Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 376
Filtrar
1.
PLoS One ; 19(5): e0301080, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728328

RESUMEN

Entheses are classified into three types: fibrocartilaginous, fibrous, and periosteal insertions. However, the mechanism behind the development of fibrous entheses and periosteal insertions remains unclear. Since both entheses are part of the temporomandibular joint (TMJ), this study analyzes the TMJ entheses. Here, we show that SOX9 expression is negatively regulated during TMJ enthesis development, unlike fibrocartilage entheses which are modularly formed by SCX and SOX9 positive progenitors. The TMJ entheses was adjacent to the intramembranous bone rather than cartilage. SOX9 expression was diminished during TMJ enthesis development. To clarify the functional role of Sox9 in the development of TMJ entheses, we examined these structures in TMJ using Wnt1Cre;Sox9flox/+ reporter mice. Wnt1Cre;Sox9flox/+ mice showed enthesial deformation at the TMJ. Next, we also observed a diminished SOX9 expression area at the enthesis in contact with the clavicle's membranous bone portion, similar to the TMJ entheses. Together, these findings reveal that the timing of SOX9 expression varies with the ossification development mode.


Asunto(s)
Osteogénesis , Factor de Transcripción SOX9 , Articulación Temporomandibular , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Animales , Ratones , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/crecimiento & desarrollo , Osteogénesis/genética , Regulación hacia Abajo , Fibrocartílago/metabolismo , Ratones Transgénicos
2.
PLoS One ; 19(5): e0301341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753666

RESUMEN

The deficiency of clinically specific biomarkers has made it difficult to achieve an accurate diagnosis of temporomandibular joint osteoarthritis (TMJ-OA) and the insufficient comprehension of the pathogenesis of the pathogenesis of TMJ-OA has posed challenges in advancing therapeutic measures. The combined use of metabolomics and transcriptomics technologies presents a highly effective method for identifying vital metabolic pathways and key genes in TMJ-OA patients. In this study, an analysis of synovial fluid untargeted metabolomics of 6 TMJ-OA groups and 6 temporomandibular joint reducible anterior disc displacement (TMJ-DD) groups was conducted using liquid and gas chromatography mass spectrometry (LC/GC-MS). The differential metabolites (DMs) between TMJ-OA and TMJ-DD groups were analyzed through multivariate analysis. Meanwhile, a transcriptomic dataset (GSE205389) was obtained from the GEO database to analyze the differential metabolism-related genes (DE-MTGs) between TMJ-OA and TMJ-DD groups. Finally, an integrated analysis of DMs and DE-MTGs was carried out to investigate the molecular mechanisms associated with TMJ-OA. The analysis revealed significant differences in the levels of 46 DMs between TMJ-OA and TMJ-DD groups, of which 3 metabolites (L-carnitine, taurine, and adenosine) were identified as potential biomarkers for TMJ-OA. Collectively, differential expression analysis identified 20 DE-MTGs. Furthermore, the integration of metabolomics and transcriptomics analysis revealed that the tricarboxylic acid (TCA) cycle, alanine, aspartate and glutamate metabolism, ferroptosis were significantly enriched. This study provides valuable insights into the metabolic abnormalities and associated pathogenic mechanisms, improving our understanding of TMJOA etiopathogenesis and facilitating potential target screening for therapeutic intervention.


Asunto(s)
Metabolómica , Osteoartritis , Trastornos de la Articulación Temporomandibular , Transcriptoma , Humanos , Osteoartritis/metabolismo , Osteoartritis/genética , Metabolómica/métodos , Masculino , Femenino , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/genética , Adulto , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Perfilación de la Expresión Génica , Biomarcadores/metabolismo , Líquido Sinovial/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Persona de Mediana Edad
3.
J Cell Mol Med ; 28(9): e18377, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38686488

RESUMEN

There are few effective therapeutic strategies for temporomandibular joint osteoarthritis (TMJOA) due to the unclear pathology and mechanisms. We aimed to confirm the roles of GPX4 and ferroptosis in TMJOA progression. ELISA assay was hired to evaluate concentrations of ferroptosis-related markers. The qRT-PCR assay was hired to assess gene mRNA level. Western blot assay and immunohistochemistry were hired to verify the protein level. CCK-8 assay was hired to detect cell viability. Human fibroblast-like synoviocytes (FLSs) were cultured to confirm the effects of GPX4 and indicated inhibitors, and further verified the effects of GPX4 and ferroptosis inhibitors in TMJOA model rats. Markers of ferroptosis including 8-hidroxy-2-deoxyguanosine (8-OHdG) and iron were notably increased in TMJOA tissues and primary OA-FLSs. However, the activity of the antioxidant system including the glutathione peroxidase activity, glutathione (GSH) contents, and glutathione/oxidized glutathione (GSH/GSSG) ratio was notably inhibited in TMJOA tissues, and the primary OA-FLSs. Furthermore, the glutathione peroxidase 4 (GPX4) expression was down-regulated in TMJOA tissues and primary OA-FLSs. Animal and cell experiments have shown that ferroptosis inhibitors notably inhibited ferroptosis and promoted HLS survival as well as up-regulated GPX4 expression. Also, GPX4 knockdown promoted ferroptosis and GPX4 overexpression inhibited ferroptosis. GPX4 also positively regulated cell survival which was the opposite with ferroptosis. In conclusion, GPX4 and ferroptosis regulated the progression of TMJOA. Targeting ferroptosis might be an effective therapeutic strategy for TMJOA patients in the clinic.


Asunto(s)
Ferroptosis , Osteoartritis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Articulación Temporomandibular , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Fibroblastos/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Osteoartritis/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Ratas Sprague-Dawley , Sinoviocitos/metabolismo , Sinoviocitos/patología , Articulación Temporomandibular/patología , Articulación Temporomandibular/metabolismo
4.
J Cell Mol Med ; 28(8): e18244, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520211

RESUMEN

To explore the mechanism of tripartite motif 52 (TRIM52) in the progression of temporomandibular joint osteoarthritis (TMJOA). Gene and protein expression were tested by quantitative real-time polymerase chain reaction and western blot, respectively. The levels of pro-inflammatory cytokines and oxidative stress factors were evaluated using enzyme-linked immunosorbent assay and biochemical kit, respectively. Cell counting kit-8 and 5-ethynyl-2'-deoxyuridine assays were carried out to assess cell proliferation. Immunofluorescence was used to detect the expression of CD68 and Vimentin in primary synovial fibroblasts (SFs). Haematoxylin and eosin staining and Safranin O/Fast green were used to evaluate the pathological damage of synovial and cartilage tissue in rats. TRIM52 was upregulated in the synovial tissue and SFs in patients with TMJOA. Interleukin (IL)-1ß treatment upregulated TRIM52 expression in TMJOA SFs and normal SF (NSF), promoting cell proliferation, inflammatory response and oxidative stress in NSF, SFs. Silence of TRIM52 relieved the cell proliferation, inflammatory response and oxidative stress induced by IL-1ß in SFs, while overexpression of TRIM52 enhanced IL-1ß induction. Meanwhile, IL-1ß induction activated toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB pathway, which was augmented by upregulation of TRIM52 in NSF, and was attenuated by TRIM52 knockdown in SFs. Besides, pyrrolidinedithiocarbamic acid ameliorated IL-1ß-induced proliferation and inflammatory response by inhibiting TLR4/NF-κB signalling. Meanwhile, TRIM52 knockdown inhibited cell proliferation, oxidative stress and inflammatory response in IL-1ß-induced SFs through downregulation of TLR4. TRIM52 promoted cell proliferation, inflammatory response, and oxidative stress in IL-1ß-induced SFs. The above functions were mediated by the activation of TLR4/NF- κB signal pathway.


Asunto(s)
Osteoartritis , Receptor Toll-Like 4 , Animales , Humanos , Ratas , Proliferación Celular , Fibroblastos/metabolismo , Interleucina-1beta/metabolismo , FN-kappa B/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Estrés Oxidativo , Articulación Temporomandibular/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
5.
Am J Pathol ; 194(2): 296-306, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245251

RESUMEN

This study investigates the regulatory mechanisms of synovial macrophages and their polarization in the progression of temporomandibular joint osteoarthritis (TMJOA). Macrophage depletion models were established by intra-articular injection of clodronate liposomes and unloaded liposomes. TMJOA was induced by intra-articular injection of 50 µL Complete Freund's Adjuvant and the surgery of disc perforation. The contralateral joint was used as the control group. The expression of F4/80, CD86, and CD206 in the synovium was detected by immunofluorescence staining analysis. Hematoxylin and eosin staining and TMJOA synovial score were detected to show the synovial changes in rat joints after TMJOA induction and macrophage depletion. Changes in rat cartilage after TMJOA induction and macrophage depletion were shown by safranin fast green staining. The bone-related parameters of rats' joints were evaluated by micro-computed tomography analysis. The TMJOA model induced by Complete Freund's Adjuvant injection and disc perforation aggravated synovial hyperplasia and showed a significant up-regulation of expression of F4/80-, CD86-, and CD206-positive cells. F4/80, CD86, and CD206 staining levels were significantly decreased in macrophage depletion rats, whereas the synovitis score further increased and cartilage and subchondral bone destruction was slightly aggravated. Macrophages were crucially involved in the progression of TMJOA, and macrophage depletion in TMJOA synoviocytes promoted synovitis and cartilage destruction.


Asunto(s)
Cartílago Articular , Osteoartritis , Sinovitis , Ratas , Animales , Microtomografía por Rayos X , Activación de Macrófagos , Adyuvante de Freund/efectos adversos , Adyuvante de Freund/metabolismo , Liposomas/efectos adversos , Liposomas/metabolismo , Cartílago Articular/metabolismo , Articulación Temporomandibular/metabolismo , Sinovitis/metabolismo , Remodelación Ósea , Osteoartritis/metabolismo
6.
Biol Cell ; 116(1): e202300042, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37919852

RESUMEN

BGROUND INFORMATION: Ferroptosis contributes to temporomandibular joint osteoarthritis (TMJOA) lesion development and is still poorly understood. RESULTS: In this study, we used different TMJOA animal models to examine whether ferroptosis was related to disease onset in TMJOA induced by monosodium iodoacetate (MIA), IL-1ß, occlusion disorder (OD), and unilateral anterior crossbite (UAC). Immunohistochemical staining and Western blot analysis were used to detect ferroptosis- and cartilage degradation-related protein expression. Our results revealed reduced levels of the ferroptosis-related protein GPX4 in the cartilage layer, but the levels of ACSL4 and P53 were increased in the condyle. Injection of the ferroptosis inhibitor liproxstatin-1 (Lip-1) effectively decreased ACSL4, P53 and TRF expression. In vitro, IL-1ß reduced cartilage extracellular matrix expression in mandibular condylar chondrocytes (MCCs). Lip-1 maintained the morphology and function of mitochondria and ameliorated the exacerbation of lipid peroxidation and reactive oxygen species (ROS) production induced by IL-1ß. CONCLUSION: These results suggest that chondrocyte ferroptosis plays an important role in the development and progression of TMJOA. SIGNIFICANCE: Inhibiting condylar chondrocyte ferroptosis could be a promising therapeutic strategy for TMJOA.


Asunto(s)
Cartílago Articular , Ferroptosis , Quinoxalinas , Compuestos de Espiro , Ratas , Animales , Condrocitos/metabolismo , Condrocitos/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/farmacología , Ratas Sprague-Dawley , Cartílago Articular/metabolismo , Cartílago Articular/patología , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología
7.
Eur J Oral Sci ; 132(1): e12957, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37908149

RESUMEN

Stress substantially increases the risk of developing painful temporomandibular disorders (TMDs) by influencing the release of endogenous catecholamines. Propranolol, an antagonist of ß-adrenergic receptors, has shown potential in alleviating TMD-associated pain, particularly when the level of catecholamines is elevated. The aim of this study was to explore whether intra-articular propranolol administration is effective in diminishing temporomandibular joint (TMJ) pain during repeated stress situations. Additionally, we investigated the effect of repeated stress on the expression of genes encoding ß-adrenoceptors in the trigeminal ganglion. In the present study, rats were exposed to a stress protocol induced by sound, then to the administration of formalin in the TMJ (to elicit a nociceptive response), followed immediately afterward by different doses of propranolol, after which the analgesic response to propranolol was evaluated. We also assessed the levels of beta-1 and beta-2 adrenergic receptor mRNAs (Adrb1 and Adrb2, respectively) using reverse transcription-quantitative PCR (RT-qPCR). Our findings revealed that propranolol administration reduces formalin-induced TMJ nociception more effectively in stressed rats than in non-stressed rats. Furthermore, repeated stress decreases the expression of the Adrb2 gene within the trigeminal ganglion. The findings of this study are noteworthy as they suggest that individuals with a chronic stress history might find potential benefits from ß-blockers in TMD treatment.


Asunto(s)
Propranolol , Articulación Temporomandibular , Ratas , Animales , Propranolol/efectos adversos , Articulación Temporomandibular/metabolismo , Ratas Wistar , Dolor , Catecolaminas/metabolismo , Catecolaminas/farmacología , Catecolaminas/uso terapéutico , Formaldehído/efectos adversos , Formaldehído/metabolismo
8.
J Oral Rehabil ; 51(5): 805-816, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38146807

RESUMEN

BACKGROUND: Abnormal lipid metabolism is involved in the development of osteoarthritis (OA). ATP-binding cassette protein G1 (ABCG1) is crucial in mediating the outflow of cholesterol, phosphatidylcholine and sphingomyelin and reducing intracellular lipid accumulation. OBJECTIVE: This study aimed to evaluate whether ABCG1 participates in the abnormal adipogenesis of chondrocytes in osteoarthritic cartilage of temporomandibular joint. METHODS: Eight-week-old female rats were subjected to unilateral anterior crossbite (UAC) to induce OA in the temporomandibular joint (TMJ). Histochemical staining, immunohistochemical (IHC) staining, and qRT-PCR were performed. Primary condylar chondrocytes of rats were transfected with ABCG1 shRNA or overexpression lentivirus and then stimulated with fluid flow shear stress (FFSS). Cells were collected for oil red O staining, immunofluorescence staining, and qRT-PCR analysis. RESULTS: Abnormal adipogenesis, characterized by increased expression of Adiponectin, CCAAT/enhancer-binding protein α (Cebpα), fatty acid binding protein 4 (Fabp4) and Perilipin1, was enhanced in the degenerative cartilage of TMJ OA in rats with UAC, accompanied by decreased expression of ABCG1. After FFSS stimulation, we observed lipid droplets in the cytoplasm of cultured cells with increased expression of Adiponectin, Cebpα, Fabp4 and Perilipin1 and decreased expression of ABCG1. Knockdown of Abcg1 induced abnormal adipogenesis and differentiation of condylar chondrocytes. Overexpression of ABCG1 alleviated the abnormal adipogenesis and differentiation of condylar chondrocytes induced by FFSS. CONCLUSIONS: Abnormal adipogenesis of chondrocytes and decreased ABCG1 expression were observed in degenerative cartilage of TMJ OA. ABCG1 overexpression effectively inhibits the adipogenesis of chondrocytes and thus alleviates TMJ condylar cartilage degeneration.


Asunto(s)
Cartílago Articular , Maloclusión , Osteoartritis , Animales , Femenino , Ratas , Adenosina Trifosfato/metabolismo , Adipogénesis , Adiponectina/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Maloclusión/metabolismo , Articulación Temporomandibular/metabolismo
9.
Dev Biol ; 507: 1-8, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38114053

RESUMEN

The temporomandibular joint (TMJ), composed of temporal fossa, mandibular condyle and a fibrocartilage disc with upper and lower cavities, is the biggest synovial joint and biomechanical hinge of the craniomaxillofacial musculoskeletal system. The initial events that give rise to TMJ cavities across diverse species are not fully understood. Most studies focus on the pivotal role of molecules such as Indian hedgehog (Ihh) and hyaluronic acid (HA) in TMJ cavitation. Although biologists have observed that mechanical stress plays an irreplaceable role in the development of biological tissues and organs, few studies have been concerned with how mechanical stress regulates TMJ cavitation. Based on the evidence from human or other animal embryos today, it is implicated that mechanical stress plays an essential role in TMJ cavitation. In this review, we discuss the relationship between mechanical stress and TMJ cavitation from evo-devo perspectives and review the clinical features and potential pathogenesis of TMJ dysplasia.


Asunto(s)
Proteínas Hedgehog , Trastornos de la Articulación Temporomandibular , Animales , Humanos , Estrés Mecánico , Proteínas Hedgehog/metabolismo , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Cóndilo Mandibular/metabolismo , Cóndilo Mandibular/patología , Trastornos de la Articulación Temporomandibular/metabolismo , Trastornos de la Articulación Temporomandibular/patología
10.
Arthritis Res Ther ; 25(1): 230, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38031141

RESUMEN

OBJECTIVES: Innate immunity plays a significant role in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA), which is characterized by synovial inflammation and condylar cartilage degradation. We are urged to investigate the impact of Resatorvid, a preventative drug that inhibits Toll-like receptor 4 (TLR4), on experimental inflammatory TMJOA pathology. METHODS: An intra-articular injection of complete Freund's adjuvant (CFA) was used to induce an experimental inflammatory mouse TMJOA model, and TLR4 expression was identified by immunofluorescent labeling. Intraperitoneal injections of Resatorvid were administered to CFA-induced TMJOA mice, and the pathology of TMJOA animals with and without Resatorvid treatment was examined by H&E, Safranin-O/Fast Green, and TRAP staining, as well as micro-CT, immunohistochemistry, and immunofluorescence. The impact of Resatorvid on chondrocyte pyroptosis and macrophage inflammation was further investigated using ATDC5 chondrocytes and RAW264.7 macrophages pretreated with relevant antagonists. RESULTS: CFA-induced TMJOA mice revealed remarkable synovial inflammation, together with a time course of cartilage degradation and bone destruction, with TLR4 elevated in the synovium and condylar cartilage. Prophylactic treatment with Resatorvid mitigated synovial inflammation, cartilage degeneration, and bone destruction in CFA-induced TMJOA mice and downregulated MyD88/NF-κB expression. Ex vivo studies demonstrated that Resatorvid treatment alleviated NOD-like receptor protein 3 (NLRP3)-mediated chondrocyte pyroptosis and degeneration and relieved macrophage inflammation by preventing reactive oxygen species (ROS) production through NLRP3 signaling. CONCLUSION: Prophylactic treatment with Resatorvid alleviates TMJOA pathology by inhibiting chondrocyte pyroptosis and degeneration, as well as ROS-induced macrophage inflammation, through TLR4/MyD88/NF-κB/NLRP3.


Asunto(s)
Condrocitos , Osteoartritis , Ratones , Animales , Condrocitos/metabolismo , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Piroptosis , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Inflamación/patología , Osteoartritis/metabolismo , Articulación Temporomandibular/metabolismo , Modelos Animales de Enfermedad
11.
J Orthop Surg Res ; 18(1): 817, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907921

RESUMEN

PURPOSE: Temporomandibular joint osteoarthritis (TMJOA) is a common disease that negatively affects the life quality of human beings. Circadian rhythm acts an important role in life activities. However, whether the clock genes are rhythmic expressed in mandibular condylar chondrocytes, or the clock genes have an effect on the progression of TMJOA remains unknown. In this study, we aim to explore expression of clock genes and regulatory mechanism of TMJOA in rat mandibular condylar chondrocytes. METHODS: After synchronized by dexamethasone, the expression of core clock genes Per1, Per2, Clock, Cry1, Cry2 and Bmal1 and cartilage matrix degrading factor gene Mmp13 were analyzed in mandibular condylar chondrocytes every 4 h with RT-qPCR. The mandibular condylar chondrocytes were stimulated with IL-1ß, and expression of Per1, Mmp13, P65 and p-P65 was assessed by RT-qPCR and Western blot. Sh-Per1 lentivirus was used to assess the effect of clock gene Per1 in IL-1ß-induced chondrocytes, and expression of Mmp13, P65 and p-P65 was measured. After establishing a rat TMJOA model using unilateral anterior crossbite (UAC), micro-CT, H & E, Alcian Blue & Nuclear Fast Red and Safranin O & Fast Green, cartilage thickness was utilized to assess the damage of cartilage and subchondral bone. Immunohistochemistry of PER1, MMP13 and P65 was performed in condylar sections. RESULTS: All core clock genes and Mmp13 were rhythmically expressed. And Mmp13 expression curve was closed in phase and amplitude with Per1. After stimulation with IL-1ß, the expression of MMP13, PER1 and P65 and ratio of p-P65/P65 increased in condylar chondrocytes. After Per1 was down-regulated in condylar chondrocytes, the expression of MMP13 and P65 and ratio of p-P65/P65 decreased. Compared with the condyles of Sham group, the bony parameters of UAC group were significantly worse. The thickness of cartilage in UAC group significantly reduced. The modified Mankin scores and the expression of PER1, MMP13 and P65 in cartilage of UAC group significantly increased compared with Sham group. CONCLUSION: Core clock genes and Mmp13 are rhythmic expressed in rat mandibular condylar chondrocytes. PER1 can regulate the expression of MMP13 through NF-κB pathway in IL-1ß-induced mandibular condylar chondrocytes.


Asunto(s)
FN-kappa B , Osteoartritis , Animales , Ratas , Condrocitos/metabolismo , Cóndilo Mandibular/metabolismo , Metaloproteinasa 13 de la Matriz/genética , Metaloproteinasa 13 de la Matriz/metabolismo , FN-kappa B/metabolismo , Osteoartritis/genética , Osteoartritis/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Articulación Temporomandibular/metabolismo
12.
Aging (Albany NY) ; 15(22): 13452-13470, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38032278

RESUMEN

AIMS: The acceleration of osteoarthritis (OA) development by chondrocytes undergoing ferroptosis has been observed. Plumbagin (PLB), known for its potent antioxidant and anti-inflammatory properties, has demonstrated promising potential in the treatment of OA. However, it remains unclear whether PLB can impede the progression of temporomandibular joint osteoarthritis (TMJOA) through the regulation of ferroptosis. The study aims to investigate the impact of ferroptosis on TMJOA and assess the ability of PLB to modulate the inhibitory effects of ferroptosis on TMJOA. MATERIALS AND METHODS: The study utilized an in vivo rat model of unilateral anterior crossbite (UAC)-induced TMJOA and an in vitro study of chondrocytes exposed to H2O2 to create an OA microenvironment. Various experiments including cell viability assessment, quantitative RT-PCR, western blot analysis, histology, and immunofluorescence were conducted to examine the impact of ferroptosis on TMJOA and evaluate the potential of PLB to mitigate the inhibitory effects of ferroptosis on TMJOA. Additionally, RNA-seq and bioinformatics analysis were performed to investigate the underlying mechanism by which PLB regulates ferroptosis in TMJOA. RESULTS: Fer-1 demonstrated its potential in mitigating the advancement of TMJOA through its inhibitory effects on ferroptosis and matrix degradation in chondrocytes, thereby substantiating the role of ferroptosis in the pathogenesis of TMJOA. Furthermore, the observed protective impact of PLB on cartilage implied that PLB can modulate the inhibition of ferroptosis in TMJOA by regulating the MAPK signaling pathways. CONCLUSIONS: PLB alleviates TMJOA progression by suppressing chondrocyte ferroptosis via MAPK pathways, indicating PLB to be a potential therapeutic strategy for TMJOA.


Asunto(s)
Cartílago Articular , Ferroptosis , Osteoartritis , Ratas , Animales , Condrocitos/metabolismo , Peróxido de Hidrógeno/farmacología , Cartílago Articular/metabolismo , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Transducción de Señal , Osteoartritis/metabolismo
13.
J Dent Res ; 102(13): 1498-1506, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37817544

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a degenerative disease with the cessation of matrix anabolism and aggravation of inflammation, which results in severe pain and impaired joint function. However, the mechanisms are not well understood. Circular RNAs (circRNAs) are reported to have various biological functions and participate in the development, diagnosis, prognosis, and treatment of different diseases. This study aimed to investigate the roles and mechanisms of circ-slain2 in TMJOA. We first established TMJOA mouse models and found circ-slain2 was lowly expressed in the cartilage of TMJOA through sequencing data. We observed that circ-slain2 is predominantly localized in the cytoplasm and downregulated in mouse condylar chondrocytes (mCCs) treated with tumor necrosis factor α (TNFα) and interferon γ (IFNγ). Micro-computed tomography and histological examination showed that intra-articular injection of circ-slain2 overexpressing adeno-associated virus could alleviate cartilage catabolism and synovial inflammation to relieve TMJOA in vivo. In addition, elevated circ-slain2 also showed anticatabolic and anti-inflammatory effects on IFNγ- and TNFα-stimulated mouse condylar chondrocytes (mCCs). Functional enrichment analysis indicated that protein processing in endoplasmic reticulum (ER) was associated with TMJOA, and further functional experiments confirmed that circ-slain2 could suppress ER stress in OA mCCs. RNA binding protein immunoprecipitation assay revealed an overt interaction between activating transcription factor 6 (ATF6) and circ-slain2. Inhibition of the expression of both ATF6 and circ-slain2 resulted in dilation of the ER and enhanced the expression of ER stress markers, whose ER stress level was higher than inhibition of ATF6 but lower than knockdown of circ-slain2 expression. Collectively, our research demonstrated that circ-slain2 could regulate ATF6 to relieve ER stress, reducing temporomandibular joint cartilage degradation and synovial inflammation. These findings provide prospects for developing novel osteoarthritis therapies based on circ-slain2 by focusing on reducing the inflammation of synovium and the imbalance between matrix synthesis and degradation.


Asunto(s)
Osteoartritis , Factor de Necrosis Tumoral alfa , Ratones , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Microtomografía por Rayos X , Cartílago/metabolismo , Articulación Temporomandibular/metabolismo , Inflamación/metabolismo , Osteoartritis/patología , Condrocitos/metabolismo
14.
Stem Cell Rev Rep ; 19(8): 2957-2979, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37751010

RESUMEN

The potential therapeutic role of the Dental Pulp Stem Cells Secretome (SECR) in a rat model of experimentally induced Temporomandibular Joint (TMJ) Osteoarthritis (OA) was evaluated. Proteomic profiling of the human SECR under specific oxygen tension (5% O2) and stimulation with Tumor Necrosis Factor-alpha (TNF-α) was performed. SECR and respective cell lysates (CL) samples were collected and subjected to SDS-PAGE, followed by LC-MS/MS analysis. The identified proteins were analyzed with Bioinformatic tools. The anti-inflammatory properties of SECR were assessed via an in vitro murine macrophages model, and were further validated in vivo, in a rat model of chemically-induced TMJ-OA by weekly recording of the head withdrawal threshold, the food intake, and the weight change, and radiographically and histologically at 4- and 8-weeks post-treatment. SECR analysis revealed the presence of 50 proteins that were enriched and/or statistically significantly upregulated compared to CL, while many of those proteins were involved in pathways related to "extracellular matrix organization" and "immune system". SECR application in vitro led to a significant downregulation on the expression of pro-inflammatory genes (MMP-13, MMP-9, MMP-3 and MCP-1), while maintaining an increased expression of IL-10 and IL-6. SECR application in vivo had a significant positive effect on all the clinical parameters, resulting in improved food intake, weight, and pain suppression. Radiographically, SECR application had a significant positive effect on trabecular bone thickness and bone density compared to the saline-treated group. Histological analysis indicated that SECR administration reduced inflammation, enhanced ECM and subchondral bone repair and regeneration, thus alleviating TMJ degeneration.


Asunto(s)
Osteoartritis , Proteómica , Ratas , Humanos , Ratones , Animales , Cromatografía Liquida , Secretoma , Espectrometría de Masas en Tándem , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología , Osteoartritis/terapia , Osteoartritis/genética , Células Madre/metabolismo
15.
J Mater Chem B ; 12(1): 112-121, 2023 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-37655721

RESUMEN

Inflammatory cytokines that are secreted into the spinal trigeminal nucleus caudalis (Sp5C) may augment inflammation and cause pain associated with temporomandibular joint disorders (TMD). In a two-step process, we attached triphenylphosphonium (TPP) to the surface of a cubic liposome metal-organic framework (MOF) loaded with ruthenium (Ru) nanozyme. The design targeted mitochondria and was designated Mito-Ru MOF. This structure scavenges free radicals and reactive oxygen species (ROS) and alleviates oxidative stress. The present study aimed to investigate the effects and mechanisms by which Mito-Ru MOF ameliorates TMD pain. Intra-temporomandibular joint (TMJ) injections of complete Freund's adjuvant (CFA) induced inflammatory pain for ≥10 d in the skin areas innervated by the trigeminal nerve. Tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), long non-coding RNA nuclear paraspeckle assembly transcript 1 (lncRNA NEAT1), and ROS also have been proved to be significantly upregulated in the Sp5C of TMD mice. Moreover, a single Mito-Ru MOF treatment alleviated TMD pain for 3 d and downregulated TNF-α, NF-κB, lncRNA NEAT1, and ROS. NF-κB knockdown downregulated NEAT1 in the TMD mice. Hence, Mito-Ru MOF inhibited the production of ROS and alleviated CFA-induced TMD pain via the TNF-α/NF-κB/NEAT1 pathway. Therefore, Mito-Ru MOF could effectively treat the pain related to TMD and other conditions associated with severe acute inflammatory activation.


Asunto(s)
FN-kappa B , ARN Largo no Codificante , Ratones , Animales , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Dolor/metabolismo , Dolor/patología , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología
16.
J Dent Res ; 102(10): 1141-1151, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37464762

RESUMEN

Temporomandibular joint osteoarthritis (TMJOA) is a common inflammatory disease that can cause pain, cartilage degradation, and subchondral bone loss. However, the key regulatory factors and new targets for the treatment of TMJOA have yet to be determined. Long noncoding RNAs (lncRNAs) have shown remarkable potential in regulating tissue homeostasis and disease development. The long intergenic RNA-erythroid prosurvival (lincRNA-EPS) is reported to be an effective inhibitor of inflammation, but its role in TMJOA is unexplored. Here, we found that lincRNA-EPS is downregulated and negatively correlated with inflammatory factors in the condyles of TMJOA mice. LincRNA-EPS knockout aggravated inflammation and tissue destruction after TMJOA modeling. The in vitro studies confirmed that loss of lincRNA-EPS facilitated inflammatory factor expression in condylar chondrocytes, while recovered expression of lincRNA-EPS showed anti-inflammatory effects. Mechanistically, RNA sequencing revealed that the inflammatory response pathway nuclear factor-kappa B (NF-κB) was mostly affected by lincRNA-EPS deficiency. Moreover, lincRNA-EPS was proved to effectively bind to serine/arginine-rich splicing factor 3 (SRSF3) and inhibit its function in pyruvate kinase isoform M2 (PKM2) formation, thus restraining the PKM2/NF-κB pathway and the expression of inflammatory factors. In addition, local injection of the lincRNA-EPS overexpression lentivirus significantly alleviated inflammation, cartilage degradation, and subchondral bone loss in TMJOA mice. Overall, lincRNA-EPS regulated the inflammatory process of condylar chondrocytes by binding to SRSF3 and showed translational application potential in the treatment of TMJOA.


Asunto(s)
Osteoartritis , ARN Largo no Codificante , Animales , Ratones , Condrocitos/metabolismo , Inflamación/metabolismo , FN-kappa B/metabolismo , Osteoartritis/genética , ARN Largo no Codificante/genética , Articulación Temporomandibular/metabolismo
17.
FASEB J ; 37(8): e23004, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37440279

RESUMEN

The superficial zone cells in mandibular condylar cartilage are proliferative. The present purpose was to delineate the relation of calcium-sensing receptor (CaSR) and parathyroid hormone-related peptide nuclear localization sequence (PTHrP87-139 ), and their role in the proliferation behaviors of the superficial zone cells. A gain- and loss-of-function strategy were used in an in vitro fluid flow shear stress (FFSS) model and an in vivo bilateral elevation bite model which showed mandibular condylar cartilage thickening. CaSR and PTHrP87-139 were modulated through treating the isolated superficial zone cells with activator/SiRNA and via deleting CaSR or parathyroid hormone-related peptide (PTHrP) gene in mice with the promoter gene of proteoglycan 4 (Prg4-CreERT2 ) in the tamoxifen-inducible pattern with or without additional injection of Cinacalcet, the CaSR agonist, or PTHrP87-139 peptide. FFSS stimulated CaSR and PTHrP expression, and accelerated proliferation of the Prg4-expressing superficial zone cells, in which process CaSR acted as an up-streamer of PTHrP. Proteoglycan 4 specific knockout of CaSR or PTHrP reduced the cartilage thickness, suppressed the proliferation and early differentiation of the superficial zone cells, and inhibited cartilage thickening and matrix production promoted by bilateral elevation bite. Injections of CaSR agonist Cinacalcet could not improve the phenotype caused by PTHrP mutation. Injections of PTHrP87-139 peptide rescued the cartilage from knockout of CaSR gene. CaSR modulates proliferation of the superficial zone cells in mandibular condylar cartilage through activation of PTHrP nuclear localization sequence. Our data support the therapeutic target of CaSR in promoting PTHrP production in superficial zone cartilage.


Asunto(s)
Proteína Relacionada con la Hormona Paratiroidea , Receptores Sensibles al Calcio , Ratones , Animales , Proteína Relacionada con la Hormona Paratiroidea/genética , Proteína Relacionada con la Hormona Paratiroidea/metabolismo , Receptores Sensibles al Calcio/genética , Receptores Sensibles al Calcio/metabolismo , Condrocitos/metabolismo , Cartílago/metabolismo , Articulación Temporomandibular/metabolismo , Proteoglicanos/metabolismo , Proliferación Celular
18.
Mol Neurobiol ; 60(11): 6264-6274, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37442857

RESUMEN

Pain is one of the main reasons for patients with temporomandibular joint (TMJ) disorders seeking medical care. However, there is no effective treatment yet as its mechanism remains unclear. Herein, we found that the injection of monoiodoacetate (MIA) into mice TMJs can induce typical joint pain as early as 3 days, accompanied by an increased percentage of calcitonin gene-related peptide positive (CGRP+) neurons and isolectin B4 positive (IB4+) in the trigeminal ganglions (TGs). Our previous study has discovered that alpha-kinase 1 (ALPK1) may be involved in joint pain. Here, we detected the expression of ALPK1 in neurons of TGs in wild-type (WT) mice, and it was upregulated after intra-TMJ injection of MIA. Meanwhile, the increased percentage of neurons in TGs expressing ALPK1 and CGRP or ALPK1 and IB4 was also demonstrated by the immunofluorescent double staining. Furthermore, after the MIA injection, ALPK1-/- mice exhibited attenuated pain behavior, as well as a remarkably decreased percentage of IB4+ neurons and an unchanged percentage of CGRP+ neurons, as compared with WT mice. In vitro assay showed that the value of calcium intensity was weakened in Dil+ neurons from ALPK1-/- mice of TMJ pain induced by the MIA injection, in relation to those from WT mice, while it was significantly enhanced with the incubation of recombinant human ALPK1 (rhA). Taken together, these results suggest that ALPK1 promotes mice TMJ pain induced by MIA through upregulation of the sensitization of IB4+ neurons in TGs. This study will provide a new potential therapeutic target for the treatment of TMJ pain.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Ganglio del Trigémino , Ratones , Humanos , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ganglio del Trigémino/metabolismo , Neuronas/metabolismo , Dolor/metabolismo , Articulación Temporomandibular/metabolismo , Artralgia/metabolismo , Proteínas Quinasas/metabolismo
19.
Small ; 19(37): e2301051, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37156747

RESUMEN

Condylar fibrocartilage with structural and compositional heterogeneity can efficiently orchestrate load-bearing and energy dissipation, making the temporomandibular joint (TMJ) survive high occlusion loads for a prolonged lifetime. How the thin condylar fibrocartilage can achieve efficient energy dissipation to cushion enormous stresses remains an open question in biology and tissue engineering. Here, three distinct zones in the condylar fibrocartilage are identified by analyzing the components and structure from the macro-and microscale to the nanoscale. Specific proteins are highly expressed in each zone related to its mechanics. The heterogeneity of condylar fibrocartilage can direct energy dissipation through the nano-micron-macro gradient spatial scale, by atomic force microscope (AFM), nanoindentation, dynamic mechanical analyzer assay (DMA), and the corresponding energy dissipation mechanisms are exclusive for each distinct zone. This study reveals the significance of the heterogeneity of condylar fibrocartilage in mechanical behavior and provides new insights into the research methods for cartilage biomechanics and the design of energy-dissipative materials.


Asunto(s)
Cóndilo Mandibular , Articulación Temporomandibular , Cóndilo Mandibular/metabolismo , Articulación Temporomandibular/metabolismo , Fibrocartílago/metabolismo , Ingeniería de Tejidos/métodos , Fenómenos Biomecánicos
20.
Cell Biol Int ; 47(7): 1183-1197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37021698

RESUMEN

Pannexin 3 (Panx3) is involved in regulation of the proliferation and differentiation in chondrocytes and pathological process in osteoarthritis, but its role and potential mechanism in temporomandibular joint osteoarthritis (TMJOA) are still unclear, which are thus explored in our research. We established TMJOA animal model and cell model. In vivo, after silencing Panx3, the pathological changes of condylar cartilage tissue were analyzed by tissue staining, while expressions of Panx3, P2X7 receptor (P2X7R), NLRP3, and cartilage matrix-related genes were measured by immunohistochemistry (for animal model) or immunofluorescence (for cell model), quantitative reverse-transcription polymerase chain reaction (qRT-PCR) or western blot. In addition, the activation of inflammation-related pathways was detected by qRT-PCR or western blot, and intracellular adenosine triphosphate (ATP) level was tested by ATP kit. The role of Panx3 in TMJOA was proved by loss- and gain-of-function assays. P2X7R antagonist was employed to verify the relationship between Panx3 and P2X7R. Panx3 silencing alleviated the damage of condyle cartilage tissue in TMJOA rats, and reduced expressions of Panx3, P2X7R, cartilage matrix degradation related-enzymes, and NLRP3 in condyle cartilage tissue. In TMJOA cell model, the expressions of Panx3, P2X7R, cartilage matrix degradation related-enzymes were increased, and inflammation-related pathways were activated, meanwhile interleukin-1ß treatment promoted the release of intracellular ATP to the extracellular space. The above-mentioned response was enhanced by Panx3 overexpression and reversed by Panx3 silencing. P2X7R antagonist reversed the regulation of Panx3 overexpression. In conclusion, Panx3 may activate P2X7R by releasing ATP to mediate inflammation and cartilage matrix degradation in TMJOA.


Asunto(s)
Cartílago Articular , Osteoartritis , Receptores Purinérgicos P2X7 , Animales , Ratas , Adenosina Trifosfato/metabolismo , Cartílago Articular/metabolismo , Condrocitos/metabolismo , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteoartritis/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Articulación Temporomandibular/metabolismo , Articulación Temporomandibular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...