in a pool (15.2%) compared with control dogs (0%) (OR 1.69, 95% CI = 1.69-∞; p = .02). Dogs with UCC also had more than 4-fold higher reported municipal water concentrations of chlorination byproducts (median 28.0 ppb) compared with controls (median 6.9 ppb; p < .0001). Dust arsenic concentrations were unexpectedly lower in case households (median 0.277 ng/cm2) compared with control households (median 0.401 ng/cm2; p = .0002). Other outcomes were not significantly different between groups. These data suggest that dog owners, especially those of breeds known to be at higher risk for UCC, consider limiting access to swimming pools and installing water filtration units that remove total trihalomethanes.


Asunto(s)
Enfermedades de los Perros , Exposición a Riesgos Ambientales , Neoplasias de la Vejiga Urinaria , Perros , Animales , Estudios de Casos y Controles , Enfermedades de los Perros/inducido químicamente , Enfermedades de los Perros/orina , Masculino , Femenino , Exposición a Riesgos Ambientales/efectos adversos , Estudios Transversales , Neoplasias de la Vejiga Urinaria/veterinaria , Neoplasias de la Vejiga Urinaria/inducido químicamente , Estudios Prospectivos , Arsénico/orina , Carcinoma de Células Transicionales/veterinaria , Mascotas
9.
Artículo en Chino | MEDLINE | ID: mdl-38403414

RESUMEN

Objective: To establish biological exposure index (BEI) of occupational exposure to arsenic and its inorganic compounds through occupational epidemiology and the regression analysis of internal and external exposure of workers. Methods: In November 2021, 125 workers with occupational exposure to arsenic and its inorganic compounds and 49 office administrators in a non-ferrous metal smelter in Yunnan Province were selected as the exposure group and control group, respectively. Air samples from the workplace of the study subjects on weekdays were collected and arsenic concentrations were determined. Urine samples were collected in end-of-work weekend and high performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was used to detect the levels of trivalent inorganic arsenic (iAs(3+)) , pentavalent inorganic arsenic (iAs(5+)) , monomethyl arsenic (MMA) and dimethyl arsenic (DMA) in urine. The correlations between arsenic concentration in the workplace air and arsenic species in urine of workers were analyzed. Arsenic exposure concentration and the level of urinary arsenic (ΣiAs+MMA+DMA) of workers was analyzed by linear regression and the BEI of arsenic and its inorganic compounds in the workplace was proposed based on the results of micronucleus test. Results: The median of time-weighted average concentration (C(TWA)) of arsenic in the workplace air of the exposure group was 0.0116 mg/m(3), and the over-standard rate was 71.2% (89/125) . The concentrations of iAs(3+), iAs(5+), inorganic arsenic (iAs=ΣiAs(3+)+iAs(5+)) 、MMA、DMA and urinary arsenic in the exposure group were higher than those in the control group at the end of shift, and the differences were statistically significant (P<0.05) . The concentration of arsenic in the workplace air had the strongest correlation with the concentration of urinary arsenic at the end of the shift (r(s)=0.909, P<0.001) . The regression equation was lg (y) =7.662+2.968lg (x) (r=0.821, P<0.05) . According to the occupational exposure limit (OEL) of arsenic in China, the concentration of urinary arsenic in the end-of-work weekend was calculated to be 53.2 µg/L. Combined with the results of micronucleus test, the BEI of occupational exposure to arsenic and its inorganic compounds in the workplace was proposed to be 50 µg/L. Conclusion: The urinary arsenic in the end-of-work weekend can be used as a biomarker of occupational exposure to arsenic, and its BEI is recommended to be 50 µg/L.


Asunto(s)
Arsénico , Arsenicales , Exposición Profesional , Humanos , Arsénico/orina , China , Exposición Profesional/análisis
10.
Artículo en Chino | MEDLINE | ID: mdl-38403417

RESUMEN

Objective: To explore the correlation between urinary arsenic and health effects through the determination and analysis of urinary arsenic levels in occupational arsenic exposed workers. Methods: In November 2021, 95 workers exposed to arsenic and its inorganic compounds and 31 administrative personnel from a non-ferrous metal smelter in Yunnan Province were selected as the contact group and control group, respectively. Urine forms of arsenic, blood tumor markers, liver function were detected, and micronucleus test was used to analyze the chromosome damage. The correlation between urine forms of arsenic and health effects were analyzed. Results: Compared with the control group, the concentrations of urinary trivalent inorganic arsenic (iAs(3+)) , pentavalent inorganic arsenic (iAs(5+)) , inorganic arsenic (iAs=ΣiAs(3+)+iAs(5+)) , monomethyl arsenic (MMA) , dimethyl arsenic (DMA) and urinary arsenic (ΣiAs+MMA+DMA) at the end of class in contact group were higher (P<0.05) . There was no statistically significant difference in blood tumor markers and liver function indicators between the two groups (P>0.05) . Compared with the control group, the peripheral blood micronucleus rate and cell micronucleus rate in the contact group were significantly increased (P<0.05) . The urinary arsenic, iAs(5+), inorganic arsenic and DMA were positively correlated with peripheral blood micronucleus rate in contact group (r(s)=0.48, 0.34, 0.37, 0.23, P<0.05) , and the urinary arsenic, iAs(5+), DMA were positively correlated with peripheral blood micronucleus rate (r(s)=0.48, 0.34, 0.26, P<0.05) . Conclusion: There is a significant correlation between different valence states of arsenic in the urine and abnormal health effects of occupational arsenic exposed workers. It is necessary to strengthen the detection of arsenic species in the urine of occupational arsenic exposed workers to better protect their health.


Asunto(s)
Arsénico , Arsenicales , Exposición Profesional , Humanos , Arsénico/orina , China , Arsenicales/efectos adversos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Biomarcadores de Tumor
11.
PLoS One ; 19(2): e0294740, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315674

RESUMEN

Increasing illicit drug use is one of the main problems in most countries or societies. Monitoring heavy metals and trace elements in this vulnerable group seems to be necessary. Therefore, we assessed the urinary trace element and toxic metals/metalloids concentrations (Zinc (Zn), Iron (Fe), Copper (Cu), Chromium (Cr), Lead (Pb), Cadmium (Cd), Arsenic (As), Nickel (Ni), and Mercury (Hg)) in opium, tramadol, and cannabis users compared to healthy subjects. In this cross-sectional study, patients with substance use disorder (SUD) (n = 74) were divided into four groups: cannabis, tramadol, opium, and mixed (simultaneous use of more than one of the three studied substances), along with a healthy group (n = 60). Urine samples were prepared by dispersive liquid-liquid microextraction method so that heavy metals/metalloids could be measured by ICP-MS. The mean urinary concentration of Cu (48.15 vs. 25.45; 89.2%, p<0.001), Hg (1.3 vs. 0.10; 1200%, p < 0.001), and Zn (301.95 vs. 210; 43.8%, p < 0.001) was markedly lower among patients with SUD. The mean urinary concentration of other elements including As (1.9 vs. 4.1; 115.8%), Cd (0.1 vs. 1.10; 1000%), Cr (6.80 vs. 11.65; 71.3%), Ni (2.95 vs. 4.95; 67.8%), and Pb (1.5 vs. 7.9; 426.6%) were significantly higher among patients with SUD compared to healthy subjects. When sub-groups were compared, no significant differences were observed between their trace element levels (Kruskal-Wallis test, p > 0.05). This can be an indication that regardless of the type of drug, the levels of trace elements are changed with respect to healthy individuals. Our results showed that illicit drug use causes changes in urinary trace element/heavy metal/metalloid levels and highlights the need for monitoring heavy metals and trace elements in individuals with substance use disorder. Assessment of different elements in biological samples of drug dependents may be useful for implementing new prevention and treatment protocols. In case of changes in their levels, complementary recommendations, attention to diet, and periodic assessment of toxic metal levels within treatment programs will be needed.


Asunto(s)
Arsénico , Drogas Ilícitas , Mercurio , Metaloides , Metales Pesados , Trastornos Relacionados con Sustancias , Oligoelementos , Tramadol , Humanos , Oligoelementos/orina , Cadmio/orina , Estudios Transversales , Plomo , Opio , Cromo , Níquel , Arsénico/orina
12.
Anal Methods ; 16(2): 214-226, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38099473

RESUMEN

Analysis of essential and non-essential trace elements in urine has emerged as a valuable tool for assessing occupational and environmental exposures, diagnosing nutritional status and guiding public health and health care intervention. Our study focused on the analysis of trace elements in urine samples from the Multi-Ethnic Study of Atherosclerosis (MESA), a precious resource for health research with limited sample volumes. Here we provide a comprehensive and sensitive method for the analysis of 18 elements using only 100 µL of urine. Method sensitivity, accuracy, and precision were assessed. The analysis by inductively coupled plasma mass spectrometry (ICP-MS) included the measurement of antimony (Sb), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), cobalt (Co), copper (Cu), gadolinium (Gd), lead (Pb), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), strontium (Sr), thallium (Tl), tungsten (W), uranium (U), and zinc (Zn). Further, we reported urinary trace element concentrations by covariates including gender, ethnicity/race, smoking and location. The results showed good accuracy and sensitivity of the ICP-MS method with the limit of detections rangings between 0.001 µg L-1 for U to 6.2 µg L-1 for Zn. Intra-day precision for MESA urine analysis varied between 1.4% for Mo and 26% for Mn (average 6.4% for all elements). The average inter-day precision for most elements was <8.5% except for Gd (20%), U (16%) and Mn (19%) due to very low urinary concentrations. Urinary mean concentrations of non-essential elements followed the order of Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The order of urinary mean concentrations for essential trace elements was Zn > Se > Mo > Cu > Co > Mn. Non-adjusted mean concentration of non-essential trace elements in urine from MESA participants follow the order Sr > As > Cs > Ni > Ba > Pb > Cd > Gd > Tl > W > U. The unadjusted urinary mean concentrations of essential trace elements decrease from Zn > Se > Mo > Cu > Co > Mn.


Asunto(s)
Arsénico , Selenio , Oligoelementos , Humanos , Oligoelementos/orina , Cadmio , Plomo , Manganeso/orina , Arsénico/orina , Níquel , Zinc , Estudios Epidemiológicos , Molibdeno , Cobalto
13.
Ecotoxicol Environ Saf ; 270: 115828, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38118331

RESUMEN

BACKGROUND: Anemia seriously affects the health and quality of life of the older adult population and may be influenced by various types of environmental metal exposure. Current studies on metals and anemia are mainly limited to single metals, and the association between polymetals and their mixtures and anemia remains unclear. METHODS: We determined 11 urinary metal concentrations and hemoglobin levels in 3781 participants. Binary logistic regression and restricted cubic spline (RCS) model were used to estimate the association of individual metals with anemia. We used Bayesian kernel machine regression (BKMR) and Quantile g-computation (Q-g) regression to assess the overall association between metal mixtures and anemia and identify the major contributing elements. Stratified analyses were used to explore the association of different metals with anemia in different populations. RESULTS: In a single-metal model, nine urinary metals significantly associated with anemia. RCS analysis further showed that the association of arsenic (As) and copper (Cu) with anemia was linear, while cobalt, molybdenum, thallium, and zinc were non-linear. The BKMR model revealed a significant positive association between the concentration of metal mixtures and anemia. Combined Q-g regression analysis suggested that metals such as Cu, As, and tellurium (Te) were positively associated with anemia, with Te as the most significant contributor. Stratified analyses showed that the association of different metals with anemia varied among people of different sexes, obesity levels, lifestyle habits, and blood pressure levels. CONCLUSIONS: Multiple metals are associated with anemia in the older adult population. A significant positive association was observed between metal mixture concentrations and anemia, with Te being the most important factor. The association between urinary metal concentrations and anemia is more sensitive in the non-hypertensive populations.


Asunto(s)
Anemia , Arsénico , Humanos , Anciano , Estudios Transversales , Teorema de Bayes , Vida Independiente , Calidad de Vida , Metales/orina , Arsénico/orina , Anemia/epidemiología , China/epidemiología
14.
Toxicol Appl Pharmacol ; 479: 116728, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37858873

RESUMEN

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men. To elucidate the connection between trace elements (arsenic: As, cadmium: Cd, lead: Pb, chromium: Cr, and nickel: Ni) and the risk of PCa, we analyzed trace element levels in the serum, urine, and tissues of PCa patients, while also examining their smoking status. We correlated these levels with their smoking habits. Notably, levels of Cd (P ≤ 0.05) and As (P ≤ 0.01) were significantly higher in the tumor tissue than in adjacent tissues. No significant differences were observed in the levels of Pb, Cr and Ni. Additionally, urinary Cd levels in 70% and arsenic levels in 2.3% of the PCa cohort were markedly higher than the CDC-reported cutoff (Cd ≤ 0.185 µg/L & As ≤100 µg/L). None displayed elevated levels of urinary Pb, Cr, and Ni. Conversely, in serum samples, the concentration of arsenic exceeded the CDC-determined limit (As ≤1.0 µg/L) in 31.69% of PCa patients. However, only 7.04% of patients had higher serum Cd levels than the CDC standard values (Cd ≤ 0.315 µg/L), while all PCa patients exceeded the Cr CDC limit (Cr ≤ 0.16 µg/L) and the Ni CDC limit (Ni ≤ 0.2 µg/L). On the contrary, no significant differences were observed in serum Pb (Pb ≤ 35.0 µg/L). Our findings establish a positive link between Cd and arsenic tissue concentrations and the risk of PCa. Subsequent studies are essential to determine whether elevated trace element levels pose a risk for the development of prostate carcinogenesis. Interestingly, among the PCa cohort comprising smokers, notably higher Cd levels were observed only in tumor tissues (P ≤ 0.01) and urine (P ≤ 0.05) compared to other elements or in other specimens.


Asunto(s)
Arsénico , Metales Pesados , Neoplasias de la Próstata , Oligoelementos , Masculino , Humanos , Oligoelementos/orina , Cadmio/orina , Arsénico/orina , Plomo , Monitoreo del Ambiente , Neoplasias de la Próstata/epidemiología , Metales Pesados/análisis
15.
Environ Sci Pollut Res Int ; 30(51): 111498-111510, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37814049

RESUMEN

Individuals residing near petrochemical complexes have been found to have increasing the risk of respiratory distress and diseases. On visit 1 in 2016, all participants underwent urinary arsenic measurement and low-dose computed tomography (LDCT). The same participants had LDCT performed at visit 2 in 2018. Our study revealed that individuals with lung fibrotic changes had significantly higher levels of urinary arsenic compared to the non-lung fibrotic changes group. Moreover, we found that participants with urinary arsenic levels in the highest sextile (> 209.7 µg/g creatinine) had a significantly increased risk of lung fibrotic changes in both visit 1 (OR = 1.87; 95% CI= 1.16-3.02; P = 0.010) and visit 2 (OR = 1.74; 95% CI = 1.06-2.84; P = 0.028) compared to those in the lowest sextile (≤ 41.4 µg/g creatinine). We also observed a significantly increasing trend across urinary arsenic sextile in both visits (Ptrend = 0.015 in visit 1 and Ptrend = 0.026 in visit 2). Furthermore, participants with urinary arsenic levels in the highest sextile had a significantly increased risk of lung fibrotic positive to positive (OR = 2.18; 95% CI: 1.24, 3.82; P = 0.007) compared to the lowest sextile (reference category: lung fibrotic negative to negative). Our findings provide support for the hypothesis that arsenic exposure is significantly associated with an increased risk of lung fibrotic changes. It is advisable to reduce the levels of arsenic exposure for those residing near such petrochemical complexes.


Asunto(s)
Arsénico , Humanos , Arsénico/orina , Exposición a Riesgos Ambientales/análisis , Creatinina , Pulmón
16.
Environ Res ; 233: 116508, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392824

RESUMEN

Even relatively low levels of metals exposure may impact health, particularly among vulnerable populations such as infants and young children. However, little is known about the interplay between simultaneous metal exposures, common in real-life scenarios, and their association with specific dietary patterns. In this study, we have evaluated the association between adherence to Mediterranean diet (MD) and urinary metal concentrations individually and as an exposure mixture in 713 children aged 4-5-years from the INMA cohort study. We used a validated food frequency questionnaire to calculate two MD indexes scores: aMED and rMED. These indexes gather information on various food groups within the MD and score differently. To measure urinary concentrations of cobalt, copper, zinc, molybdenum, selenium, lead, and cadmium as exposure biomarkers, we used inductively coupled plasma mass spectrometry (ICP-MS), coupled with an ion chromatography (IC) equipment for arsenic speciation analysis. We applied linear regression and quantile g-computation, adjusted for confounders, to analyse the association between MD adherence and exposure to the metal mixture. High adherence to MD such as the quintile (Q) 5 MD was associated with higher urinary arsenobetaine (AsB) levels than Q1, with ß values of 0.55 (confidence interval - CI 95% 0.01; 1.09) for aMED and 0.73 (CI 95% 0.13; 1.33) for rMED. Consumption of fish was associated with increased urinary AsB but reduced inorganic arsenic concentrations. In contrast, the aMED vegetables consumption increased urinary inorganic arsenic content. A moderate level of adherence to MD (Q2 and Q3) was associated with lower copper urinary concentrations than Q1, with ß values of -0.42 (CI 95% -0.72; -0.11) for Q2 and -0.33 (CI 95% -0.63; -0.02) for Q3, but only with aMED. Our study, conducted in Spain, revealed that adhering to the MD reduces exposure to certain metals while increasing exposure to others. Specifically, we observed increase in exposure to non-toxic AsB, highlighting the significance of consuming fish/seafood. However, it is crucial to emphasize the necessity for additional efforts in reducing early-life exposure to toxic metals, even when adhering to certain food components of the MD.


Asunto(s)
Arsénico , Dieta Mediterránea , Animales , Arsénico/orina , Cobre , Estudios de Cohortes , España , Metales
17.
Sci Total Environ ; 892: 164761, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37315596

RESUMEN

Environmental arsenic (As) exposure has been associated with gestational diabetes mellitus (GDM) risk. Our recent study found that GDM was positively associated with urinary As3+ level while negatively correlated to As5+. However, the mechanisms underlying the association between arsenic species and GDM remain largely unknown. In the present study, through the measurement of urinary arsenic species and metabolome analysis in 399 pregnant women, we aimed to identify the metabolic biomarkers that may link arsenic exposure to GDM based on a novel systems epidemiology strategy termed meet-in-metabolite-analysis (MIMA). The metabolomics analysis revealed that 20 and 16 urinary metabolites were relevant to arsenic exposure and GDM, respectively. Among them, 12 metabolites were identified to be both arsenic- and GDM-related, which are mainly involved in purine metabolism, one­carbon metabolism (OCM) and glycometabolism. Moreover, it was further showed that the regulation of thiosulfate (AOR: 2.52; 95 % CI: 1.33, 4.77) and phosphoroselenoic acid (AOR: 2.35; 95 % CI: 1.31, 4.22) could significantly contribute to the negative association between As5+ and GDM. Considering the biological functions of these metabolites, it is suggested that As5+ may reduce GDM risk by disturbing OCM in the pregnant women. These data will provide novel insights into the mechanism of action of environmental arsenic exposure on GDM incidence from the aspect of metabolism disorder.


Asunto(s)
Arsénico , Diabetes Gestacional , Embarazo , Humanos , Femenino , Diabetes Gestacional/epidemiología , Arsénico/orina , Mujeres Embarazadas , Estudios Transversales , Pueblos del Este de Asia , Biomarcadores/metabolismo
18.
Chemosphere ; 336: 139319, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356594

RESUMEN

Toxic metals such as lead (Pb), cadmium (Cd), mercury (Hg) and arsenic (As) that lead to many visceral organ and nervous system diseases have attracted global attention due to their gradual accumulation in human bodies. The tolerance levels of exposure to toxic metals among race/ethnic groups are different due to the variance of sociodemographic, dietary, and behavioral characteristics. Few studies focused on investigating the biomarker levels of toxic metals in different race/ethnic groups and the potential mechanisms for controlling the accumulation in human bodies. Therefore, we selected eight biomarkers for four toxic metals from the National Health and Nutrition and Examination Survey (NHANES) in the 2-year data cycle of 2015-2016 to reveal the accumulation levels in different races. According to the NHANES rules, we applied probability sampling weights. The geometric mean levels of these biomarkers were calculated in all five race/ethnic groups (Mexican American, white, black, Asian, and other Hispanic) and two Asian subgroups (U.S.-born Asian, and other-born Asian), and compared with each other. The results showed that all the biomarkers in other-born Asians were 1.1-6.7 times in blood and 1.1-3.6 times in urine higher than other race/ethnic groups. Except Hg and As, the lowest biomarker levels were recorded in U.S.-born Asians, only 0.6-0.9 times of lead and 0.3-0.8 times of cadmium than other race/ethnic groups. Furthermore, the major factors of higher Hg and As biomarker levels in Asians were dietary intake of seafood and rice, indicating different accumulation mechanisms among Asians and other race/ethnic groups, especially for U.S.-born Asians. These findings provided new insight into a deeper understanding the accumulation of toxic metals and human health.


Asunto(s)
Arsénico , Biomarcadores , Metales Pesados , Humanos , Arsénico/sangre , Arsénico/orina , Asiático/estadística & datos numéricos , Biomarcadores/sangre , Biomarcadores/orina , Cadmio/sangre , Cadmio/orina , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Mercurio/sangre , Mercurio/orina , Encuestas Nutricionales , Estados Unidos/epidemiología , Plomo/sangre , Plomo/orina , Metales Pesados/sangre , Metales Pesados/orina , Bioacumulación , Grupos de Población/etnología , Grupos de Población/estadística & datos numéricos
19.
J Trace Elem Med Biol ; 78: 127179, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37148695

RESUMEN

BACKGROUND: Humans are exposed to inorganic and organic arsenic. The total arsenic (As) concentration in urine is a commonly used biomarker of exposure. However, little is known about variability of As in biological fluids and the diurnal variation of As excretion. OBJECTIVES: Main objectives were to assess the variability of As in urine, plasma (P-As), whole blood (B-As), and the blood cell fraction (C-As), and to assess diurnal variation of As excretion. METHODS: Six urine samples were collected at fixed times during 24 h on two different days around one week apart among 29 men and 31 women. Blood samples were collected when the morning urine samples were delivered. The intra-class correlation coefficient (ICC) was calculated as the ratio of the between-individuals variance to the total observed variance. RESULTS: Geometric mean (GM) 24 h urinary excretions of As (U-As24 h) were 41 and 39 µg/24 h on the two days of sampling. Concentrations of B-As, P-As and C-As were highly correlated with U-As24 h and As in first void morning urine. No statistically significant differences were observed for the urinary As excretion rate between the different sampling times. A high ICC was observed for As in the cellular blood fraction (0.803), while ICC for first morning urine corrected for creatine was low (0.316). CONCLUSIONS: The study suggests that C-As is the most reliable biomarker for use in exposure assessment of individual exposure. Morning urine samples have low reliability for such use. No apparent diurnal variation was observed in the urinary As excretion rate.


Asunto(s)
Arsénico , Masculino , Humanos , Femenino , Arsénico/orina , Reproducibilidad de los Resultados , Factores de Tiempo , Biomarcadores , Ritmo Circadiano
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...