Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Intervalo de año de publicación
1.
Protein Expr Purif ; 222: 106533, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38876402

RESUMEN

Artemisia argyi is a traditional medicinal and edible plant, generating various triterpenoids with pharmacological activities, such as anti-virus, anti-cancer, and anti-oxidant. The 2,3-oxidosqualene cyclase family of A. argyi offers novel insights into the triterpenoid pathway, which might contribute to the medicinal value of its tissue extracts. Nevertheless, the biosynthesis of active triterpenoids in Artemisia argyi is still uncertain. In this study, four putative OSC (2,3-oxidosqualene cyclase) genes (AaOSC1-4) were first isolated and identified from A. argyi. Through the yeast heterologous expression system, three AaOSCs were characterized for the biosynthesis of diverse triterpenoids including cycloartenol, ß-amyrin, (3S,13R)-malabarica-14(27),17,21-trien-3ß-ol, and dammara-20,24-dien-3ß-ol. AaOSC1 was a multifunctional dammara-20,24-dien-3ß-ol synthase, which yielded 8 different triterpenoids, including tricyclic, and tetracyclic products. AaOSC2 and AaOSC3 were cycloartenol, and ß-amyrin synthases, respectively. As a result, these findings provide a deeper understanding of the biosynthesis pathway of triterpenes in A. argyi.


Asunto(s)
Artemisia , Clonación Molecular , Transferasas Intramoleculares , Proteínas de Plantas , Triterpenos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Transferasas Intramoleculares/química , Artemisia/genética , Artemisia/enzimología , Artemisia/química , Triterpenos/metabolismo , Triterpenos/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/enzimología , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación
2.
Braz. j. biol ; 82: 1-10, 2022. ilus, tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468490

RESUMEN

Artemisia absinthium L. is an important herb that is widely cultivated in different parts of the world for its medicinal properties. The present study evaluated the effects of four concentrations of nanoparticles treatment (0, 10, 20 and 30 mg L-¹) and NaCl salinity stress (0, 50, 100 and 150 mM NaCl) and their interactions with respect to the expression of two key genes, i.e. DBR2 and ADS, in the biosynthesis pathway of artemisinin in A. absinthium. Total RNA was extracted and a relative gene expression analysis was carried out using Real-Time PCR. The amount of artemisinin was also determined by HPLC. All the experiments were performed as factorial in a completely randomized design in three replications. The results revealed that salinity stress and nanoparticles treatment and their interaction affected the expressions of these genes significantly. The highest levels of ADS gene expression were observed in the 30 mg L-¹ nanoparticles–treated plants in the presence of 150 mM salinity stress and the lowest levels in the 10 mg L-¹ nanoparticles–treated plants under 50 mM salinity stress. The maximum DBR2 gene expression was recorded in the 10 mg L-¹ nanoparticles–treated plants in the absence of salinity stress and the minimum expression in the 100 mM salinity-stressed plants in the absence of nanoparticles treatment. Moreover, the smallest amounts of artemisinin were observed in the 150 mM salinity-stressed plants in the absence of nanoparticles and the highest amounts in the 30 mg L-¹ nanoparticles–treated plants. The maximum amounts of artemisinin and ADS gene expression were reported from the plants in the same nanoparticles treatment and salinity stress [...].


Artemisia absinthium L. é uma erva importante que é amplamente cultivada em diferentes partes do mundo por suas propriedades medicinais. O presente estudo avaliou os efeitos de quatro concentrações de tratamento com nanopartículas (0, 10, 20 e 30 mg L-¹) e estresse de salinidade com NaCl (0, 50, 100 e 150 mM NaCl) e suas interações com relação à expressão de dois genes-chave, isto é, DBR2 e ADS, na via de biossíntese da artemisinina em A. absinthium. O RNA total foi extraído, e uma análise de expressão gênica relativa foi realizada usando PCR em tempo real. A quantidade de artemisinina também foi determinada por HPLC. Todos os experimentos foram realizados como fatorial, em delineamento inteiramente casualizado, em três repetições. Os resultados revelaram que o estresse por salinidade e o tratamento com nanopartículas e sua interação afetaram significativamente as expressões desses genes. Os níveis mais altos de expressão do gene ADS foram observados nas plantas tratadas com nanopartículas de 30 mg L-¹ na presença de estresse de salinidade de 150 mM, e os níveis mais baixos, nas plantas tratadas com nanopartículas de 10 mg L-¹ com estresse de salinidade de 50 mM. A expressão máxima do gene DBR2 foi registrada nas plantas tratadas com nanopartículas de 10 mg L-¹ na ausência de estresse de salinidade, e a expressão mínima, nas plantas estressadas com salinidade de 100 mM na ausência de tratamento com nanopartículas. Além disso, as menores quantidades de artemisinina foram observadas nas plantas com estresse de salinidade de 150 mM na ausência de nanopartículas, e as maiores quantidades, nas plantas tratadas com nanopartículas de 30 mg L-¹. As quantidades máximas de expressão de genes de artemisinina e ADS foram relatadas a partir das plantas no mesmo tratamento com nanopartículas e condições de estresse de salinidade. A esse respeito, a quantidade de artemisinina diminuiu pela metade nas [...],


Asunto(s)
Artemisia/enzimología , Artemisia/genética , Artemisininas , Estrés Salino , Nanopartículas/análisis
3.
BMC Plant Biol ; 19(1): 481, 2019 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-31703625

RESUMEN

BACKGROUND: Linoleic acid is an important polyunsaturated fatty acid, required for all eukaryotes. Microsomal delta-12 (Δ12) oleate desaturase (FAD2) is a key enzyme for linoleic acid biosynthesis. Desert shrub Artemisia sphaerocephala is rich in linoleic acid, it has a large FAD2 gene family with twenty-six members. The aim of this work is to unveil the difference and potentially functionality of AsFAD2 family members. RESULTS: Full-length cDNAs of twenty-one AsFAD2 genes were obtained from A. sphaerocephala. The putative polypeptides encoded by AsFAD2 family genes showed a high level of sequence similarity and were relatively conserved during evolution. The motif composition was also relatively conservative. Quantitative real-time PCR analysis revealed that the AsFAD2-1 gene was strongly expressed in developing seeds, which may be closely associated with the high accumulating ability of linoleic acid in A. sphaerocephala seeds. Although different AsFAD2 family members showed diverse response to salt stress, the overall mRNA levels of the AsFAD2 family genes was stable. Transient expression of AsFAD2 genes in the Nicotiana benthamiana leaves revealed that the encoded proteins were all located in the endoplasmic reticulum. Heterologous expression in Saccharomyces cerevisiae suggested that only three AsFAD2 enzymes, AsFAD2-1, - 10, and - 23, were Δ12 oleate desaturases, which could convert oleic acid to linoleic acid, whereas AsFAD2-1 and AsFAD2-10 could also produce palmitolinoleic acid. CONCLUSIONS: This research reported the cloning, expression studies, subcellular localization and functional identification of the large AsFAD2 gene family. These results should be helpful in understanding fatty acid biosynthesis in A. sphaerocephala, and has the potential to be applied in the study of plant fatty acids traits.


Asunto(s)
Artemisia/genética , Ácido Graso Desaturasas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Estrés Salino/genética , Artemisia/enzimología , Artemisia/metabolismo , Ácido Graso Desaturasas/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/metabolismo
4.
Commun Biol ; 2: 384, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31646187

RESUMEN

Plants produce various prenylated phenolic metabolites, including flavonoids, phloroglucinols, and coumarins, many of which have multiple prenyl moieties and display various biological activities. Prenylated phenylpropanes, such as artepillin C (3,5-diprenyl-p-coumaric acid), exhibit a broad range of pharmaceutical effects. To date, however, no prenyltransferases (PTs) involved in the biosynthesis of phenylpropanes and no plant enzymes that introduce multiple prenyl residues to native substrates with different regio-specificities have been identified. This study describes the isolation from Artemisia capillaris of a phenylpropane-specific PT gene, AcPT1, belonging to UbiA superfamily. This gene encodes a membrane-bound enzyme, which accepts p-coumaric acid as its specific substrate and transfers two prenyl residues stepwise to yield artepillin C. These findings provide novel insights into the molecular evolution of this gene family, contributing to the chemical diversification of plant specialized metabolites. These results also enabled the design of a yeast platform for the synthetic biology of artepillin C.


Asunto(s)
Artemisia/enzimología , Dimetilaliltranstransferasa/aislamiento & purificación , Fenilpropionatos/metabolismo , Proteínas de Plantas/aislamiento & purificación , Artemisia/genética , Dimetilaliltranstransferasa/genética , Dimetilaliltranstransferasa/metabolismo , Genes de Plantas , Fenilpropionatos/química , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Prenilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato , Biología Sintética/métodos
5.
Phytochemistry ; 164: 144-153, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31151061

RESUMEN

Triquinane is a type of sesquiterpenoid with a unique structure that contains a fused tricyclopentane ring and exhibits a wide range of bioactivities. Like other sesquiterpenoids, the first committed step in triquinane-type sesquiterpenoid biosynthesis is the cyclization of farnesyl pyrophosphate (FPP), a common precursor of all sesquiterpenoids, catalyzed by sesquiterpene synthase. Artemisia abrotanum L. (Asteraceae), a common plant used in the culinary and cosmetics industries, has been reported to accumulate high levels of triquinane silphiperfol-5-en-3-one A. This compound is potentially biosynthesized from the cyclization of FPP into 7-epi-silphiperfol-5-ene followed by a multi-step oxidation to silphiperfol-5-en-3-one A. In this study, we aimed to identify the sesquiterpene synthase responsible for the synthesis of 7-epi-silphiperfol-5-ene. We performed RNA sequencing of A. abrotanum leaves and gene candidates were mined by homology searches using the triquinane α-isocomene synthase of chamomile (MrTPS2) as query. After gene cloning, we obtained five variants of putative sesquiterpene synthase showing greater than 85% amino acid identity to MrTPS2 and greater than 95% amino acid identity to each other. Heterologous expression of these variants in a FPP-high-producing yeast strain revealed the first four variants to be (+)-α-bisabolol synthases (AabrBOS1-4). However, the fifth candidate cyclized FPP into 7-epi-silphiperfol-5-ene and can therefore be defined as a 7-epi-silphiperfol-5-ene synthase (AabrSPS). These findings revealed the first committed enzyme involved in silphiperfol-5-en-3-one A and (+)-α-bisabolol biosyntheses in A. abrotanum. Furthermore, the results of this study will be useful for enhancing the production of these compounds for further applications.


Asunto(s)
Transferasas Alquil y Aril/análisis , Artemisia/química , Artemisia/enzimología , Sesquiterpenos/análisis , Transferasas Alquil y Aril/metabolismo , Artemisia/metabolismo , Relación Dosis-Respuesta a Droga , Conformación Molecular , Sesquiterpenos Monocíclicos , Sesquiterpenos/metabolismo , Relación Estructura-Actividad
6.
Sci Rep ; 8(1): 12659, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30139985

RESUMEN

Artemisinin, an effective anti-malarial drug is synthesized in the specialized 10-celled biseriate glandular trichomes of some Artemisia species. In order to have an insight into artemisinin biosynthesis in species other than A. annua, five species with different artemisinin contents were investigated for the expression of key genes that influence artemisinin content. The least relative expression of the examined terpene synthase genes accompanied with very low glandular trichome density (4 No. mm-2) and absence of artemisinin content in A. khorassanica (S2) underscored the vast metabolic capacity of glandular trichomes. A. deserti (S4) with artemisinin content of 5.13 mg g-1 DW had a very high expression of Aa-ALDH1 and Aa-CYP71AV1 and low expression of Aa-DBR2. It is possible to develop plants with high artemisinin synthesis ability by downregulating Aa-ORA in S4, which may result in the reduction of Aa-ALDH1 and Aa-CYP71AV1 genes expression and effectively change the metabolic flux to favor more of artemisinin production than artemisinic acid. Based on the results, the Aa-ABCG6 transporter may be involved in trichome development. S4 had high transcript levels and larger glandular trichomes (3.46 fold) than A. annua found in Iran (S1), which may be due to the presence of more 2C-DNA (3.48 fold) in S4 than S1.


Asunto(s)
Artemisia/metabolismo , Artemisininas/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Antimaláricos/metabolismo , Artemisia/enzimología , Artemisia/genética , Artemisia annua/enzimología , Artemisia annua/genética , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Tricomas/genética , Tricomas/metabolismo
7.
Allergy ; 73(5): 1041-1052, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29220102

RESUMEN

BACKGROUND: Around 20 years ago, a 60- to 70-kDa protein was reported as a major allergen of mugwort (Artemisia vulgaris) pollen. This study was to identify and characterize its molecular properties. METHODS: Sera from 113 Chinese and 20 Dutch Artemisia-allergic/sensitized subjects (and pools thereof) were used to identify the 60- to 70-kDa allergen. Pollen extracts of seven Artemisia species were compared by immunoblotting. Transcriptomics and proteomics (mass spectrometry) of A. annua pollen were used to identify the putative 60- to 70-kDa Artemisia allergen. Both the natural purified and recombinant allergens were evaluated for IgE reactivity by ImmunoCAP. Fourteen Chinese Artemisia-allergic patients were tested intradermally with purified natural allergen. RESULTS: Immunoblots revealed two major bands at 12 and 25 kDa, and a weak band at 70 kDa for all seven Artemisia species. Using a combined transcriptomic and proteomic approach, the high molecular mass allergen in A. annua pollen was shown to be a 62-kDa putative galactose oxidase, with a putative N-glycosylation site. More than 94% of Artemisia pollen-allergic patients had IgE response to this allergen. Although recognition of a nonglycosylated recombinant version was only confirmed in a minority (16%) and at much lower IgE levels, this discrepancy cannot be explained simply by reactivity to the carbohydrate moiety on the natural allergen. Intradermal testing with the natural allergen was positive in five of nine sensitized patients. CONCLUSIONS: The previously reported 60- to 70-kDa allergen of Artemisia pollen is most likely a 62-kDa putative galactose oxidase here designated Art an 7.


Asunto(s)
Alérgenos/aislamiento & purificación , Artemisia/enzimología , Galactosa Oxidasa/inmunología , Galactosa Oxidasa/aislamiento & purificación , Adolescente , Adulto , Alérgenos/química , Alérgenos/inmunología , Artemisia/inmunología , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/aislamiento & purificación , Polen/enzimología , Polen/inmunología , Rinitis Alérgica Estacional/inmunología , Adulto Joven
8.
J Am Chem Soc ; 139(41): 14556-14567, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-28926242

RESUMEN

The amino acid sequences of farnesyl diphosphate synthase (FPPase) and chrysanthemyl diphosphate synthase (CPPase) from Artemisia tridentata ssp. Spiciformis, minus their chloroplast targeting regions, are 71% identical and 90% similar. FPPase efficiently and selectively synthesizes the "regular" sesquiterpenoid farnesyl diphosphate (FPP) by coupling isopentenyl diphosphate (IPP) to dimethylallyl diphosphate (DMAPP) and then to geranyl diphosphate (GPP). In contrast, CPPase is an inefficient promiscuous enzyme, which synthesizes the "irregular" monoterpenes chrysanthemyl diphosphate (CPP), lavandulyl diphosphate (LPP), and trace quantities of maconelliyl diphosphate (MPP) from two molecules of DMAPP, and couples IPP to DMAPP to give GPP. A. tridentata FPPase and CPPase belong to the chain elongation protein family (PF00348), a subgroup of the terpenoid synthase superfamily (CL0613) whose members have a characteristic α terpene synthase α-helical fold. The active sites of A. tridentata FPPase and CPPase are located within a six-helix bundle containing amino acids 53 to 241. The two enzymes were metamorphosed into one another by sequentially replacing the loops and helices of the six-helix bundle from enzyme with those from the other. Chain elongation was the dominant activity during the N-terminal to C-terminal metamorphosis of FPPase to CPPase, with product selectivity gradually switching from FPP to GPP, until replacement of the final α-helix, whereupon cyclopropanation and branching activity competed with chain elongation. During the corresponding metamorphosis of CPPase to FPPase, cyclopropanation and branching activities were lost upon replacement of the first helix in the six-helix bundle. Mutations of active site residues in CPPase to the corresponding amino acids in FPPase enhanced chain-elongation activity, while similar mutations in the active site of FPPase failed to significantly promote formation of significant amounts of irregular monoterpenes. Our results indicate that CPPase, a promiscuous enzyme, is more plastic toward acquiring new activities, whereas FPPase is more resistant. Mutations of residues outside of the α terpene synthase fold are important for acquisition of FPPase activity for synthesis of CPP, LPP, and MPP.


Asunto(s)
Artemisia/enzimología , Difosfatos/metabolismo , Geraniltranstransferasa/química , Geraniltranstransferasa/metabolismo , Morfogénesis , Mutagénesis Sitio-Dirigida , Secuencia de Aminoácidos , Artemisia/genética , Geraniltranstransferasa/genética , Mutación , Relación Estructura-Actividad
9.
Plant Cell Physiol ; 57(8): 1678-88, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27273626

RESUMEN

The production of artemisinin, the most effective antimalarial compound, is limited to Artemisia annua. Enzymes involved in artemisinin biosynthesis include amorpha-4,11-diene synthase (ADS), amorpha-4,11-diene 12-monooxygenase (CYP71AV1) and artemisinic aldehyde Δ(11)13 reductase (DBR2). Although artemisinin and its specific intermediates are not detected in other Artemisia species, we reported previously that CYP71AV1 and DBR2 homologs were expressed in some non-artemisinin-producing Artemisia plants. These homologous enzymes showed similar functions to their counterparts in A. annua and can convert fed intermediates into the following products along the artemisinin biosynthesis in planta These findings suggested a partial artemisinin-producing ability in those species. In this study, we examined genes highly homologous to ADS, the first committed gene in the pathway, in 13 Artemisia species. We detected ADS homologs in A. absinthium, A. kurramensis and A. maritima. We analyzed the enzymatic functions of all of the ADS homologs after obtaining their cDNA. We found that the ADS homolog from A. absinthium exhibited novel activity in the cyclization of farnesyl pyrophosphate (FPP) to koidzumiol, a rare natural sesquiterpenoid. Those from A. kurramensis and A. maritima showed similar, but novel, activities in the cyclization of FPP to (+)-α-bisabolol. The unique functions of the novel sesquiterpene synthases highly homologous to ADS found in this study could provide insight into the molecular basis of the exceptional artemisinin-producing ability in A. annua.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Artemisia/enzimología , Fabaceae/enzimología , Oxigenasas de Función Mixta/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Transferasas Alquil y Aril/genética , Secuencia de Aminoácidos , Antimaláricos/química , Antimaláricos/metabolismo , Artemisia/genética , Artemisia annua/enzimología , Artemisia annua/genética , Artemisininas/química , Artemisininas/metabolismo , Vías Biosintéticas , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Lactonas/química , Lactonas/metabolismo , Oxigenasas de Función Mixta/genética , Sesquiterpenos Monocíclicos , Oxidorreductasas/genética , Filogenia , Proteínas de Plantas/genética , Sesquiterpenos Policíclicos , Fosfatos de Poliisoprenilo/química , Fosfatos de Poliisoprenilo/metabolismo , Alineación de Secuencia , Sesquiterpenos/química , Sesquiterpenos/metabolismo
10.
Microb Cell Fact ; 15: 74, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27149950

RESUMEN

BACKGROUND: Under aerobic conditions, acetic acid is the major byproduct produced by E. coli during the fermentation. And acetic acid is detrimental to cell growth as it destroys transmembrane pH gradients. Hence, how to reduce the production of acetic acid and how to utilize it as a feedstock are of intriguing interest. In this study, we provided an evidence to produce ß-caryophyllene by the engineered E. coli using acetic acid as the only carbon source. RESULTS: Firstly, to construct the robust acetate-utilizing strain, acetyl-CoA synthases from three different sources were introduced and screened in the E. coli. Secondly, to establish the engineered strains converting acetic acid to ß-caryophyllene, acetyl-CoA synthase (ACS), ß-caryophyllene synthase (QHS1) and geranyl diphosphate synthase (GPPS2) were co-expressed in the E. coli cells. Thirdly, to further enhance ß-caryophyllene production from acetic acid, the heterologous MVA pathway was introduced into the cells. What's more, acetoacetyl-CoA synthase (AACS) was also expressed in the cells to increase the precursor acetoacetyl-CoA and accordingly resulted in the increase of ß-caryophyllene. The final genetically modified strain, YJM67, could accumulate the production of biomass and ß-caryophyllene up to 12.6 and 1.05 g/L during 72 h, respectively, with a specific productivity of 1.15 mg h(-1) g(-1) dry cells, and the conversion efficiency of acetic acid to ß-caryophyllene (gram to gram) reached 2.1%. The yield of ß-caryophyllene on acetic acid of this strain also reached approximately 5.6% of the theoretical yield. CONCLUSIONS: In the present study, a novel biosynthetic pathway for ß-caryophyllene has been investigated by means of conversion of acetic acid to ß-caryophyllene using an engineered Escherichia coli. This was the first successful attempt in ß-caryophyllene production by E. coli using acetic acid as the only carbon source. Therefore, we have provided a new metabolic engineering tool for ß-caryophyllene synthesis.


Asunto(s)
Ácido Acético/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sesquiterpenos/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Artemisia/enzimología , Artemisia/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/genética , Ingeniería Genética , Geraniltranstransferasa/genética , Geraniltranstransferasa/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Sesquiterpenos Policíclicos , Streptomyces/enzimología , Streptomyces/genética
11.
Funct Integr Genomics ; 12(1): 207-13, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21847661

RESUMEN

Aphids are major agricultural pests which cause significant yield losses of the crop plants each year. (E)-ß-farnesene (EßF) is the alarm pheromone involved in the chemical communication between aphids and particularly in the avoidance of predation. In the present study, two EßF synthase genes were isolated from sweet wormwood and designated as AaßFS1 and AaßFS2, respectively. Overexpression of AaßFS1 or AaßFS2 in tobacco plants resulted in the emission of EßF ranging from 1.55 to 4.65 ng/day/g fresh tissues. Tritrophic interactions involving the peach aphids (Myzus persicae), predatory lacewings (Chrysopa septempunctata) demonstrated that the transgenic tobacco expressing AaßFS1 and AaßFS2 could repel peach aphids, but not as strongly as expected. However, AaßFS1 and AaßFS2 lines exhibited strong and statistically significant attraction to lacewings. Further experiments combining aphids and lacewing larvae in an octagon arrangement showed transgenic tobacco plants could repel aphids and attract lacewing larvae, thus minimizing aphid infestation. Therefore, we demonstrated a potentially valuable strategy of using EßF synthase genes from sweet wormwood for aphid control in tobacco or other economic important crops in an environmentally benign way.


Asunto(s)
Áfidos/fisiología , Nicotiana/genética , Proteínas de Plantas/genética , Pirofosfatasas/genética , Animales , Artemisia/enzimología , Ingeniería Genética , Larva/fisiología , Control Biológico de Vectores , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Conducta Predatoria , Pirofosfatasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sesquiterpenos/metabolismo , Nicotiana/metabolismo
12.
J Am Chem Soc ; 130(6): 1966-71, 2008 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-18198872

RESUMEN

Four reactions--chain elongation, cyclopropanation, branching, and cyclobutanation--are used in nature to join isoprenoid units for construction of the carbon skeletons for over 55,000 naturally occurring isoprenoid compounds. Those molecules produced by chain elongation have head-to-tail (regular) carbon skeletons, while those from cyclopropanation, branching, or cyclobutanation have non-head-to-tail (irregular) skeletons. Although wild type enzymes have not been identified for the branching and cyclobutanation reactions, chimeric proteins constructed from farnesyl diphosphate synthase (chain elongation) and chrysanthemyl diphosphate synthase (cyclopropanation) catalyze all four of the known isoprenoid coupling reactions to give a mixture of geranyl diphosphate (chain elongation), chrysanthemyl diphosphate (cyclopropanation), lavandulyl diphosphate (branching), and maconelliyl and planococcyl diphosphate (cyclobutanation). Replacement of the hydrogen atoms at C1 or C2 or hydrogen atoms in the methyl groups of dimethylallyl diphosphate by deuterium alters the distribution of the cyclopropanation, branching, and cyclobutanation products through primary and secondary kinetic isotope effects on the partitioning steps of common carbocationic intermediates. These experiments establish the sequence in which the intermediates are formed and indicate that enzyme-mediated control of the carbocationic rearrangement and elimination steps determines the distribution of products.


Asunto(s)
Ciclobutanos/metabolismo , Ciclopropanos/metabolismo , Terpenos/metabolismo , Artemisia/enzimología , Ciclobutanos/química , Ciclopropanos/química , Geraniltranstransferasa/química , Geraniltranstransferasa/metabolismo , Conformación Molecular , Terpenos/química
13.
Science ; 316(5821): 73-6, 2007 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-17412950

RESUMEN

The carbon skeletons of over 55,000 naturally occurring isoprenoid compounds are constructed from four fundamental coupling reactions: chain elongation, cyclopropanation, branching, and cyclobutanation. Enzymes that catalyze chain elongation and cyclopropanation are well studied, whereas those that catalyze branching and cyclobutanation are unknown. We have catalyzed the four reactions with chimeric proteins generated by replacing segments of a chain-elongation enzyme with corresponding sequences from a cyclopropanation enzyme. Stereochemical and mechanistic considerations suggest that the four coupling enzymes could have evolved from a common ancestor through relatively small changes in the catalytic site.


Asunto(s)
Geraniltranstransferasa/metabolismo , Terpenos/metabolismo , Secuencia de Aminoácidos , Artemisia/enzimología , Catálisis , Dominio Catalítico , Chrysanthemum cinerariifolium/enzimología , Ciclopropanos/química , Evolución Molecular , Geraniltranstransferasa/química , Geraniltranstransferasa/genética , Cinética , Conformación Molecular , Datos de Secuencia Molecular , Estructura Molecular , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Estereoisomerismo , Terpenos/química
14.
J Am Chem Soc ; 128(49): 15819-23, 2006 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-17147392

RESUMEN

Farnesyl diphosphate (FPP) synthase catalyzes the consecutive head-to-tail condensations of isopentenyl diphosphate (IPP, C5) with dimethylallyl diphosphate (DMAPP, C5) and geranyl diphosphate (GPP, C10) to give (E,E)-FPP (C15). The enzyme belongs to a genetically distinct family of chain elongation enzymes that install E-double bonds during each addition of a five-carbon isoprene unit. Analysis of the C10 and C15 products from incubations with avian FPP synthase reveals that small amounts of neryl diphosphate (Z-C10) and (Z,E)-FPP are formed along with the E-isomers during the C5 --> C10 and C10 --> C15 reactions. Similar results were obtained for FPP synthase from Escherichia coli, Artemisia tridentata (sage brush), Pyrococcus furiosus, and Methanobacter thermautotrophicus and for GPP and FPP synthesized in vivo by E. coli FPP synthase. When (R)-[2-2H]IPP was a substrate for chain elongation, no deuterium was found in the chain elongation products. In contrast, the deuterium in (S)-[2-2H]IPP was incorporated into all of the products. Thus, the pro-R hydrogen at C2 of IPP is lost when the E- and Z-double bond isomers are formed. The synthesis of Z-double bond isomers by FPP synthase during chain elongation is unexpected for a highly evolved enzyme and probably reflects a compromise between optimizing double bond stereoselectivity and the need to exclude DMAPP from the IPP binding site.


Asunto(s)
Difosfatos/metabolismo , Diterpenos/metabolismo , Geraniltranstransferasa/química , Geraniltranstransferasa/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Artemisia/enzimología , Sitios de Unión , Butadienos/química , Catálisis , Deuterio/química , Escherichia coli/enzimología , Cromatografía de Gases y Espectrometría de Masas , Hemiterpenos/química , Hidrógeno/química , Isomerismo , Methanobacteriaceae/enzimología , Modelos Químicos , Pentanos/química , Pyrococcus furiosus/enzimología , Especificidad por Sustrato , Factores de Tiempo
15.
Ying Yong Sheng Tai Xue Bao ; 17(8): 1505-10, 2006 Aug.
Artículo en Chino | MEDLINE | ID: mdl-17066712

RESUMEN

By the method of solution culture, this paper studied the coercion and damage of Cu pollution on the growth of Artemisia lavandulaefolia. The Cu concentration was set as 2.5, 5, 10, 20 and 40 mg x L(-1), experimental duration was 14 days, and the growth and physiological indices of plants were tested. The results showed that the growth of A. lavandulaefolia was stimulated at low Cu concentration (2.5 mg x L(-1)), while inhibited at higher Cu concentrations (5 to approximately 40 mg x L(-1)). There was a significant negative correlation between each growth index and Cu concentration, and pigments contents had the similar trend. The sensibility of various photosynthetic pigments to Cu was in the order of chlorophyll a > chlorophyll a + b > chlorophyll b > carotenoid. Cell membrane permeability, O2 generation rate, and MDA content decreased slightly at 2.5 mg Cu x L(- 1) and then increased with increasing Cu concentration. The activities of POD, SOD and CAT increased first but decreased then with the increasing Cu concentration, and the endurance index of root showed the same trend, being > 0.5 at the Cu concentration less than 20 mg x L(-1) while decreased to 0.36 at 40 mg Cu x L(-1).


Asunto(s)
Artemisia/efectos de los fármacos , Artemisia/crecimiento & desarrollo , Cobre/toxicidad , Fotosíntesis/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Artemisia/enzimología , Catalasa/metabolismo , Relación Dosis-Respuesta a Droga , Superóxido Dismutasa/metabolismo
16.
J Nat Prod ; 69(5): 758-62, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16724836

RESUMEN

Cyclization of farnesyl diphosphate into amorpha-4,11-diene by amorpha-4,11-diene synthase (ADS) initiates biosynthesis of artemisinin, a clinically important antimalarial drug precursor. Three possible ring-closure mechanisms, two involving a bisabolyl carbocation intermediate followed by either a 1,3-hydride shift or two successive 1,2-shifts, and one involving a germacrenyl carbocation, were proposed and tested by analyzing the fate of farnesyl diphosphate H-1 hydrogen atoms through (1)H and (2)H NMR spectroscopy. Migration of one deuterium atom of [1,1-(2)H(2)]farnesyl diphosphate to H-10 of amorpha-4,11-diene singled out the bisabolyl carbocation mechanism with a 1,3-hydride shift. Further confirmation was obtained through enzyme reactions with (1R)- and (1S)-[1-(2)H]farnesyl diphosphate. Results showed that deuterium of the 1R compound remained at H-6, whereas that of the 1S compound migrated to H-10 of amorpha-4,11-diene. Incorporation of one deuterium into amorphadiene in the cyclization process was observed when the reaction was performed in (2)H(2)O, as evidenced by an increase of 1 amu in the mass of the molecular ion.


Asunto(s)
Transferasas Alquil y Aril/metabolismo , Artemisia/enzimología , Artemisininas/metabolismo , Plantas Medicinales/enzimología , Sesquiterpenos/metabolismo , Ciclización , Deuterio/química , Deuterio/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Fosfatos de Poliisoprenilo/síntesis química , Estereoisomerismo
17.
Planta ; 220(3): 486-97, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15580526

RESUMEN

Thermotolerance of photosystem II (PSII) in leaves of salt-adapted Artemisia anethifolia L. plants (100-400 mM NaCl) was evaluated after exposure to heat stress (30-45 degrees C) for 30 min. After exposure to 30 degrees C, salt adaptation had no effects on the maximal efficiency of PSII photochemistry (F(v)/F(m)), the efficiency of excitation capture by open PSII centers (F(v)'/F(m)'), or the actual PSII efficiency (Phi(PSII)). After pretreatment at 40 degrees C, there was a striking difference in the responses of F(v)/F(m), F(v)'/F(m)' and Phi(PSII) to heat stress in non-salt-adapted and salt-adapted leaves. Leaves from salt-adapted plants maintained significantly higher values of F(v)/F(m), F(v)'/F(m)' and Phi(PSII) than those from non-salt-adapted leaves. The differences in F(v)/F(m), F(v)'/F(m)' and Phi(PSII) between non-salt-adapted and salt-adapted plants persisted for at least 12 h following heat stress. These results clearly show that thermotolerance of PSII was enhanced in salt-adapted plants. This enhanced thermotolerance was associated with an improvement in thermotolerance of the PSII reaction centers, the oxygen-evolving complexes and the light-harvesting complex. In addition, we observed that after exposure to 42.5 degrees C for 30 min, non-salt-adapted plants showed a significant decrease in CO(2) assimilation rate while in salt-adapted plants CO(2) assimilation rate was either maintained or even increased to some extent. Given that photosynthesis is considered to be the physiological process most sensitive to high-temperature damage and that PSII appears to be the most heat-sensitive part of the photosynthetic apparatus, enhanced thermotolerance of PSII may be of significance for A. anethifolia, a halophyte plant, which grows in the high-salinity regions in the north of China, where the air temperature in the summer is often as high as 45 degrees C.


Asunto(s)
Artemisia/enzimología , Calor , Complejo de Proteína del Fotosistema II/metabolismo , Cloruro de Sodio/farmacología , Adaptación Fisiológica/fisiología , Artemisia/fisiología , Clorofila/fisiología , Hojas de la Planta/fisiología , Factores de Tiempo
18.
J Immunol ; 172(10): 6490-500, 2004 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15128842

RESUMEN

Grass pollen belong to the most important allergen sources involved in the elicitation of allergic asthma. We have isolated cDNAs coding for Bermuda grass (Cynodon dactylon) and timothy grass (Phleum pratense) pollen allergens, belonging to a family of pectin-degrading enzymes (i.e., polygalacturonases). The corresponding allergens, termed Cyn d 13 and Phl p 13, represent glycoproteins of approximately 42 kDa and isoelectric points of 7.5. rPhl p 13 was expressed in Escherichia coli and purified to homogeneity. Immunogold electron microscopy using rabbit anti-rPhl p 13 Abs demonstrated that in dry pollen group 13, allergens represent primarily intracellular proteins, whereas exposure of pollen to rainwater caused a massive release of cytoplasmic material containing submicronic particles of respirable size, which were coated with group 13 allergens. The latter may explain respiratory sensitization to group 13 allergens and represents a possible pathomechanism in the induction of asthma attacks after heavy rainfalls. rPhl p 13 was recognized by 36% of grass pollen allergic patients, showed IgE binding capacity comparable to natural Phl p 13, and induced specific and dose-dependent basophil histamine release. Epitope mapping studies localized major IgE epitopes to the C terminus of the molecule outside the highly conserved functional polygalacturonase domains. The latter result explains why rPhl p 13 contains grass pollen-specific IgE epitopes and may be used to diagnose genuine sensitization to grass pollen. Our finding that rabbit anti-rPhl p 13 Abs blocked patients' IgE binding to the allergen suggests that rPhl p 13 may be used for immunotherapy of sensitized patients.


Asunto(s)
Alérgenos/inmunología , Artemisia/inmunología , Phleum/inmunología , Polen/enzimología , Polen/inmunología , Poligalacturonasa/inmunología , Hipersensibilidad Respiratoria/enzimología , Hipersensibilidad Respiratoria/inmunología , Alérgenos/biosíntesis , Alérgenos/química , Alérgenos/aislamiento & purificación , Alérgenos/ultraestructura , Secuencia de Aminoácidos , Anticuerpos Bloqueadores/biosíntesis , Anticuerpos Bloqueadores/metabolismo , Artemisia/enzimología , Artemisia/ultraestructura , Basófilos/inmunología , Basófilos/metabolismo , Unión Competitiva/inmunología , Biomarcadores/análisis , Secuencia Conservada , Desensibilización Inmunológica/métodos , Liberación de Histamina/inmunología , Inmunoglobulina E/metabolismo , Inmunoglobulina G/biosíntesis , Inmunoglobulina G/metabolismo , Microscopía Inmunoelectrónica , Datos de Secuencia Molecular , Tamaño de la Partícula , Pectinas/metabolismo , Phleum/enzimología , Phleum/ultraestructura , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Polen/ultraestructura , Poligalacturonasa/química , Poligalacturonasa/ultraestructura , Unión Proteica/inmunología , Estructura Terciaria de Proteína , Hipersensibilidad Respiratoria/diagnóstico , Análisis de Secuencia de Proteína
19.
Bioorg Med Chem ; 11(21): 4545-9, 2003 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-14527550

RESUMEN

Members of the Artemisia genus are important medicinal plants found throughout the world. Arteminolides A-D (1-4), isolated from the aerial parts of Artemisia, have an inhibitory activity on farnesyl-protein transferase (FPTase; EC 2.5.1.29) in in vitro assay. This study was carried out with the purpose of validating anti-tumor effects of the compounds in human tumor cells and mouse xenograft model. The arteminolides inhibited tumor cell growth in a dose-dependent manner. Furthermore, arteminolide C (3) blocked in vivo growth of human colon and lung tumor xenograft without the loss of body weight in nude mice.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/uso terapéutico , Lactonas/uso terapéutico , Sesquiterpenos/uso terapéutico , Animales , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Artemisia/enzimología , Línea Celular Tumoral , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Farnesiltransferasa , Humanos , Lactonas/química , Lactonas/aislamiento & purificación , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Fitoterapia , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Proteínas Supresoras de Tumor/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
20.
J Am Chem Soc ; 125(23): 6886-8, 2003 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-12783539

RESUMEN

The genes for chrysanthemyl diphosphate (CPP) synthase and farnesyl diphosphate (FPP) synthase from sagebrush, Artemisia tridentata spiciformis, were used to prepare a series of chimeric proteins to investigate the 1'-4 chain elongation, 1'-2 branching, and c1'-2-3 cyclopropanation reactions that join isoprenoid units to build more complex structures. The two genes were modified by site-directed mutagenesis to generate an identical set of six unique restriction sites at identical locations. The locations were selected to place a restriction site between each of the five conserved regions found in prenyltransferases that catalyze chain elongation. A series of chimeric proteins were generated by replacing amino acids in FPP synthase, beginning at the N-terminus of the enzyme, with increasing stretches of peptide from CPP synthase. An analysis of the products produced by the chimeras revealed a transition from 1'-4 chain elongation, to 1'-2 branching, and ultimately to c1'-2-3 cyclopropanation. These results demonstrate that the catalytic site for chain elongation, with minor modifications in its architecture, also catalyzes 1'-2 branching and c1'-2-3 cyclopropanation, and suggest that the branching and cyclopropanation reactions, in analogy to chain elongation, are electrophilic alkylations.


Asunto(s)
Transferasas Alquil y Aril/química , Transferasas Alquil y Aril/metabolismo , Artemisia/enzimología , Fosfatos de Poliisoprenilo/biosíntesis , Transferasas Alquil y Aril/genética , Artemisia/genética , Ciclización , Geraniltranstransferasa , Mutagénesis Sitio-Dirigida , Fosfatos de Poliisoprenilo/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA