Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.441
Filtrar
1.
Cardiovasc Toxicol ; 24(6): 539-549, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703273

RESUMEN

NaAsO2 is known as a harmful pollutant all over the world, and many chronic heart diseases can be attributed to its prolonged exposure in NaAsO2-contaminated water. Therefore, considering the anti-inflammatory and antioxidant effects of betaine (BET), in this study, our team investigated the cardioprotective effects of this phytochemical agent on sodium arsenite (NaAsO2)-induced cardiotoxicity. Forty male mice were randomly divided into 4 groups: (I) Control; (II) BET (500 mg/kg); (III) NaAsO2 (50 ppm); and (IV) NaAsO2 + BET. NaAsO2 was given to the animals for 8 weeks, but BET was given in the last two weeks. After decapitation, inflammatory factors and biochemical parameters were measured, and Western blot analyses were performed. BET decrease the activity level of alanine aspartate aminotransferase, creatine kinase MB, thiobarbituric acid reactive substances level, inflammatory factors (tumor necrosis factor-α) content, and nuclear factor kappa B expression. Furthermore, BET increased cardiac total thiol and activity levels of catalase, superoxide dismutase, and glutathione peroxidase and nuclear factor erythroid-2 expression. Hence, the administration of BET ameliorated the deleterious effects stemming from the imbalance of oxidative and antioxidant pathways and histopathological alterations observed in NaAsO2-intoxicated mice, thereby attenuating oxidative stress-induced damage and inflammation.


Asunto(s)
Antiinflamatorios , Antioxidantes , Arsenitos , Betaína , Cardiotoxicidad , Modelos Animales de Enfermedad , Cardiopatías , Mediadores de Inflamación , Estrés Oxidativo , Transducción de Señal , Compuestos de Sodio , Animales , Arsenitos/toxicidad , Compuestos de Sodio/toxicidad , Masculino , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Antiinflamatorios/farmacología , Ratones , Betaína/farmacología , Cardiopatías/prevención & control , Cardiopatías/inducido químicamente , Cardiopatías/patología , Cardiopatías/metabolismo , Mediadores de Inflamación/metabolismo , Transducción de Señal/efectos de los fármacos , Biomarcadores/metabolismo , Biomarcadores/sangre , Citoprotección , Miocardio/patología , Miocardio/metabolismo
2.
PLoS One ; 19(5): e0302701, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728286

RESUMEN

Although the toxicity of arsenic depends on its chemical forms, few studies have taken into account the ambiguous phenomenon that sodium arsenite (NaAsO2) acts as a potent carcinogen while arsenic trioxide (ATO, As2O3) serves as an effective therapeutic agent in lymphoma, suggesting that NaAsO2 and As2O3 may act via paradoxical ways to either promote or inhibit cancer pathogenesis. Here, we compared the cellular response of the two arsenical compounds, NaAsO2 and As2O3, on the Burkitt lymphoma cell model, the Epstein Barr Virus (EBV)-positive P3HR1 cells. Using flow cytometry and biochemistry analyses, we showed that a NaAsO2 treatment induces P3HR1 cell death, combined with drastic drops in ΔΨm, NAD(P)H and ATP levels. In contrast, As2O3-treated cells resist to cell death, with a moderate reduction of ΔΨm, NAD(P)H and ATP. While both compounds block cells in G2/M and affect their protein carbonylation and lipid peroxidation, As2O3 induces a milder increase in superoxide anions and H2O2 than NaAsO2, associated to a milder inhibition of antioxidant defenses. By electron microscopy, RT-qPCR and image cytometry analyses, we showed that As2O3-treated cells display an overall autophagic response, combined with mitophagy and an unfolded protein response, characteristics that were not observed following a NaAsO2 treatment. As previous works showed that As2O3 reactivates EBV in P3HR1 cells, we treated the EBV- Ramos-1 cells and showed that autophagy was not induced in these EBV- cells upon As2O3 treatment suggesting that the boost of autophagy observed in As2O3-treated P3HR1 cells could be due to the presence of EBV in these cells. Overall, our results suggest that As2O3 is an autophagic inducer which action is enhanced when EBV is present in the cells, in contrast to NaAsO2, which induces cell death. That's why As2O3 is combined with other chemicals, as all-trans retinoic acid, to better target cancer cells in therapeutic treatments.


Asunto(s)
Trióxido de Arsénico , Arsenicales , Arsenitos , Autofagia , Mitocondrias , Estrés Oxidativo , Óxidos , Compuestos de Sodio , Trióxido de Arsénico/farmacología , Arsenitos/farmacología , Arsenitos/toxicidad , Humanos , Estrés Oxidativo/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Compuestos de Sodio/farmacología , Arsenicales/farmacología , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Óxidos/farmacología , Muerte Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Herpesvirus Humano 4/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Peróxido de Hidrógeno/farmacología , Peroxidación de Lípido/efectos de los fármacos , Linfoma de Burkitt/virología , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Linfoma de Burkitt/tratamiento farmacológico
3.
Toxicology ; 504: 153795, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574842

RESUMEN

The mechanistic target of rapamycin (RAPA) complex 1 (mTORC1) - transcription factor EB (TFEB) pathway plays a crucial role in response to nutritional status, energy and environmental stress for maintaining cellular homeostasis. But there is few reports on its role in the toxic effects of arsenic exposure and the related mechanisms. Here, we show that the exposure of bronchial epithelial cells (BEAS-2B) to sodium arsenite promoted the activation of mTORC1 (p-mTORC1) and the inactivation of TFEB (p-TFEB), the number and activity of lysosomes decreased, the content of reduced glutathione (GSH) and superoxide dismutase (SOD) decreased, the content of malondialdehyde (MDA) increased, the DNA and chromosome damage elevated. Further, when mTORC1 was inhibited with RAPA, p-mTORC1 and p-TFEB down-regulated, GSH and SOD increased, MDA decreased, the DNA and chromosome damage reduced significantly, as compared with the control group. Our data revealed for the first time that mTORC1 - TFEB pathway was involved in sodium arsenite induced lysosomal alteration, oxidative stress and genetic damage in BEAS-2B cells, and it may be a potential intervention target for the toxic effects of arsenic.


Asunto(s)
Arsenitos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Daño del ADN , Lisosomas , Diana Mecanicista del Complejo 1 de la Rapamicina , Estrés Oxidativo , Compuestos de Sodio , Arsenitos/toxicidad , Compuestos de Sodio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Línea Celular , Daño del ADN/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Transducción de Señal/efectos de los fármacos , Bronquios/efectos de los fármacos , Bronquios/metabolismo , Bronquios/citología , Bronquios/patología , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Complejos Multiproteicos/metabolismo , Malondialdehído/metabolismo
4.
Gene ; 917: 148464, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38615981

RESUMEN

Cells sense, respond, and adapt to environmental conditions that cause stress. In a previous study using HeLa cells, we isolated reporter cells responding to the endoplasmic reticulum (ER) stress inducers, thapsigargin and tunicamycin, using a highly sensitive promoter trap vector system. Splinkerette PCR and 5' rapid amplification of cDNA ends (5' RACE) identified a novel transcript that is upregulated by ER stress. Its endogenous expression increased approximately 10-fold in response to thapsigargin and tunicamycin within 1 h, but was down-regulated after 4 h. Because the transcript starts from an intron of a long noncoding RNA known as LINC-PINT, we designated the newly identified transcript TISPL (transcript induced by stressors from LINC-PINTlocus). TISPL was also expressed under several other stress conditions. It was particularly increased > 10-fold upon glucose starvation and 7-fold by arsenite exposure. Furthermore, in silico analyses, including a ChIP-atlas search, revealed that there is an ATF4-binding region with a c/ebp-Atf response element (CARE) downstream of the transcription start site of TISPL. Based on these results, we hypothesized that TISPL may be induced by the phospho-eIF2α and ATF4- axis of the integrated stress response pathway, which is known to be activated by the stress conditions listed above. As expected, knockout of ATF4 abolished the stress-induced upregulation of TISPL. Our results indicate that TISPL may be a useful biomarker for detecting stress conditions that activate ATF4. Our highly sensitive trap vector system proved beneficial in discovering new biomarkers.


Asunto(s)
Factor de Transcripción Activador 4 , Estrés del Retículo Endoplásmico , ARN Largo no Codificante , Regulación hacia Arriba , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Humanos , Células HeLa , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Tapsigargina/farmacología , Tunicamicina/farmacología , Arsenitos/toxicidad , Arsenitos/farmacología
5.
Biochem Biophys Res Commun ; 715: 150006, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38678786

RESUMEN

Vascular endothelial cells play a critical role in maintaining the health of blood vessels, but dysfunction can lead to cardiovascular diseases. The impact of arsenite exposure on cardiovascular health is a significant concern due to its potential adverse effects. This study aims to explore how NBR1-mediated autophagy in vascular endothelial cells can protect against oxidative stress and apoptosis induced by arsenite. Initially, our observations revealed that arsenite exposure increased oxidative stress and triggered apoptotic cell death in human umbilical vein endothelial cells (HUVECs). However, treatment with the apoptosis inhibitor Z-VAD-FMK notably reduced arsenite-induced apoptosis. Additionally, arsenite activated the autophagy pathway and enhanced autophagic flux in HUVECs. Interestingly, inhibition of autophagy exacerbated arsenite-induced apoptotic cell death. Our findings also demonstrated the importance of autophagy receptor NBR1 in arsenite-induced cytotoxicity, as it facilitated the recruitment of caspase 8 to autophagosomes for degradation. The protective effect of NBR1 against arsenite-induced apoptosis was compromised when autophagy was inhibited using pharmacological inhibitors or through genetic knockdown of essential autophagy genes. Conversely, overexpression of NBR1 facilitated caspase 8 degradation and reduced apoptotic cell death in arsenite-treated HUVECs. In conclusion, our study highlights the vital role of NBR1-mediated autophagic degradation of caspase 8 in safeguarding vascular endothelial cells from arsenite-induced oxidative stress and apoptotic cell death. Targeting this pathway could offer a promising therapeutic approach to mitigate cardiovascular diseases associated with arsenite exposure.


Asunto(s)
Apoptosis , Arsenitos , Autofagia , Caspasa 8 , Células Endoteliales de la Vena Umbilical Humana , Estrés Oxidativo , Humanos , Arsenitos/toxicidad , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Caspasa 8/metabolismo , Caspasa 8/genética , Estrés Oxidativo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteolisis/efectos de los fármacos , Células Cultivadas
6.
Arch Toxicol ; 98(5): 1369-1381, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38485781

RESUMEN

Chronic arsenic exposure is considered to increase the risk of breast cancer. p62 is a multifunctional adaptor protein that controls myriad cellular processes and is overexpressed in breast cancer tissues. Although previous studies have indicated the involvement of p62 accumulation in arsenic tumorigenesis, the underlying mechanism remains obscure. Here, we found that 0.1 µM or 0.5 µM arsenite exposure for 24 weeks induced oncogenic phenotypes in human mammary epithelial cells. Elevated aerobic glycolysis, cell proliferation capacity, and activation of p62-mTOR pathway, as indicated by increased protein levels of p62, phosphorylated-mTOR (p-mTOR) and hypoxia-inducible factor 1α (HIF1α), were observed in chronically arsenite-exposed cells, and of note in advance of the onset of oncogenic phenotypes. Moreover, p62 silencing inhibited acquisition of oncogenic phenotypes in arsenite-exposed cells. The protein levels of p-mTOR and HIF1α, as well as aerobic glycolysis and cell proliferation, were suppressed by p62 knockdown. In addition, re-activation of p­mTOR reversed the inhibitory effects of p62 knockdown. Collectively, our data suggest that p62 exerts an oncogenic role via mTORC1 activation and acts as a key player in glucose metabolism during arsenite-induced malignant transformation, which provides a new mechanistic clue for the arsenite carcinogenesis.


Asunto(s)
Arsénico , Arsenitos , Neoplasias de la Mama , Humanos , Femenino , Arsénico/toxicidad , Arsenitos/toxicidad , Glucólisis , Serina-Treonina Quinasas TOR/metabolismo , Carcinogénesis , Transformación Celular Neoplásica/inducido químicamente , Transformación Celular Neoplásica/metabolismo , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Línea Celular Tumoral
7.
Environ Toxicol ; 39(6): 3563-3577, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477077

RESUMEN

Lysine specific demethylase 1 (LSD1) is a histone demethylase that specifically catalyzes the demethylation of histone H3K4 (H3K4me1/2) and regulates gene expression. In addition, it can mediate the process of autophagy through its demethylase activity. Sestrin2 (SESN2) is a stress-induced protein and a positive regulator of autophagy. In NaAsO2-induced mouse fibrotic livers and activated hepatic stellate cells (HSCs), LSD1 expression is decreased, SESN2 expression is increased, and autophagy levels are also increased. Overexpression of LSD1 and silencing of SESN2 decreased the level of autophagy and attenuated the activation of HSCs induced by NaAsO2. LSD1 promoted SESN2 gene transcription by increasing H3K4me1/2 in the SESN2 promoter region. 3-methyladenine (3-MA) and chloroquine were used to inhibit autophagy of HSCs, and the degree of activation was also alleviated. Taken together, LSD1 positively regulates SESN2 by increasing H3K4me1/2 enrichment in the SESN2 promoter region, which in turn increases the level of autophagy and promotes the activation of HSCs. Our results may provide new evidence for the importance of LSD1 in the process of autophagy and activation of HSCs induced by arsenic poisoning. Increasing the expression and activity of LSD1 is expected to be an effective way to reverse the autophagy and activation of HSCs induced by arsenic poisoning.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Arsenitos , Histona Demetilasas , Transducción de Señal , Compuestos de Sodio , Animales , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Transducción de Señal/efectos de los fármacos , Arsenitos/toxicidad , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Ratones , Compuestos de Sodio/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autofagia/efectos de los fármacos , Masculino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones Endogámicos C57BL
8.
Environ Toxicol Pharmacol ; 107: 104397, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38401815

RESUMEN

The actions of arsenite and arsenate on carbohydrate metabolism in the once-through perfused rat liver were investigated. The compound inhibited lactate gluconeogenesis with an IC50 of 25 µM. It also increased glycolysis and fructolysis at concentrations between 10 and 100 µM. This effect was paralleled by strong inhibition of pyruvate carboxylation (IC50 = 4.25 µM) and by a relatively moderate diminution in the ATP levels. The inhibitory action of arsenate on pyruvate carboxylation and lactate gluconeogenesis was 103 times less effective than that of arsenite. For realistic doses and concentrations («1 mM), impairment of metabolism by arsenate can be expected to occur solely after its reduction to arsenite. Arsenite, on the other hand, can be regarded as a strong short-term modifier of lactate gluconeogenesis and other pathways. The main cause of the former is inhibition of pyruvate carboxylation, a hitherto unknown effect of arsenic compounds.


Asunto(s)
Arseniatos , Arsenitos , Compuestos de Sodio , Ratas , Animales , Arseniatos/toxicidad , Arsenitos/toxicidad , Ácido Láctico/metabolismo , Ácido Pirúvico/farmacología , Hígado , Metabolismo de los Hidratos de Carbono
9.
Food Chem Toxicol ; 186: 114548, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417537

RESUMEN

The connection between continuous arsenic exposure and prostate cancer is already established. However, the exact mechanisms of arsenic tumorigenesis are far from clear. Here, we employed human prostate stromal immortalized cells (WPMY-1) continuous exposure to 1 and 2 µM arsenite for 29 weeks to identify the malignant phenotype and explore the underlying molecular mechanism. As expected, continuous low-dose arsenite exposure led to the malignant phenotype of WPMY-1 cells. Quantitative proteomics identified 517 differentially expressed proteins (DEPs), of which the most remarkably changed proteins (such as LCP1 and DDX58, etc.) and the bioinformatic analysis were focused on the regulation of cytoskeleton, cell adhesion, and migration. Further, cell experiments showed that continuous arsenite exposure altered cytoskeleton structure, enhanced cell adhesive capability, and raised the levels of reactive oxygen species (ROS), ATM, p-ATM, p-ERK1/2, and LCP1 proteins. N-acetylcysteine (NAC) treatment antagonized the increase of LCP1 proteins, and LCP1 knockdown partially restored F-actin organization caused by arsenic. Overall, the results demonstrated that ROS-ATM-ERK1/2 signaling pathway was involved in the activation of LCP1, leading to cytoskeleton alterations. These alterations are believed to play a significant role in arsenite-triggered tumor microenvironment cell-acquired malignant phenotype, which could provide potential biomarkers with therapeutic implications for prostate cancer.


Asunto(s)
Arsénico , Arsenitos , Neoplasias de la Próstata , Masculino , Humanos , Línea Celular , Próstata , Especies Reactivas de Oxígeno , Arsenitos/toxicidad , Células del Estroma , Fenotipo , Citoesqueleto , Microambiente Tumoral , Proteínas de Microfilamentos , Proteínas HMGB
10.
Cell Rep ; 43(2): 113769, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38363675

RESUMEN

Although the composition and assembly of stress granules (SGs) are well understood, the molecular mechanisms underlying SG disassembly remain unclear. Here, we identify that heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) is associated with SGs and that its absence specifically enhances the disassembly of arsenite-induced SGs depending on the ubiquitination-proteasome system but not the autophagy pathway. hnRNPA2B1 interacts with many core SG proteins, including G3BP1, G3BP2, USP10, and Caprin-1; USP10 can deubiquitinate G3BP1; and hnRNPA2B1 depletion attenuates the G3BP1-USP10/Caprin-1 interaction but elevates the G3BP1 ubiquitination level under arsenite treatment. Moreover, the disease-causing mutation FUSR521C also disassembles faster from SGs in HNRNPA2B1 mutant cells. Furthermore, knockout of hnRNPA2B1 in mice leads to Sertoli cell-only syndrome (SCOS), causing complete male infertility. Consistent with this, arsenite-induced SGs disassemble faster in Hnrnpa2b1 knockout (KO) mouse Sertoli cells as well. These findings reveal the essential roles of hnRNPA2B1 in regulating SG disassembly and male mouse fertility.


Asunto(s)
Arsenitos , Masculino , Animales , Ratones , Arsenitos/toxicidad , ADN Helicasas , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , Fertilidad
11.
Toxicol Appl Pharmacol ; 483: 116833, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38266874

RESUMEN

Exposure to inorganic arsenic through drinking water is widespread and has been linked to many chronic diseases, including cardiovascular disease. Arsenic exposure has been shown to alter hypertrophic signaling in the adult heart, as well as in utero offspring development. However, the effect of arsenic on maternal cardiac remodeling during pregnancy has not been studied. As such, there is a need to understand how environmental exposure contributes to adverse pregnancy-related cardiovascular events. This study seeks to understand the impact of trivalent inorganic arsenic exposure during gestation on maternal cardiac remodeling in late pregnancy, as well as offspring outcomes. C57BL/6 J mice were exposed to 0 (control), 100 or 1000 µg/L sodium arsenite (NaAsO2) beginning at embryonic day (E) 2.5 and continuing through E17.5. Maternal heart function and size were assessed via transthoracic echocardiography, gravimetric measurement, and histology. Transcript levels of hypertrophic markers were probed via qRT-PCR and confirmed by western blot. Offspring outcomes were assessed through echocardiography and gravimetric measurement. We found that maternal heart size was smaller and transcript levels of Esr1 (estrogen receptor alpha), Pgrmc1 (progesterone receptor membrane component 1) and Pgrmc2 (progesterone receptor membrane component 2) reduced during late pregnancy with exposure to 1000 µg/L iAs vs. non-exposed pregnant controls. Both 100 and 1000 µg/L iAs also reduced transcription of Nppa (atrial natriuretic peptide). Akt protein expression was also significantly reduced after 1000 µg/L iAs exposure in the maternal heart with no change in activating phosphorylation. This significant abrogation of maternal cardiac hypertrophy suggests that arsenic exposure during pregnancy can potentially contribute to cardiovascular disease. Taken together, our findings further underscore the importance of reducing arsenic exposure during pregnancy and indicate that more research is needed to assess the impact of arsenic and other environmental exposures on the maternal heart and adverse pregnancy events.


Asunto(s)
Arsénico , Arsenitos , Enfermedades Cardiovasculares , Efectos Tardíos de la Exposición Prenatal , Humanos , Animales , Ratones , Femenino , Embarazo , Arsénico/metabolismo , Arsenitos/toxicidad , Receptores de Progesterona , Exposición Materna/efectos adversos , Remodelación Ventricular , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal/metabolismo
12.
Biometals ; 37(3): 587-607, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38267778

RESUMEN

Inorganic arsenic is a well-known environmental toxicant, and exposure to this metalloid is strongly linked with severe and extensive toxic effects in various organs including the lungs. In the present study, we aimed to investigate the acute and chronic effects of arsenite exposure on pulmonary tissue in young and adult mice. In brief, young and adult female Balb/C mice were exposed to 3 and 30 ppm arsenite daily via drinking water for 30 and 90 days. Subsequently, the animals were sacrificed and various histological and immunohistochemistry (IHC) analyses were performed using lung tissues. Our findings showed arsenite was found to cause dose-dependent pathological changes such as thickening of the alveolar septum, inflammatory cell infiltrations and lung fibrosis in young and adult mice. In addition, arsenite exposure significantly increased the expression of inflammatory markers NF-κB and TNF-α, indicating that arsenite-exposed mice suffered from severe lung inflammation. Moreover, the IHC analysis of fibrotic proteins demonstrated an increased expression of TGF-ß1, α-SMA, vimentin and collagen-I in the arsenite-exposed mice compared to the control mice. This was accompanied by apoptosis, which was indicated by the upregulated expression of caspase-3 in arsenite-exposed mice compared to the control. Adult mice were generally found to be more prone to arsenite toxicity during chronic exposure relative to their younger counterparts. Overall, our findings suggest that arsenite in drinking water may induce dose-dependent and age-dependent structural and functional impairment in the lungs through elevating inflammation and fibrotic proteins.


Asunto(s)
Apoptosis , Arsenitos , Pulmón , Ratones Endogámicos BALB C , Animales , Arsenitos/toxicidad , Arsenitos/administración & dosificación , Apoptosis/efectos de los fármacos , Femenino , Ratones , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Administración Oral , Inflamación/inducido químicamente , Inflamación/patología , Inflamación/metabolismo
13.
Environ Sci Pollut Res Int ; 31(9): 13816-13832, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265595

RESUMEN

Toxicity resulting from high levels of inorganic arsenic (iAs), specifically arsenite (AsIII) and arsenate (AsV), significantly induces oxidative stress and inhibits the growth of rice plants in various ways. Despite its economic importance and significance as a potent elite trait donor in rice breeding programmes, Khao Dawk Mali 105 (KDML105) has received limited attention regarding its responses to As stress. Therefore, this study aimed to comprehensively investigate how KDML105 responds to elevated AsIII and AsV stress levels. In this study, the growth, physiology, biochemical attributes and levels of As stress-associated transcripts were analysed in 45-day-old rice plants after exposing them to media containing 0, 75, 150, 300 and 600 µM AsIII or AsV for 1 and 7 days, respectively. The results revealed that AsIII had a more pronounced impact on the growth and physiological responses of KDML105 compared to AsV at equivalent concentrations. Under elevated AsIII treatment, there was a reduction in growth and photosynthetic efficiency, accompanied by increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Notably, the total contents of antioxidants, such as proline, phenolics and flavonoids in the shoot, increased by 8.1-fold, 1.4-fold and 1.6-fold, respectively. Additionally, the expression of the OsABCC1 gene in the roots increased by 9.5-fold after exposure to 150 µM AsIII for 1 day. These findings suggest that KDML105's prominent responses to As stress involve sequestering AsIII in vacuoles through the up-regulation of the OsABCC1 gene in the roots, along with detoxifying excessive stress in the leaves through proline accumulation. These responses could serve as valuable traits for selecting As-tolerant rice varieties.


Asunto(s)
Arsénico , Arsenitos , Oryza , Arseniatos/toxicidad , Arseniatos/metabolismo , Arsenitos/toxicidad , Arsenitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Malí , Fitomejoramiento , Raíces de Plantas/metabolismo , Prolina/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo
14.
Environ Toxicol ; 39(3): 1350-1359, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37966059

RESUMEN

Arsenic is a well-known environmental toxicant and emerging evidence suggests that arsenic exposure has potential skeletal muscle toxicity; however, the underlying mechanism has not yet been clarified. The aim of this study was to investigate the correlation among adverse effects of subchronic and chronic environmental arsenic exposure on skeletal muscle as well as specific myokines secretion and angiotensin II (AngII)-melatonin (MT) axis in rats. Four-week-old rats were exposed to arsenite (iAs) in drinking water at environmental relevant concentration of 10 ppm for 3 or 9 months. Results indicated that the gastrocnemius muscle had atrophied and its mass was decreased in rats exposed to arsenite for 9 months, whereas, they had no significant changes in rats exposed to arsenite for 3 months. The levels of serum-specific myokine irisin and gastrocnemius muscle insulin-like growth factor-1 (IGF-1) were increased in 3-month exposure group and decreased in 9-month exposure group, while serum myostatin (MSTN) was increased significantly in 9-month exposure group. In addition, serum AngII level increased both in 3- and 9-month exposure groups, while serum MT level increased in 3-month exposure group and decreased in 9-month exposure group. Importantly, the ratio of AngII to MT level in serum increased gradually with the prolongation of arsenite exposure. It showed a certain correlation between AngII-MT axis and gastrocnemius muscle mass, gastrocnemius muscle level of IGF-1 or serum levels of irisin and MSTN. In conclusion, the disruption of AngII-MT axis balance may be a significant factor for skeletal muscle atrophy induced by chronic environmental arsenic exposure.


Asunto(s)
Arsénico , Arsenitos , Melatonina , Ratas , Animales , Angiotensina II , Factor I del Crecimiento Similar a la Insulina , Melatonina/farmacología , Arsenitos/toxicidad , Fibronectinas , Músculo Esquelético , Atrofia
15.
Biol Trace Elem Res ; 202(3): 885-899, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37310554

RESUMEN

YTH N6-methyladenosine RNA binding protein 2 (YTHDF2) undergoes phase separation in response to the stimulation of high concentration of arsenite, suggesting that oxidative stress, the major mechanism of arsenite toxicity, may play a role in YTHDF2 phase separation. However, whether arsenite-induced oxidative stress is involved in phase separation of YTHDF2 has yet to be established. To explore the effect of arsenite-induced oxidative stress on YTHDF2 phase separation, the levels of oxidative stress, YTHDF2 phase separation, and N6-methyladenosine (m6A) in human keratinocytes were detected after exposure to various concentrations of sodium arsenite (0-500 µM; 1 h) and antioxidant N-acetylcysteine (0-10 mM; 2 h). We found that arsenite promoted oxidative stress and YTHDF2 phase separation in a concentration-dependent manner. In contrast, pretreatment with N-acetylcysteine significantly relieved arsenate-induced oxidative stress and inhibited YTHDF2 phase separation. As one of the key factors to YTHDF2 phase separation, N6-methyladenosine (m6A) levels in human keratinocytes were significantly increased after arsenite exposure, accompanied by upregulation of m6A methylesterase levels and downregulation of m6A demethylases levels. On the contrary, N-acetylcysteine mitigated the arsenite-induced increase of m6A and m6A methylesterase and the arsenite-induced decrease in m6A demethylase. Collectively, our study firstly revealed that oxidative stress induced by arsenite plays an important role in YTHDF2 phase separation driven by m6A modification, which provides new insights into the arsenite toxicity from the phase-separation perspective.


Asunto(s)
Acetilcisteína , Arsenitos , Humanos , Acetilcisteína/farmacología , Arsenitos/toxicidad , Separación de Fases , Estrés Oxidativo , Proteínas de Unión al ARN/genética
16.
Biol Trace Elem Res ; 202(4): 1594-1602, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37450204

RESUMEN

Inorganic arsenic (iAs) and fluoride (iF) are ubiquitous elements whose coexistence is frequent in several regions of the world due to the natural contamination of water sources destined for human consumption. It has been reported that coexposure to these two elements in water can cause toxic effects on health, which are controversial since antagonistic and synergistic effects have been reported. However, there is little information on the possible toxicological interaction between concurrent exposure to iAs and iF on the iAs metabolism profile.The goal of this study was to determine the effect of iF exposure on iAs methylation patterns in the urine and the tissues of female mice of the C57BL/6 strain, which were divided into four groups and exposed daily for 10 days through drinking water as follows: purified water (control); arsenite 1 mg/L, fluoride 50 mg/L and arsenite & fluoride 1:50 mg/L.To characterize the iAs methylation pattern in concomitant iF exposure, iAs and its methylated metabolites (MAs and DMAs) were quantified in the tissues and the urine of mice was exposed to iAs alone or in combination. Our results showed a statistically significant decrease in the arsenic species concentrations and altered relative proportions of arsenic species in tissues and urine in the As-iF coexposure group compared to the iAs-exposed group. These findings show that iF exposure decreases arsenic disposition and alters methylation capacity.Nevertheless, additional studies are required to elucidate the mechanisms involved in the iAs-iF interaction through iF exposure affecting iAs disposition and metabolism.


Asunto(s)
Arsénico , Arsenicales , Arsenitos , Humanos , Ratones , Femenino , Animales , Arsénico/toxicidad , Arsénico/metabolismo , Arsenitos/toxicidad , Fluoruros/toxicidad , Ratones Endogámicos C57BL , Metaboloma , Agua
17.
Environ Toxicol ; 39(3): 1323-1334, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37955338

RESUMEN

Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.


Asunto(s)
Arsénico , Arsenitos , Humanos , Ratones , Animales , Dieta Alta en Grasa , Arsenitos/toxicidad , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Endogámicos C57BL , Hígado , Arsénico/metabolismo , Metabolismo de los Lípidos
18.
Biotechnol Bioeng ; 121(1): 250-265, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37881108

RESUMEN

The performance of combined reduction of nitrate (NO3 - ) to dinitrogen gas (N2 ) and oxidation of arsenite (As[III]) to arsenate (As[V]) by a bioelectrochemical system was assessed, supported by ecotoxicity characterization. For the comprehensive toxicity characterization of the untreated model groundwater and the treated reactor effluents, a problem-specific ecotoxicity test battery was established. The performance of the applied technology in terms of toxicity and target pollutant elimination was compared and analyzed. The highest toxicity attenuation was achieved under continuous flow mode with hydraulic retention time (HRT) = 7.5 h, with 95%, nitrate removal rate and complete oxidation of arsenite to arsenate. Daphnia magna proved to be the most sensitive test organism. The results of the D. magna lethality test supported the choice of the ideal operational conditions based on chemical data analysis. The outcomes of the study demonstrated that the applied technology was able to improve the groundwater quality in terms of both chemical and ecotoxicological characteristics. The importance of ecotoxicity evaluation was also highlighted, given that significant target contaminant elimination did not necessarily lower the environmental impact of the initial, untreated medium, in addition, anomalies might occur during the technology operational process which in some instances, could result in elevated toxicity levels.


Asunto(s)
Arsenitos , Agua Subterránea , Contaminantes Químicos del Agua , Arseniatos/análisis , Nitratos/toxicidad , Biodegradación Ambiental , Arsenitos/toxicidad , Arsenitos/análisis , Arsenitos/química , Agua Subterránea/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis
19.
Environ Res ; 245: 117989, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38128596

RESUMEN

The aim of the present study was to determine the efficacy of LAB strains in reducing the intestinal toxicity of arsenite [As(III)] and its tissue accumulation. For this purpose, Balb/c mice were randomly separated in four groups. One group received no treatment (control), one group received only As(III) (30 mg/L) via drinking water and the remaining two groups received As(III) via water and a daily dose of two LAB strains (Lactobacillus intestinalis LE1 and Lacticaseibacillus paracasei BL23) by gavage during 2 months. The results show that both strains reduce the pro-inflammatory and pro-oxidant response observed at the colonic level, partially restore the expression of the intercellular junction proteins (CLDN3 and OCLN) responsible for the maintenance of epithelial integrity, and increase the synthesis of the major mucin of the colonic mucus layer (MUC2), compared to animals treated with As(III) alone. Microbial metabolism of short-chain fatty acids also undergoes a recovery and the levels of fatty acids in the lumen reach values similar to those of untreated animals. All these positive effects imply the restoration of mucosal permeability, and a reduction of the marker of endotoxemia LPS binding protein (LBP). Treatment with the bacteria also has a direct impact on intestinal absorption, reducing the accumulation of As in the internal organs. The data suggest that the protective effect may be due to a reduced internalization of As(III) in intestinal tissues and to a possible antioxidant and anti-inflammatory activity of the bacteria through activation of pathways such as Nrf2 and IL-10. In vitro tests show that the protection may be the result of the combined action of structural and metabolic components of the LAB strains.


Asunto(s)
Arsenitos , Agua Potable , Ratones , Animales , Mucosa Intestinal/metabolismo , Arsenitos/toxicidad , Lactobacillus , Bacterias
20.
Cells ; 12(23)2023 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-38067110

RESUMEN

Targeting tumour metabolism through glucose transporters is an attractive approach. However, the role these transporters play through interaction with other signalling proteins is not yet defined. The glucose transporter SLC2A3 (GLUT3) is a member of the solute carrier transporter proteins. GLUT3 has a high affinity for D-glucose and regulates glucose uptake in the neurons, as well as other tissues. Herein, we show that GLUT3 is involved in the uptake of arsenite, and its level is regulated by peroxiredoxin 1 (PRDX1). In the absence of PRDX1, GLUT3 mRNA and protein expression levels are low, but they are increased upon arsenite treatment, correlating with an increased uptake of glucose. The downregulation of GLUT3 by siRNA or deletion of the gene by CRISPR cas-9 confers resistance to arsenite. Additionally, the overexpression of GLUT3 sensitises the cells to arsenite. We further show that GLUT3 interacts with PRDX1, and it forms nuclear foci, which are redistributed upon arsenite exposure, as revealed by immunofluorescence analysis. We propose that GLUT3 plays a role in mediating the uptake of arsenite into cells, and its homeostatic and redox states are tightly regulated by PRDX1. As such, GLUT3 and PRDX1 are likely to be novel targets for arsenite-based cancer therapy.


Asunto(s)
Arsenitos , Transportador de Glucosa de Tipo 3 , Arsenitos/toxicidad , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Linfocitos Nulos/efectos de los fármacos , Linfocitos Nulos/metabolismo , Peroxirredoxinas/metabolismo , Humanos , Células HEK293
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...