Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 433
Filtrar
1.
Eur J Pharmacol ; 960: 176156, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38059445

RESUMEN

Asparagine synthetase (ASNS) is a crucial enzyme for the de novo biosynthesis of endogenous asparagine (Asn), and ASNS shows the positive relationship with the growth of several solid tumors. Most of ASNS inhibitors are analogs of transition-state in ASNS reaction, but their low cell permeability hinders their anticancer activity. Therefore, novel ASNS inhibitors with a new pharmacophore urgently need to be developed. In this study, we established and applied a system for in vitro screening of ASNS inhibitors, and found a promising unique bisabolane-type meroterpenoid molecule, bisabosqual A (Bis A), able to covalently modify K556 site of ASNS protein. Bis A targeted ASNS to suppress cell proliferation of human non-small cell lung cancer A549 cells and exhibited a synergistic effect with L-asparaginase (L-ASNase). Mechanistically, Bis A promoted oxidative stress and apoptosis, while inhibiting autophagy, cell migration and epithelial-mesenchymal transition (EMT), impeding cancer cell development. Moreover, Bis A induced negative feedback pathways containing the GCN2-eIF2α-ATF4, PI3K-AKT-mTORC1 and RAF-MEK-ERK axes, but combination treatment of Bis A and rapamycin/torin-1 overcame the potential drug resistance triggered by mTOR pathways. Our study demonstrates that ASNS inhibition is promising for cancer chemotherapy, and Bis A is a potential lead ASNS inhibitor for anticancer development.


Asunto(s)
Aspartatoamoníaco Ligasa , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Asparagina/farmacología , Asparagina/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Aspartatoamoníaco Ligasa/metabolismo , Células A549 , Fosfatidilinositol 3-Quinasas , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral , Proliferación Celular
2.
J Ethnopharmacol ; 300: 115626, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049653

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Moxibustion is a traditional medical intervention of traditional Chinese medicine. It refers to the direct or indirect application of ignited moxa wool made of mugwort leaves to acupuncture points or other specific parts of the body for either treating or preventing diseases. Moxibustion has been proven to be effective in treating skin lesions of psoriasis. AIM OF THE STUDY: This study was performed to elucidate molecular mechanisms underlying the effects of moxibustion treatment on imiquimod-induced psoriatic mice. MATERIALS AND METHODS: We established an imiquimod (IMQ)-induced psoriatic mice (Model) and assessed the effects of moxibustion (Moxi) treatment on skin lesions of psoriatic mice by the PASI scores and expressions of inflammation-related factors relative to normal control mice (NC). We then performed nuclear magnetic resonance (NMR)-based metabolomic analysis on the skin tissues of the NC, Model and Moxi-treated mice to address metabolic differences among the three groups. RESULTS: Moxi mice showed reduced PASI scores and decreased expressions of the pro-inflammatory cytokines IL-8, IL-17A and IL-23 relative to Model mice. Compared with the Model group, the NC and Moxi groups shared 9 characteristic metabolites and 4 significantly altered metabolic pathways except for taurine and hypotaurine metabolism uniquely identified in the NC group. To a certain extent, moxibustion treatment improved metabolic disorders of skin lesions of psoriatic mice by decreasing glucose, valine, asparagine, aspartate and alanine-mediated cell proliferation and synthesis of scaffold proteins, alleviating histidine-mediated hyperproliferation of blood vessels, and promoting triacylglycerol decomposition. CONCLUSIONS: This study reveals the molecular mechanisms underlying the effects of moxibustion treatment on the skin lesions of psoriasis, potentially improving the clinical efficacy of moxibustion.


Asunto(s)
Moxibustión , Psoriasis , Alanina/metabolismo , Alanina/farmacología , Alanina/uso terapéutico , Animales , Asparagina/metabolismo , Asparagina/farmacología , Asparagina/uso terapéutico , Ácido Aspártico/metabolismo , Ácido Aspártico/farmacología , Ácido Aspártico/uso terapéutico , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glucosa/metabolismo , Histidina/metabolismo , Histidina/farmacología , Histidina/uso terapéutico , Imiquimod , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Interleucina-23/farmacología , Interleucina-23/uso terapéutico , Interleucina-8/metabolismo , Espectroscopía de Resonancia Magnética , Ratones , Psoriasis/tratamiento farmacológico , Psoriasis/terapia , Piel , Taurina/metabolismo , Triglicéridos/metabolismo , Valina/metabolismo , Valina/farmacología , Valina/uso terapéutico
3.
Ecotoxicol Environ Saf ; 246: 114158, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36228358

RESUMEN

Increased production and environmental release of multi-walled carbon nanotubes (MWCNTs) increase soil exposure and potential risk to earthworms. However, MWCNT toxicity to earthworms remains unclear, with some studies identifying negative effects and others negligible effects. In this study, to determine whether exposure to MWCNTs negatively affects earthworms and to elucidate possible mechanisms of toxicity, earthworms were exposed to sublethal soil concentrations of MWCNTs (10, 50, and 100 mg/kg) for 28 days. Earthworm growth and reproduction, activities of cytochrome P450 (CYP) isoforms (1A2, 2C9, and 3A4) and antioxidant enzymes (superoxide dismutase (SOD), catalase (CAT), and glutathione-s-transferase (GST)), and metabolomics were determined. Effects of MWCNTs on earthworms depended on exposure concentration. Exposure to MWCNTs did not significantly affect growth and reproduction of individual earthworms. Exposure to 50 mg/kg MWCNTs significantly increased activities of CYP2C9, CYP3A4, SOD, CAT, and GST but clearly reduced levels of L-aspartate, L-asparagine, and glutamine. With exposure to 100 mg/kg MWCNTs, toxic effects on earthworms were observed, with significant inhibition in activities of CYP isoenzymes and SOD, significant reductions in L-aspartate, L-asparagine, glutamine, and tryptophan, and simultaneous accumulations of citrate, isocitrate, fumarate, 2-oxoglutarate, pyruvate, D-galactose, carbamoyl phosphate, formyl anthranilate, hypoxanthine, and xanthine. Results suggest that toxicity of MWCNTs to earthworms is associated with reduced detoxification capacity, excessive oxidative stress, and disturbance of multiple metabolic pathways, including amino acids metabolism, the tricarboxylic acid cycle, pyruvate metabolism, D-galactose metabolism, and purine metabolism. The study provides new insights to better understand and predict the toxicity of MWCNTs in soil.


Asunto(s)
Nanotubos de Carbono , Oligoquetos , Contaminantes del Suelo , Animales , Nanotubos de Carbono/toxicidad , Nanotubos de Carbono/química , Suelo , Glutamina , Galactosa/farmacología , Ácido Aspártico , Asparagina/metabolismo , Asparagina/farmacología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Contaminantes del Suelo/química , Glutatión Transferasa/metabolismo , Reproducción , Piruvatos/farmacología
4.
Int J Mol Sci ; 23(9)2022 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35563467

RESUMEN

Complex asparagine-linked glycosylation plays key roles in cellular functions, including cellular signaling, protein stability, and immune response. Previously, we characterized the appearance of a complex asparagine-linked glycosylated form of lysosome-associated membrane protein 1 (LAMP1) in the cerebellum of Npc1-/- mice. This LAMP1 form was found on activated microglia, and its appearance correlated both spatially and temporally with cerebellar Purkinje neuron loss. To test the importance of complex asparagine-linked glycosylation in NPC1 pathology, we generated NPC1 knock-out mice deficient in MGAT5, a key Golgi-resident glycosyl transferase involved in complex asparagine-linked glycosylation. Our results show that Mgat5-/-:Npc1-/- mice were smaller than Mgat5+/+:Npc1-/- mice, and exhibited earlier NPC1 disease onset and reduced lifespan. Western blot and lectin binding analyses of cerebellar extracts confirmed the reduction in complex asparagine-linked glycosylation, and the absence of the hyper-glycosylated LAMP1 previously observed. Western blot analysis of cerebellar extracts demonstrated reduced calbindin staining in Mgat5-/-:Npc1-/- mice compared to Mgat5+/+:Npc1-/- mutant mice, and immunofluorescent staining of cerebellar sections indicated decreased levels of Purkinje neurons and increased astrogliosis in Mgat5-/-:Npc1-/- mice. Our results suggest that reduced asparagine-linked glycosylation increases NPC1 disease severity in mice, and leads to the hypothesis that mutations in genes involved in asparagine-linked glycosylation may contribute to disease severity progression in individuals with NPC1. To examine this with respect to MGAT5, we analyzed 111 NPC1 patients for two MGAT5 SNPs associated with multiple sclerosis; however, we did not identify an association with NPC1 phenotypic severity.


Asunto(s)
N-Acetilglucosaminiltransferasas , Enfermedad de Niemann-Pick Tipo C , Animales , Asparagina/metabolismo , Asparagina/farmacología , Glicosilación , Humanos , Ratones , Ratones Endogámicos BALB C , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedad de Niemann-Pick Tipo C/metabolismo , Enfermedad de Niemann-Pick Tipo C/patología
5.
EMBO J ; 40(24): e108069, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34704268

RESUMEN

Brown and beige fat are specialized for energy expenditure by dissipating energy from glucose and fatty acid oxidation as heat. While glucose and fatty acid metabolism have been extensively studied in thermogenic adipose tissues, the involvement of amino acids in regulating adaptive thermogenesis remains little studied. Here, we report that asparagine supplementation in brown and beige adipocytes drastically upregulated the thermogenic transcriptional program and lipogenic gene expression, so that asparagine-fed mice showed better cold tolerance. In mice with diet-induced obesity, the asparagine-fed group was more responsive to ß3-adrenergic receptor agonists, manifesting in blunted body weight gain and improved glucose tolerance. Metabolomics and 13 C-glucose flux analysis revealed that asparagine supplement spurred glycolysis to fuel thermogenesis and lipogenesis in adipocytes. Mechanistically, asparagine stimulated the mTORC1 pathway, which promoted expression of thermogenic genes and key enzymes in glycolysis. These findings show that asparagine bioavailability affects glycolytic and thermogenic activities in adipose tissues, providing a possible nutritional strategy for improving systemic energy homeostasis.


Asunto(s)
Asparagina/farmacología , Glucólisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Termogénesis/efectos de los fármacos , Animales , Células Cultivadas , Frío , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Metabolómica , Ratones
6.
Angew Chem Int Ed Engl ; 60(41): 22207-22211, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34396662

RESUMEN

Peptidyl asparaginyl ligases (PALs) are powerful tools for peptide macrocyclization. Herein, we report that a derivative of Asn, namely Nγ -hydroxyasparagine or Asn(OH), is an unnatural P1 substrate of PALs. By Asn(OH)-mediated cyclization, we prepared cyclic peptides as new matrix metalloproteinase 2 (MMP2) inhibitors displaying the hydroxamic acid moiety of Asn(OH) as the key pharmacophore. The most potent cyclic peptide (Ki =2.8±0.5 nM) was built on the hyperstable tetracyclic scaffold of rhesus theta defensin-1. The Asn(OH) residue in the cyclized peptides can also be readily oxidized to Asp. By this approach, we synthesized several bioactive Asp-containing cyclic peptides (MCoTI-II, kB2, SFTI, and integrin-targeting RGD peptides) that are otherwise difficult targets for PAL-catalyzed cyclization owing to unfavorable kinetics of the P1-Asp substrates. This study demonstrates that substrate engineering is a useful strategy to expand the application of PAL ligation in the synthesis of therapeutic cyclic peptides.


Asunto(s)
Aminoácidos/farmacología , Asparagina/farmacología , Inhibidores Enzimáticos/farmacología , Péptido Sintasas/antagonistas & inhibidores , Péptidos Cíclicos/farmacología , Aminoácidos/química , Asparagina/química , Inhibidores Enzimáticos/química , Péptido Sintasas/metabolismo , Péptidos Cíclicos/química , Especificidad por Sustrato
7.
Biosci Rep ; 41(4)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33821987

RESUMEN

In the present study, we identified l-erythro-ß-hydroxyasparagine (l-ß-EHAsn) found abundantly in human urine, as a novel substrate of Zn2+-dependent d-serine dehydratase (DSD). l-ß-EHAsn is an atypical amino acid present in large amounts in urine but rarely detected in serum or most organs/tissues examined. Quantitative analyses of urinary l-ß-EHAsn in young healthy volunteers revealed significant correlation between urinary l-ß-EHAsn concentration and creatinine level. Further, for in-depth analyses of l-ß-EHAsn, we developed a simple three-step synthetic method using trans-epoxysuccinic acid as the starting substance. In addition, our research revealed a strong inhibitory effect of l-ß-EHAsn on mammalian serine racemase, responsible for producing d-serine, a co-agonist of the N-methyl-d-aspartate (NMDA) receptor involved in glutamatergic neurotransmission.


Asunto(s)
Asparagina/análogos & derivados , Inhibidores Enzimáticos/farmacología , L-Serina Deshidratasa/metabolismo , Racemasas y Epimerasas/antagonistas & inhibidores , Orina/química , Animales , Asparagina/química , Asparagina/farmacología , Asparagina/orina , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Succinatos/química
8.
Cell Metab ; 33(5): 1013-1026.e6, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33609439

RESUMEN

Mitochondrial respiration is critical for cell proliferation. In addition to producing ATP, respiration generates biosynthetic precursors, such as aspartate, an essential substrate for nucleotide synthesis. Here, we show that in addition to depleting intracellular aspartate, electron transport chain (ETC) inhibition depletes aspartate-derived asparagine, increases ATF4 levels, and impairs mTOR complex I (mTORC1) activity. Exogenous asparagine restores proliferation, ATF4 and mTORC1 activities, and mTORC1-dependent nucleotide synthesis in the context of ETC inhibition, suggesting that asparagine communicates active respiration to ATF4 and mTORC1. Finally, we show that combination of the ETC inhibitor metformin, which limits tumor asparagine synthesis, and either asparaginase or dietary asparagine restriction, which limit tumor asparagine consumption, effectively impairs tumor growth in multiple mouse models of cancer. Because environmental asparagine is sufficient to restore tumor growth in the context of respiration impairment, our findings suggest that asparagine synthesis is a fundamental purpose of tumor mitochondrial respiration, which can be harnessed for therapeutic benefit to cancer patients.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Asparagina/metabolismo , Mitocondrias/metabolismo , Animales , Asparagina/farmacología , Ácido Aspártico/deficiencia , Ácido Aspártico/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dieta/veterinaria , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/mortalidad , Neoplasias/patología , Nucleótidos/metabolismo , Tasa de Supervivencia
9.
Nat Cell Biol ; 23(1): 75-86, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33420490

RESUMEN

Nutrient availability is central for T-cell functions and immune responses. Here we report that CD8+ T-cell activation and anti-tumour responses are strongly potentiated by the non-essential amino acid Asn. Increased Asn levels enhance CD8+ T-cell activation and effector functions against tumour cells in vitro and in vivo. Conversely, restriction of dietary Asn, ASNase administration or inhibition of the Asn transporter SLC1A5 impairs the activity and responses of CD8+ T cells. Mechanistically, Asn does not directly alter cellular metabolic fluxes; it instead binds the SRC-family protein tyrosine kinase LCK and orchestrates LCK phosphorylation at Tyr 394 and 505, thereby leading to enhanced LCK activity and T-cell-receptor signalling. Thus, our findings reveal a critical and metabolism-independent role for Asn in the direct modulation of the adaptive immune response by controlling T-cell activation and efficacy, and further uncover that LCK is a natural Asn sensor signalling Asn sufficiency to T-cell functions.


Asunto(s)
Asparagina/farmacología , Linfocitos T CD8-positivos/inmunología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Pulmonares/prevención & control , Activación de Linfocitos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/inmunología , Melanoma Experimental/prevención & control , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Masculino , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Fosforilación , Transducción de Señal , Células Tumorales Cultivadas , Tirosina/metabolismo , Familia-src Quinasas/metabolismo
10.
Mol Biol Rep ; 47(9): 6749-6758, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32892308

RESUMEN

N-methyl-D-aspartate (NMDA) receptors, which are widely present in the central nervous system, have also been found to be up-regulated in a variety of cancer cells and tumors and they can play active roles in cancer cell growth regulation. NMDA receptor antagonists have been found to affect cancer cell viability and interfere with tumor growth. Moreover, cancer cells also have been shown to have elevated levels of some D-amino acids. Two human skin cell lines: Hs 895.T skin cancer and Hs 895.Sk skin normal cells were investigated. They were derived from the same patient to provide tumor and normal counterparts for comparative studies. The expression of specific NMDA receptors was confirmed for the first time in both skin cell lines. Dizocilpine (MK-801) and memantine, NMDA receptor channel blockers, were found to inhibit the growth of human skin cells by reducing or stopping NMDA receptor activity. Addition of D-Ser, D-Ala, or D-Asp, however, significantly reversed the antiproliferative effect on the human skin cells triggered by MK-801 or memantine. Even more interesting was the finding that the specific intracellular composition of a few relatively uncommon amino acids was selectively elevated in skin cancer cells when exposed to MK-801. It appears that a few specific and upregulated D-amino acids can reverse the drug-induced antiproliferative effect in skin cancer cells via the reactivation of NMDA receptors. This study provides a possible innovative anticancer therapy by acting on the D-amino acid pathway in cancer cells either blocking or activating their regulatory enzymes.


Asunto(s)
Aminoácidos/metabolismo , Proliferación Celular/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Fármacos Neuroprotectores/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Neoplasias Cutáneas/metabolismo , Alanina/metabolismo , Alanina/farmacología , Aminoácidos/farmacología , Asparagina/metabolismo , Asparagina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Femenino , Humanos , Memantina/farmacología , Persona de Mediana Edad , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Serina/metabolismo , Serina/farmacología
11.
Chemistry ; 26(32): 7219-7225, 2020 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-31984562

RESUMEN

Lack of new antibiotics and increasing antimicrobial resistance are among the main concerns of healthcare communities nowadays, and these concerns necessitate the search for novel antibacterial agents. Recently, we discovered the cystobactamids-a novel natural class of antibiotics with broad-spectrum antibacterial activity. In this work, we describe 1) a concise total synthesis of cystobactamid 507, 2) the identification of the bioactive conformation using noncovalently bonded rigid analogues, and 3) the first structure-activity relationship (SAR) study for cystobactamid 507 leading to new analogues with high metabolic stability, superior topoisomerase IIA inhibition, antibacterial activity and, importantly, stability toward the resistant factor AlbD. Deeper insight into the mode of action revealed that the cystobactamids employ DNA minor-groove binding as part of the drug-target interaction without showing significant intercalation. By designing a new analogue of cystobactamid 919-2, we finally demonstrated that these findings could be further exploited to obtain more potent hexapeptides against Gram-negative bacteria.


Asunto(s)
Antibacterianos/síntesis química , Asparagina/análogos & derivados , Bacterias Gramnegativas/efectos de los fármacos , Nitrocompuestos/química , Antibacterianos/química , Antibacterianos/farmacología , Asparagina/química , Asparagina/farmacología , Bacterias Gramnegativas/química , Pruebas de Sensibilidad Microbiana , Conformación Molecular , Nitrocompuestos/farmacología , Relación Estructura-Actividad
12.
Biotechnol Prog ; 36(2): e2946, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31823468

RESUMEN

Amino acid availability is a key factor that can be controlled to optimize the productivity of fed-batch cultures. To study amino acid limitation effects, a serum-free chemically defined basal medium was formulated to exclude the amino acids that became depleted in batch culture. The effect of limiting glutamine, asparagine, and cysteine on the cell growth, metabolism, antibody productivity, and product glycosylation was investigated in three Chinese hamster ovary (CHO) cell lines (CHO-DXB11, CHO-K1SV, and CHO-S). Cysteine limitation was detrimental to both cell proliferation and productivity for all three CHO cell lines. Glutamine limitation reduced growth but not cell specific productivity, whereas asparagine limitation had no significant effect on either growth or cell specific productivity. Neither glutamine nor asparagine limitation significantly affected antibody glycosylation. Replenishing the CHO-DXB11 culture with cysteine after 1 day of cysteine limitation allowed the cells to partially recover their growth and productivity. This recovery was not observed after 2 days of cysteine limitation. Based on these findings, a fed-batch protocol was developed using single or mixed amino acid supplementation. Although cell density and antibody concentration were lower compared to a commercial feed, the feeds based on cysteine supplementation yielded comparable cell specific productivity. Overall, this study showed that different amino acid limitations have varied effects on the performance of CHO cell cultures and that maintaining cysteine availability is a critical process parameter for the three cell lines investigated.


Asunto(s)
Asparagina/farmacología , Técnicas de Cultivo Celular por Lotes , Cisteína/farmacología , Glutamina/farmacología , Inmunoglobulina G/biosíntesis , Animales , Formación de Anticuerpos , Células CHO , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Cricetulus , Glicosilación , Humanos
13.
J Biol Chem ; 294(48): 18244-18255, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31641022

RESUMEN

The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1+ partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1+ resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.


Asunto(s)
Aspartato Aminotransferasas/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Mutación , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Arginina/farmacología , Asparagina/farmacología , Aspartato Aminotransferasas/metabolismo , Ácido Aspártico/farmacología , Citosol/enzimología , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Isoenzimas/genética , Isoenzimas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metionina Sulfoximina/farmacología , Nitrógeno/metabolismo , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Sirolimus/farmacología
14.
J Am Chem Soc ; 140(48): 16641-16649, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30422653

RESUMEN

To combat the rise of antimicrobial resistance, the discovery of new antibiotics is paramount. Albicidin and cystobactamid are related natural product antibiotics with potent activity against Gram-positive and, crucially, Gram-negative pathogens. AlbA has been reported to neutralize albicidin by binding it with nanomolar affinity. To understand this potential resistance mechanism, we determined structures of AlbA and its complex with albicidin. The structures revealed AlbA to be comprised of two domains, each unexpectedly resembling the multiantibiotic neutralizing protein TipA. Binding of the long albicidin molecule was shared pseudosymmetrically between the two domains. The structure also revealed an unexpected chemical modification of albicidin, which we demonstrate to be promoted by AlbA, and to reduce albicidin potency; we propose a mechanism for this reaction. Overall, our findings suggest that AlbA arose through internal duplication in an ancient TipA-like gene, leading to a new binding scaffold adapted to the sequestration of long-chain antibiotics.


Asunto(s)
Antibacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Asparagina/análogos & derivados , Asparagina/química , Asparagina/farmacología , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Ciclización , Farmacorresistencia Bacteriana Múltiple/fisiología , Evolución Molecular , Klebsiella oxytoca/química , Pruebas de Sensibilidad Microbiana , Mutación , Nitrocompuestos/química , Nitrocompuestos/farmacología , Compuestos Orgánicos/química , Compuestos Orgánicos/metabolismo , Compuestos Orgánicos/farmacología , Unión Proteica , Xanthomonas/química , Xanthomonas/metabolismo
15.
Int J Mol Sci ; 19(10)2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30301169

RESUMEN

As a genetically modified crop, transgenic soybean occupies the largest global scale with its food, nutritional, industrial, and pharmaceutical uses.Efficient transformation is a key factor for the improvement of genetically modified soybean. At present, the Agrobacterium-mediated method is primarily used for soybean transformation, but the efficiency of this method is still relatively low (below 5%) compared with rice (above 90%). In this study, we examined the influence of l-glutamine and/or l-asparagine on Agrobacterium-mediated transformation in soybean and explored the probable role in the process of Agrobacterium-mediated transformation. The results showed that when the amino acids l-glutamine and l-asparagine were added separately or together to the culture medium, the shoot induction frequency, elongation rate, and transformation frequency were improved. The combined effects of l-glutamine and l-asparagine were better than those of l-glutamine and l-asparagine alone. The 50 mg/L l-glutamine and 50 mg/L l-asparagine together can enhance the transformation frequency of soybean by attenuating the expression level of GmPRs (GmPR1, GmPR4, GmPR5, and GmPR10) and suppression of the plant defense response. The transgene was successfully transmitted to the T1 generation. This study will be useful in genetic engineering of soybean.


Asunto(s)
Agrobacterium tumefaciens/genética , Asparagina/farmacología , Medios de Cultivo/farmacología , Glutamina/farmacología , Glycine max/genética , Transformación Genética/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ingeniería Genética , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Plantas Modificadas Genéticamente/genética , Transgenes/genética
16.
Oxid Med Cell Longev ; 2018: 4235695, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30228854

RESUMEN

Excessive manganese (Mn) can accumulate in the striatum of the brain following overexposure. Oxidative stress is a well-recognized mechanism in Mn-induced neurotoxicity. It has been proven that glutathione (GSH) depletion is a key factor in oxidative damage during Mn exposure. However, no study has focused on the dysfunction of GSH synthesis-induced oxidative stress in the brain during Mn exposure. The objective of the present study was to explore the mechanism of Mn disruption of GSH synthesis via EAAC1 and xCT in vitro and in vivo. Primary neurons and astrocytes were cultured and treated with different doses of Mn to observe the state of cells and levels of GSH and reactive oxygen species (ROS) and measure mRNA and protein expression of EAAC1 and xCT. Mice were randomly divided into seven groups, which received saline, 12.5, 25, and 50 mg/kg MnCl2, 500 mg/kg AAH (EAAC1 inhibitor) + 50 mg/kg MnCl2, 75 mg/kg SSZ (xCT inhibitor) + 50 mg/kg MnCl2, and 100 mg/kg NAC (GSH rescuer) + 50 mg/kg MnCl2 once daily for two weeks. Then, levels of EAAC1, xCT, ROS, GSH, malondialdehyde (MDA), protein sulfhydryl, carbonyl, 8-hydroxy-2-deoxyguanosine (8-OHdG), and morphological and ultrastructural features in the striatum of mice were measured. Mn reduced protein levels, mRNA expression, and immunofluorescence intensity of EAAC1 and xCT. Mn also decreased the level of GSH, sulfhydryl, and increased ROS, MDA, 8-OHdG, and carbonyl in a dose-dependent manner. Injury-related pathological and ultrastructure changes in the striatum of mice were significantly present. In conclusion, excessive exposure to Mn disrupts GSH synthesis through inhibition of EAAC1 and xCT to trigger oxidative damage in the striatum.


Asunto(s)
Sistema de Transporte de Aminoácidos y+/genética , Astrocitos/metabolismo , Cloruros/farmacología , Regulación hacia Abajo/efectos de los fármacos , Transportador 3 de Aminoácidos Excitadores/genética , Glutatión/biosíntesis , Compuestos de Manganeso/farmacología , Neostriado/patología , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , 8-Hidroxi-2'-Desoxicoguanosina , Sistema de Transporte de Aminoácidos y+/metabolismo , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Asparagina/análogos & derivados , Asparagina/farmacología , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Transportador 3 de Aminoácidos Excitadores/metabolismo , Femenino , Glutatión/metabolismo , Masculino , Ratones , Modelos Biológicos , Neostriado/efectos de los fármacos , Neostriado/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Sulfasalazina/farmacología
17.
Autophagy ; 14(9): 1481-1498, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29956571

RESUMEN

Defects in basal autophagy limit the nutrient supply from recycling of intracellular constituents. Despite our understanding of the prosurvival role of macroautophagy/autophagy, how nutrient deprivation, caused by compromised autophagy, affects oncogenic KRAS-driven tumor progression is poorly understood. Here, we demonstrate that conditional impairment of the autophagy gene Atg5 (atg5-KO) extends the survival of KRASG12V-driven tumor-bearing mice by 38%. atg5-KO tumors spread more slowly during late tumorigenesis, despite a faster onset. atg5-KO tumor cells displayed reduced mitochondrial function and increased mitochondrial fragmentation. Metabolite profiles indicated a deficiency in the nonessential amino acid asparagine despite a compensatory overexpression of ASNS (asparagine synthetase), key enzyme for de novo asparagine synthesis. Inhibition of either autophagy or ASNS reduced KRASG12V-driven tumor cell proliferation, migration, and invasion, which was rescued by asparagine supplementation or knockdown of MFF (mitochondrial fission factor). Finally, these observations were reflected in human cancer-derived data, linking ASNS overexpression with poor clinical outcome in multiple cancers. Together, our data document a widespread yet specific asparagine homeostasis control by autophagy and ASNS, highlighting the previously unrecognized role of autophagy in suppressing the metabolic barriers of low asparagine and excessive mitochondrial fragmentation to permit malignant KRAS-driven tumor progression.


Asunto(s)
Autofagia , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Asparagina/farmacología , Aspartatoamoníaco Ligasa/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Metabolismo Energético , Humanos , Metabolómica , Ratones Noqueados , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Invasividad Neoplásica , Consumo de Oxígeno , Pronóstico , Neoplasias de las Glándulas Salivales/patología , Análisis de Supervivencia
18.
Prostate ; 78(2): 95-103, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29134671

RESUMEN

BACKGROUND: Androgen deprivation results in massive apoptosis in the prostate gland. Macrophages are actively engaged in phagocytosing epithelial cell corpses. However, it is unknown whether microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis (LAP) is involved and contribute to prevent inflammation. METHODS: Flow cytometry, RT-PCR and immunohistochemistry were used to characterize the macrophage subpopulation residing in the epithelial layer of the rat ventral prostate (VP) after castration. Stereology was employed to determine variations in the number of ED1 and ED2. Mice were treated with either chloroquine or L-asparagine to block autophagy. RESULTS: M1 (iNOS-positive) and M2 macrophages (MRC1+ and ARG1+) were not found in the epithelium at day 5 after castration. The percentage of CD68+ (ED1) and CD163+ (ED2) phenotypes increased after castration but only CD68+ cells were present in the epithelium. RT-PCR showed increased content of the autophagy markers Bcl1 and LC3 after castration. In addition, immunohistochemistry showed the presence of LC3+ and ATG5+ cells in the epithelium. Double immunohistochemistry showed these cells to be CD68+ /LC3+ , compatible with the LAP phenotype. LC3+ cells accumulate significantly after castration. Chloroquine and L-asparagine administration caused inflammation of the glands at day 5 after castration. CONCLUSIONS: CD68+ macrophages phagocytose apoptotic cell corpses and activate the LAP pathway, thereby contributing to the preservation of a non-inflammed microenvironment. Marked inflammation was detected when autophagy blockers were administered to castrated animals.


Asunto(s)
Asparagina/farmacología , Cloroquina/farmacología , Macrófagos/inmunología , Orquiectomía/efectos adversos , Fagocitosis , Próstata , Prostatitis/prevención & control , Andrógenos/metabolismo , Animales , Antiinflamatorios/farmacología , Antígenos CD/análisis , Antígenos de Diferenciación Mielomonocítica/análisis , Apoptosis/inmunología , Microambiente Celular/inmunología , Modelos Animales de Enfermedad , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Orquiectomía/métodos , Fagocitosis/efectos de los fármacos , Fagocitosis/inmunología , Próstata/inmunología , Próstata/patología , Neoplasias de la Próstata/cirugía , Prostatitis/etiología , Prostatitis/metabolismo , Ratas
19.
mBio ; 8(4)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28811348

RESUMEN

While glutamine is a nonessential amino acid that can be synthesized from glucose, some cancer cells primarily depend on glutamine for their growth, proliferation, and survival. Numerous types of cancer also depend on asparagine for cell proliferation. The underlying mechanisms of the glutamine and asparagine requirement in cancer cells in different contexts remain unclear. In this study, we show that the oncogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) accelerates the glutamine metabolism of glucose-independent proliferation of cancer cells by upregulating the expression of numerous critical enzymes, including glutaminase 2 (GLS2), glutamate dehydrogenase 1 (GLUD1), and glutamic-oxaloacetic transaminase 2 (GOT2), to support cell proliferation. Surprisingly, cell crisis is rescued only completely by supplementation with asparagine but minimally by supplementation with α-ketoglutarate, aspartate, or glutamate upon glutamine deprivation, implying an essential role of γ-nitrogen in glutamine and asparagine for cell proliferation. Specifically, glutamine and asparagine provide the critical γ-nitrogen for purine and pyrimidine biosynthesis, as knockdown of four rate-limiting enzymes in the pathways, including carbamoylphosphate synthetase 2 (CAD), phosphoribosyl pyrophosphate amidotransferase (PPAT), and phosphoribosyl pyrophosphate synthetases 1 and 2 (PRPS1 and PRPS2, respectively), suppresses cell proliferation. These findings indicate that glutamine and asparagine are shunted to the biosynthesis of nucleotides and nonessential amino acids from the tricarboxylic acid (TCA) cycle to support the anabolic proliferation of KSHV-transformed cells. Our results illustrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway.IMPORTANCE We have previously found that Kaposi's sarcoma-associated herpesvirus (KSHV) can efficiently infect and transform primary mesenchymal stem cells; however, the metabolic pathways supporting the anabolic proliferation of KSHV-transformed cells remain unknown. Glutamine and asparagine are essential for supporting the growth, proliferation, and survival of some cancer cells. In this study, we have found that KSHV accelerates glutamine metabolism by upregulating numerous critical metabolic enzymes. Unlike most cancer cells that primarily utilize glutamine and asparagine to replenish the TCA cycle, KSHV-transformed cells depend on glutamine and asparagine for providing γ-nitrogen for purine and pyrimidine biosynthesis. We identified four rate-limiting enzymes in this pathway that are essential for the proliferation of KSHV-transformed cells. Our results demonstrate a novel mechanism by which an oncogenic virus hijacks a metabolic pathway for cell proliferation and imply potential therapeutic applications in specific types of cancer that depend on this pathway.


Asunto(s)
Asparagina/metabolismo , Proliferación Celular , Glutamina/metabolismo , Herpesvirus Humano 8/fisiología , Neoplasias/patología , Neoplasias/virología , Nucleótidos/biosíntesis , Asparagina/farmacología , Aspartato Aminotransferasas/genética , Ácido Aspártico/farmacología , Proliferación Celular/efectos de los fármacos , Glutamato Deshidrogenasa/genética , Ácido Glutámico/farmacología , Glutaminasa/genética , Glutamina/deficiencia , Humanos , Redes y Vías Metabólicas , Neoplasias/fisiopatología , Nitrógeno/metabolismo
20.
Angew Chem Int Ed Engl ; 56(41): 12755-12759, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28731542

RESUMEN

The cystobactamids are a family of antibacterial natural products with unprecedented chemical scaffolds that are active against both Gram-positive and Gram-negative pathogens. Herein, we describe the first total synthesis of cystobactamid 919-2 from three fragments. Our convergent synthesis enabled both the confirmation of the correct structure and the determination of the absolute configuration of cystobactamid 919-2.


Asunto(s)
Antibacterianos/síntesis química , Asparagina/análogos & derivados , Productos Biológicos/síntesis química , Nitrocompuestos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Asparagina/síntesis química , Asparagina/química , Asparagina/farmacología , Bacterias/efectos de los fármacos , Infecciones Bacterianas/tratamiento farmacológico , Productos Biológicos/química , Productos Biológicos/farmacología , Técnicas de Química Sintética , Humanos , Modelos Moleculares , Conformación Molecular , Nitrocompuestos/química , Nitrocompuestos/farmacología , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...