Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Am J Physiol Cell Physiol ; 326(6): C1669-C1682, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646781

RESUMEN

We previously showed that the transaminase inhibitor, aminooxyacetic acid, reduced respiration energized at complex II (succinate dehydrogenase, SDH) in mitochondria isolated from mouse hindlimb muscle. The effect required a reduction in membrane potential with resultant accumulation of oxaloacetate (OAA), a potent inhibitor of SDH. To specifically assess the effect of the mitochondrial transaminase, glutamic oxaloacetic transaminase (GOT2) on complex II respiration, and to determine the effect in intact cells as well as isolated mitochondria, we performed respiratory and metabolic studies in wildtype (WT) and CRISPR-generated GOT2 knockdown (KD) C2C12 myocytes. Intact cell respiration by GOT2KD cells versus WT was reduced by adding carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) to lower potential. In mitochondria of C2C12 KD cells, respiration at low potential generated by 1 µM FCCP and energized at complex II by 10 mM succinate + 0.5 mM glutamate (but not by complex I substrates) was reduced versus WT mitochondria. Although we could not detect OAA, metabolite data suggested that OAA inhibition of SDH may have contributed to the FCCP effect. C2C12 mitochondria differed from skeletal muscle mitochondria in that the effect of FCCP on complex II respiration was not evident with ADP addition. We also observed that C2C12 cells, unlike skeletal muscle, expressed glutamate dehydrogenase, which competes with GOT2 for glutamate metabolism. In summary, GOT2 KD reduced C2C12 respiration in intact cells at low potential. From differential substrate effects, this occurred largely at complex II. Moreover, C2C12 versus muscle mitochondria differ in complex II sensitivity to ADP and differ markedly in expression of glutamate dehydrogenase.NEW & NOTEWORTHY Impairment of the mitochondrial transaminase, GOT2, reduces complex II (succinate dehydrogenase, SDH)-energized respiration in C2C12 myocytes. This occurs only at low inner membrane potential and is consistent with inhibition of SDH. Incidentally, we observed that C2C12 mitochondria compared with muscle tissue mitochondria differ in sensitivity of complex II respiration to ADP and in the expression of glutamate dehydrogenase.


Asunto(s)
Respiración de la Célula , Potencial de la Membrana Mitocondrial , Mitocondrias Musculares , Animales , Ratones , Aspartato Aminotransferasa Mitocondrial/metabolismo , Aspartato Aminotransferasa Mitocondrial/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular , Respiración de la Célula/efectos de los fármacos , Complejo II de Transporte de Electrones/metabolismo , Complejo II de Transporte de Electrones/genética , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias Musculares/metabolismo , Mitocondrias Musculares/enzimología , Mitocondrias Musculares/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/enzimología , Consumo de Oxígeno/efectos de los fármacos , Succinato Deshidrogenasa/metabolismo , Succinato Deshidrogenasa/genética , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/metabolismo
2.
Cancer Discov ; 12(10): 2237-2239, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36196574

RESUMEN

In this issue, Abrego and colleagues describe an unexpected role for the mitochondrial enzyme glutamic-oxaloacetic transaminase (GOT2) in pancreatic cancer, whereby it acts as a nuclear fatty acid transporter binding to and activating the PPARδ nuclear receptor. In turn, the GOT2-PPARδaxis drives immunosuppression by suppressing T cell-mediated antitumor immunity. See related article by Abrego et al., p. 2414 (3).


Asunto(s)
PPAR delta , Neoplasias Pancreáticas , Aspartato Aminotransferasa Mitocondrial/metabolismo , Aspartato Aminotransferasas/metabolismo , Ácidos Grasos , Humanos , Terapia de Inmunosupresión , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas
3.
Elife ; 112022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35815941

RESUMEN

Mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2) is part of the malate-aspartate shuttle, a mechanism by which cells transfer reducing equivalents from the cytosol to the mitochondria. GOT2 is a key component of mutant KRAS (KRAS*)-mediated rewiring of glutamine metabolism in pancreatic ductal adenocarcinoma (PDA). Here, we demonstrate that the loss of GOT2 disturbs redox homeostasis and halts proliferation of PDA cells in vitro. GOT2 knockdown (KD) in PDA cell lines in vitro induced NADH accumulation, decreased Asp and α-ketoglutarate (αKG) production, stalled glycolysis, disrupted the TCA cycle, and impaired proliferation. Oxidizing NADH through chemical or genetic means resolved the redox imbalance induced by GOT2 KD, permitting sustained proliferation. Despite a strong in vitro inhibitory phenotype, loss of GOT2 had no effect on tumor growth in xenograft PDA or autochthonous mouse models. We show that cancer-associated fibroblasts (CAFs), a major component of the pancreatic tumor microenvironment (TME), release the redox active metabolite pyruvate, and culturing GOT2 KD cells in CAF conditioned media (CM) rescued proliferation in vitro. Furthermore, blocking pyruvate import or pyruvate-to-lactate reduction prevented rescue of GOT2 KD in vitro by exogenous pyruvate or CAF CM. However, these interventions failed to sensitize xenografts to GOT2 KD in vivo, demonstrating the remarkable plasticity and differential metabolism deployed by PDA cells in vitro and in vivo. This emphasizes how the environmental context of distinct pre-clinical models impacts both cell-intrinsic metabolic rewiring and metabolic crosstalk with the TME.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Aspartato Aminotransferasa Mitocondrial/genética , Aspartato Aminotransferasa Mitocondrial/metabolismo , Carcinoma Ductal Pancreático/patología , Proteínas de Unión a Ácidos Grasos , Humanos , Ratones , NAD/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ácido Pirúvico/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Cancer Res ; 82(18): 3223-3235, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35895805

RESUMEN

Hepatocellular carcinoma (HCC) is one of the primary liver malignancies with a poor prognosis. Glutamic-oxaloacetic transaminase 2 (GOT2) is a highly tissue-specific gene in the liver, but the roles GOT2 plays in the progression of HCC remain unclear. Here, we report that GOT2 is downregulated in HCC tumor tissues and that low expression of GOT2 is associated with advanced progression and poor prognosis. In HCC cells, knockdown of GOT2 promoted proliferation, migration, and invasion. In mouse models of HCC, loss of GOT2 promoted tumor growth as well as hematogenous and intrahepatic metastasis. Mechanistically, silencing of GOT2 enhanced glutaminolysis, nucleotide synthesis, and glutathione synthesis by reprogramming glutamine metabolism to support the cellular antioxidant system, which activated the PI3K/AKT/mTOR pathway to contribute to HCC progression. Furthermore, HCC with low expression of GOT2 was highly dependent on glutamine metabolism and sensitive to the glutaminase inhibitor CB-839 in vitro and in vivo. Overall, GOT2 is involved in glutamine metabolic reprogramming to promote HCC progression and may serve as a therapeutic and diagnostic target for HCC. SIGNIFICANCE: Altered glutamine metabolism induced by GOT2 loss supports HCC growth and metastasis but confers a targetable vulnerability to glutaminase inhibitors.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Antioxidantes , Aspartato Aminotransferasa Mitocondrial/metabolismo , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Glutaminasa/genética , Glutaminasa/metabolismo , Glutamina/metabolismo , Glutatión/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
Transl Stroke Res ; 11(3): 418-432, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31473978

RESUMEN

The preservation of mitochondrial function is a major protective strategy for cerebral ischemic injuries. Previously, our laboratory demonstrated that protein kinase C epsilon (PKCε) promotes the synthesis of mitochondrial nicotinamide adenine dinucleotide (NAD+). NAD+ along with its reducing equivalent, NADH, is an essential co-factor needed for energy production from glycolysis and oxidative phosphorylation. Yet, NAD+/NADH are impermeable to the inner mitochondrial membrane and their import into the mitochondria requires the activity of specific shuttles. The most important neuronal NAD+/NADH shuttle is the malate-aspartate shuttle (MAS). The MAS has been implicated in synaptic function and is potentially dysregulated during cerebral ischemia. The aim of this study was to determine if metabolic changes induced by PKCε preconditioning involved regulation of the MAS. Using primary neuronal cultures, we observed that the activation of PKCε enhanced mitochondrial respiration and glycolysis in vitro. Conversely, inhibition of the MAS resulted in decreased oxidative phosphorylation and glycolytic capacity. We further demonstrated that activation of PKCε increased the phosphorylation of key components of the MAS in rat brain synaptosomal fractions. Additionally, PKCε increased the enzyme activity of glutamic oxaloacetic transaminase 2 (GOT2), an effect that was dependent on the import of PKCε into the mitochondria and phosphorylation of GOT2. Furthermore, PKCε activation was able to rescue decreased GOT2 activity induced by ischemia. These findings reveal novel protective targets and mechanisms against ischemic injury, which involves PKCε-mediated phosphorylation and activation of GOT2 in the MAS.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/metabolismo , Isquemia Encefálica/enzimología , NAD/metabolismo , Neuronas/enzimología , Proteína Quinasa C-epsilon/metabolismo , Animales , Malatos/metabolismo , Masculino , Fosforilación , Cultivo Primario de Células , Ratas Sprague-Dawley
6.
Cell Rep ; 26(9): 2257-2265.e4, 2019 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-30811976

RESUMEN

Cellular aspartate drives cancer cell proliferation, but signaling pathways that rewire aspartate biosynthesis to control cell growth remain largely unknown. Hypoxia-inducible factor-1α (HIF1α) can suppress tumor cell proliferation. Here, we discovered that HIF1α acts as a direct repressor of aspartate biosynthesis involving the suppression of several key aspartate-producing proteins, including cytosolic glutamic-oxaloacetic transaminase-1 (GOT1) and mitochondrial GOT2. Accordingly, HIF1α suppresses aspartate production from both glutamine oxidation as well as the glutamine reductive pathway. Strikingly, the addition of aspartate to the culture medium is sufficient to relieve HIF1α-dependent repression of tumor cell proliferation. Furthermore, these key aspartate-producing players are specifically repressed in VHL-deficient human renal carcinomas, a paradigmatic tumor type in which HIF1α acts as a tumor suppressor, highlighting the in vivo relevance of these findings. In conclusion, we show that HIF1α inhibits cytosolic and mitochondrial aspartate biosynthesis and that this mechanism is the molecular basis for HIF1α tumor suppressor activity.


Asunto(s)
Ácido Aspártico/biosíntesis , Subunidad alfa del Factor 1 Inducible por Hipoxia/fisiología , Neoplasias/metabolismo , Proteínas Supresoras de Tumor/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Ácido Aspártico/farmacología , Carcinoma de Células Renales/enzimología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glutamina/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Renales/enzimología , Masculino , Persona de Mediana Edad , Proteínas Mitocondriales/antagonistas & inhibidores , Neoplasias/patología , Oxidación-Reducción , Proteínas Supresoras de Tumor/metabolismo , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética
7.
Mol Oncol ; 13(4): 959-977, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30714292

RESUMEN

Breast cancer susceptibility gene 1 (BRCA1) has been implicated in modulating metabolism via transcriptional regulation. However, direct metabolic targets of BRCA1 and the underlying regulatory mechanisms are still unknown. Here, we identified several metabolic genes, including the gene which encodes glutamate-oxaloacetate transaminase 2 (GOT2), a key enzyme for aspartate biosynthesis, which are repressed by BRCA1. We report that BRCA1 forms a co-repressor complex with ZBRK1 that coordinately represses GOT2 expression via a ZBRK1 recognition element in the promoter of GOT2. Impairment of this complex results in upregulation of GOT2, which in turn increases aspartate and alpha ketoglutarate production, leading to rapid cell proliferation of breast cancer cells. Importantly, we found that GOT2 can serve as an independent prognostic factor for overall survival and disease-free survival of patients with breast cancer, especially triple-negative breast cancer. Interestingly, we also demonstrated that GOT2 overexpression sensitized breast cancer cells to methotrexate, suggesting a promising precision therapeutic strategy for breast cancer treatment. In summary, our findings reveal that BRCA1 modulates aspartate biosynthesis through transcriptional repression of GOT2, and provides a biological basis for treatment choices in breast cancer.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/genética , Ácido Aspártico/biosíntesis , Proteína BRCA1/metabolismo , Regiones Promotoras Genéticas , Proteínas Represoras/metabolismo , Animales , Aspartato Aminotransferasa Mitocondrial/metabolismo , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ácidos Cetoglutáricos/metabolismo , Metotrexato/farmacología , Ratones , Persona de Mediana Edad , Modelos Biológicos , Fenotipo , Unión Proteica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
8.
Am J Physiol Endocrinol Metab ; 315(4): E496-E510, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29763372

RESUMEN

Hepatic metabolic syndrome is associated with inflammation, as inflammation stimulates the reprogramming of nutrient metabolism and hepatic mitochondria-generated acetyl-CoA, but how acetyl-CoA affects the reprogramming of nutrient metabolism, especially glucose and fatty acids, in the condition of inflammation is still unclear. Here, we used an acute inflammation model in which pigs were injected with lipopolysaccharide (LPS) and found that hepatic glycolysis and fatty acid oxidation are both promoted. Acetyl-proteome profiling of LPS-infected pigs liver showed that inflammatory stress exacerbates the acetylation of mitochondrial proteins. Both mitochondrial glutamate oxaloacetate transaminase 2 (GOT2) and malate dehydrogenase 2 (MDH2) were acetylated, and the malate-aspartate shuttle (MAS) activity was stimulated to maintain glycolysis. With the use of 13C-carbon tracing in vitro, acetyl-CoA was found to be mainly supplied by lipid-derived fatty acid oxidation rather than glucose-derived pyruvate oxidative decarboxylation, while glucose was mainly used for lactate production in response to inflammatory stress. The results of the mitochondrial experiment showed that acetyl-CoA directly increases MDH2 and, in turn, the GOT2 acetylation level affects MAS activity. Treatment with palmitate in primary hepatocytes from LPS-injected pigs increased the hepatic production of acetyl-CoA, pyruvate, and lactate; MAS activity; and hepatic MDH2 and GOT2 hyperacetylation, while the deficiency of long-chain acetyl-CoA dehydrogenase resulted in the stabilization of these parameters. These observations suggest that acetyl-CoA produced by fatty acid oxidation promotes MAS activity and glycolysis via nonenzymatic acetylation during the inflammatory stress response.


Asunto(s)
Acetilcoenzima A/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Ácidos Grasos/metabolismo , Glucólisis , Inflamación/metabolismo , Hígado/metabolismo , Malato Deshidrogenasa/metabolismo , Mitocondrias Hepáticas/metabolismo , Acetilación , Animales , Ácido Aspártico/metabolismo , Isótopos de Carbono , Inflamación/inducido químicamente , Ácido Láctico/metabolismo , Lipopolisacáridos/farmacología , Hígado/efectos de los fármacos , Malatos/metabolismo , Oxidación-Reducción/efectos de los fármacos , Ácido Palmítico/farmacología , Ácido Pirúvico/metabolismo , Estrés Fisiológico , Sus scrofa , Porcinos
9.
Nat Commun ; 9(1): 1514, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666362

RESUMEN

Knowledge of stromal factors that have a role in the transcriptional regulation of metabolic pathways aside from c-Myc is fundamental to improvements in lymphoma therapy. Using a MYC-inducible human B-cell line, we observed the cooperative activation of STAT3 and NF-κB by IL10 and CpG stimulation. We show that IL10 + CpG-mediated cell proliferation of MYClow cells depends on glutaminolysis. By 13C- and 15N-tracing of glutamine metabolism and metabolite rescue experiments, we demonstrate that GOT2 provides aspartate and nucleotides to cells with activated or aberrant Jak/STAT and NF-κB signaling. A model of GOT2 transcriptional regulation is proposed, in which the cooperative phosphorylation of STAT3 and direct joint binding of STAT3 and p65/NF-κB to the proximal GOT2 promoter are important. Furthermore, high aberrant GOT2 expression is prognostic in diffuse large B-cell lymphoma underscoring the current findings and importance of stromal factors in lymphoma biology.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/genética , Regulación Neoplásica de la Expresión Génica , Linfoma de Células B Grandes Difuso/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción ReIA/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Linfocitos B/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Transformación Celular Neoplásica/genética , Reprogramación Celular/genética , Estudios de Cohortes , Femenino , Humanos , Linfoma de Células B Grandes Difuso/mortalidad , Linfoma de Células B Grandes Difuso/patología , Masculino , Fosforilación , Pronóstico , Regiones Promotoras Genéticas/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transducción de Señal/genética , Análisis de Supervivencia
10.
PLoS One ; 12(11): e0187215, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29107957

RESUMEN

Oxidative stress and mitochondrial dysfunction are important determinants of neurodegeneration in secondary progressive multiple sclerosis (SPMS). We previously showed that febuxostat, a xanthine oxidase inhibitor, ameliorated both relapsing-remitting and secondary progressive experimental autoimmune encephalomyelitis (EAE) by preventing neurodegeneration in mice. In this study, we investigated how febuxostat protects neuron in secondary progressive EAE. A DNA microarray analysis revealed that febuxostat treatment increased the CNS expression of several mitochondria-related genes in EAE mice, most notably including GOT2, which encodes glutamate oxaloacetate transaminase 2 (GOT2). GOT2 is a mitochondrial enzyme that oxidizes glutamate to produce α-ketoglutarate for the Krebs cycle, eventually leading to the production of adenosine triphosphate (ATP). Whereas GOT2 expression was decreased in the spinal cord during the chronic progressive phase of EAE, febuxostat-treated EAE mice showed increased GOT2 expression. Moreover, febuxostat treatment of Neuro2a cells in vitro ameliorated ATP exhaustion induced by rotenone application. The ability of febuxostat to preserve ATP production in the presence of rotenone was significantly reduced by GOT2 siRNA. GOT2-mediated ATP synthesis may be a pivotal mechanism underlying the protective effect of febuxostat against neurodegeneration in EAE. Accordingly, febuxostat may also have clinical utility as a disease-modifying drug in SPMS.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/metabolismo , Encefalomielitis Autoinmune Experimental/prevención & control , Febuxostat/uso terapéutico , Mitocondrias/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Aspartato Aminotransferasa Mitocondrial/genética , Línea Celular , Encefalomielitis Autoinmune Experimental/enzimología , Metabolismo Energético , Febuxostat/farmacología , Humanos , Ratones , Mitocondrias/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Rotenona/farmacología , Xantina Oxidasa/antagonistas & inhibidores
11.
Mol Med Rep ; 15(5): 3083-3087, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28358426

RESUMEN

To initiate hepatocyte differentiation in human induced pluripotent stem (iPS) cells, cells are cultured in a medium lacking glucose but supplemented with galactose (hepatocyte selection medium, HSM) or in medium supplemented with oncostatin M and small molecules (hepatocyte differentiation inducer, HDI). In the present study, 2­Deoxy­D­glucose (2DG), an analogue of glucose, was utilized instead of glucose deprivation and the effect of 2DG supplementation on iPS differentiation was examined. First, 201B7 cells, an iPS cell line, were cultured in HSM or HDI media for 2 days and then subjected to reverse transcription­quantitative polymerase chain reaction (RT­qPCR) in order to analyze expression levels of established hepatocyte markers, including cytosolic aspartate aminotransferase (AST), mitochondrial AST, alanine aminotransferase (ALT), and glycerol kinase. mRNA expression levels of mitochondrial AST, ALT, and glycogen synthase significantly increased following culture in HSM and HDI compared with ReproFF media. Cytosolic AST mRNA expression levels significantly increased following culture in HDI compared with ReproFF media, but not in HSM. To test the effect of 2DG on iPS differentiation, 201B7 cells were cultured in ReproFF, a feeder­free medium that retains pluripotency, supplemented with 2DG. Following 7 days of culture, the cells were subjected to RT­qPCR to analyze expression levels of α­fetoprotein (AFP), a marker of immature hepatocytes. AFP mRNA expression levels significantly increased with the addition of 0.1 µM 2DG in the media, and galactose addition acted synergistically with 2DG to further upregulate AFP expression. In conclusion, the present study demonstrated that hepatocyte differentiation was initiated in iPS cells cultured in HSM and HDI media and that 2DG could be used as a supplement instead of glucose deprivation to initiate hepatocyte differentiation in iPS cells.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Desoxiglucosa/farmacología , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Alanina Transaminasa/metabolismo , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Línea Celular , Galactosa/metabolismo , Glucosa/metabolismo , Glicerol Quinasa/metabolismo , Glucógeno Sintasa/metabolismo , Hepatocitos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Oncostatina M/farmacología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , alfa-Fetoproteínas/metabolismo
12.
Am J Clin Nutr ; 103(2): 422-34, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26791191

RESUMEN

BACKGROUND: Extensive epidemiologic studies have shown that cardiovascular disease and the metabolic syndrome (MetS) are associated with serum concentrations of liver enzymes; however, fundamental characteristics of this relation are currently unknown. OBJECTIVE: We aimed to explore the role of liver aminotransferases in nonalcoholic fatty liver disease (NAFLD) and MetS. DESIGN: Liver gene- and protein-expression changes of aminotransferases, including their corresponding isoforms, were evaluated in a case-control study of patients with NAFLD (n = 42), which was proven through a biopsy (control subjects: n = 10). We also carried out a serum targeted metabolite profiling to the glycolysis, gluconeogenesis, and Krebs cycle (n = 48) and an exploration by the next-generation sequencing of aminotransferase genes (n = 96). An in vitro study to provide a biological explanation of changes in the transcriptional level and enzymatic activity of aminotransferases was included. RESULTS: Fatty liver was associated with a deregulated liver expression of aminotransferases, which was unrelated to the disease severity. Metabolite profiling showed that serum aminotransferase concentrations are a signature of liver metabolic perturbations, particularly at the amino acid metabolism and Krebs cycle level. A significant and positive association between systolic hypertension and liver expression levels of glutamic-oxaloacetic transaminase 2 (GOT2) messenger RNA (Spearman R = 0.42, P = 0.03) was observed. The rs6993 located in the 3' untranslated region of the GOT2 locus was significantly associated with features of the MetS, including arterial hypertension [P = 0.028; OR: 2.285 (95% CI: 1.024, 5.09); adjusted by NAFLD severity] and plasma lipid concentrations. CONCLUSIONS: In the context of an abnormal hepatic triglyceride accumulation, circulating aminotransferases rise as a consequence of the need for increased reactions of transamination to cope with the liver metabolic derangement that is associated with greater gluconeogenesis and insulin resistance. Hence, to maintain homeostasis, the liver upregulates these enzymes, leading to changes in the amounts of amino acids released into the circulation.


Asunto(s)
Alanina Transaminasa/metabolismo , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Inducción Enzimática , Gluconeogénesis , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Alanina Transaminasa/sangre , Alanina Transaminasa/genética , Aminoácidos/metabolismo , Aspartato Aminotransferasa Citoplasmática/sangre , Aspartato Aminotransferasa Citoplasmática/genética , Aspartato Aminotransferasa Mitocondrial/sangre , Aspartato Aminotransferasa Mitocondrial/genética , Biomarcadores/sangre , Estudios de Casos y Controles , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Estudios de Cohortes , Estudios Transversales , Hígado Graso/etiología , Femenino , Humanos , Resistencia a la Insulina , Isoenzimas/sangre , Isoenzimas/genética , Isoenzimas/metabolismo , Hígado/patología , Hígado/fisiopatología , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Síndrome Metabólico/fisiopatología , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/patología , Enfermedad del Hígado Graso no Alcohólico/fisiopatología , Polimorfismo de Nucleótido Simple
13.
EMBO J ; 34(8): 1110-25, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25755250

RESUMEN

The malate-aspartate shuttle is indispensable for the net transfer of cytosolic NADH into mitochondria to maintain a high rate of glycolysis and to support rapid tumor cell growth. The malate-aspartate shuttle is operated by two pairs of enzymes that localize to the mitochondria and cytoplasm, glutamate oxaloacetate transaminases (GOT), and malate dehydrogenases (MDH). Here, we show that mitochondrial GOT2 is acetylated and that deacetylation depends on mitochondrial SIRT3. We have identified that acetylation occurs at three lysine residues, K159, K185, and K404 (3K), and enhances the association between GOT2 and MDH2. The GOT2 acetylation at these three residues promotes the net transfer of cytosolic NADH into mitochondria and changes the mitochondrial NADH/NAD(+) redox state to support ATP production. Additionally, GOT2 3K acetylation stimulates NADPH production to suppress ROS and to protect cells from oxidative damage. Moreover, GOT2 3K acetylation promotes pancreatic cell proliferation and tumor growth in vivo. Finally, we show that GOT2 K159 acetylation is increased in human pancreatic tumors, which correlates with reduced SIRT3 expression. Our study uncovers a previously unknown mechanism by which GOT2 acetylation stimulates the malate-aspartate NADH shuttle activity and oxidative protection.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/metabolismo , Ácido Aspártico/metabolismo , Carcinoma Ductal Pancreático/patología , Malatos/metabolismo , Neoplasias Pancreáticas/patología , Sirtuina 3/metabolismo , Acetilación , Animales , Transporte Biológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Proliferación Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , NAD/metabolismo , Oxidación-Reducción , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Sirtuina 3/genética
14.
J Microbiol Biotechnol ; 24(7): 998-1003, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24722375

RESUMEN

Aspartate aminotransferase (AST; E.C. 2.6.1.1), a vitamin B6-dependent enzyme, preferentially promotes the mutual transformation of aspartate and α-ketoglutarate to oxaloacetate and glutamate. It plays a key role in amino acid metabolism and has been widely recommended as a biomarker of liver and heart damage. Our study aimed to evaluate the extensive preparation of AST and its application in quality control in clinical laboratories. We describe a scheme to express and purify the 6His-AST fusion protein. An optimized sequence coding AST was synthesized and transformed into Escherichia coli BL21 (DE3) strain for protein expression. Ideally, the fusion protein has a volumetric productivity achieving 900 mg/l cultures. After affinity chromatography, the enzyme activity of purified AST reached 150,000 U/L. Commutability assessment between the engineered AST and standard AST from Roche suggested that the engineered AST was the better candidate for the reference material. Moreover, the AST showed high stability during long-term storage at -20ºC. In conclusion, the highly soluble 6His-tagged AST can become a convenient tool for supplying a much better and cheaper standard or reference material for the clinical laboratory.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/aislamiento & purificación , Aspartato Aminotransferasa Mitocondrial/metabolismo , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Aspartato Aminotransferasa Mitocondrial/química , Aspartato Aminotransferasa Mitocondrial/genética , Codón/genética , Estabilidad de Enzimas , Escherichia coli/genética , Histidina , Oligopéptidos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
15.
Neurosci Lett ; 563: 149-54, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24373994

RESUMEN

Sulfur dioxide (SO2) regulates many physiological processes. Little is known about its roles in neurological disorders. In this study, we investigated the role of endogenous SO2 in the development of febrile seizures (FS) and related brain damages. In the rat model of recurrent FS, we found that endogenous SO2 in the plasma and hippocampus was increased, accompanied by upregulation of aspartate amino-transferase 1 (AAT1) and AAT2, and neuronal apoptosis and mossy fiber sprouting (MFS) in the hippocampus. Preconditioning with low concentration of SO2 (1-10 µmol/kg) alleviated the neuronal damage, and attenuated neuronal apoptosis and MFS, whereas preconditioning with high concentration of SO2 (100 µmol/kg) or inhibition of AAT aggravated the neuronal damage, and promoted neuronal apoptosis and MFS in hippocampus of rats with recurrent FS. These data indicate that endogenous SO2 is involved in the development of FS and related brain damage. Preconditioning with low concentration of SO2 may protect neurons from toxicity caused by FS.


Asunto(s)
Hipocampo/efectos de los fármacos , Convulsiones Febriles/prevención & control , Dióxido de Azufre/farmacología , Animales , Apoptosis/efectos de los fármacos , Aspartato Aminotransferasa Citoplasmática/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Recurrencia , Convulsiones Febriles/metabolismo , Convulsiones Febriles/patología , Dióxido de Azufre/sangre , Dióxido de Azufre/metabolismo
16.
Biosci Biotechnol Biochem ; 77(8): 1645-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23924727

RESUMEN

Cisplatin is a widely used chemotherapeutic agent, but its use is limited by nephrotoxicity associated with mitochondrial dysfunction. Because its mechanisms are poorly understood, we aimed to identify the mitochondrial proteins targeted by cisplatin. We isolated renal mitochondrial proteins from Sprague-Dawley (SD) rats and performed cisplatin-affinity column chromatography. The proteins eluted were detected on SDS-PAGE and subjected to in-gel tryptic digestion and LC-MS/MS analysis. We identified glutamate oxaloacetate transaminase (GOT) and mitochondrial malate dehydrogenase (MDH). Next, we administered cisplatin intraperitoneally to SD rats to induce nephrotoxicity and assayed the activities of the enzymes. The results indicated that cisplatin caused a severe decrease in mitochondrial GOT activity on day 1 after cisplatin administration. Three d later, we also identified a decrease in mitochondrial MDH activity. Our results indicate that cisplatin binds to mitochondrial GOT and inhibits its activity, causing mitochondrial dysfunction and subsequent nephrotoxicity.


Asunto(s)
Antineoplásicos/administración & dosificación , Aspartato Aminotransferasa Mitocondrial/metabolismo , Cisplatino/administración & dosificación , Riñón/efectos de los fármacos , Animales , Antineoplásicos/toxicidad , Aspartato Aminotransferasa Mitocondrial/antagonistas & inhibidores , Aspartato Aminotransferasa Mitocondrial/química , Cisplatino/toxicidad , Malato Deshidrogenasa/química , Malato Deshidrogenasa/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/patología , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
17.
Biochem J ; 441(3): 945-53, 2012 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-22010850

RESUMEN

Friedreich's ataxia is a hereditary neurodegenerative disease caused by reduced expression of mitochondrial frataxin. Frataxin deficiency causes impairment in respiratory capacity, disruption of iron homoeostasis and hypersensitivity to oxidants. Although the redox properties of NAD (NAD+ and NADH) are essential for energy metabolism, only few results are available concerning homoeostasis of these nucleotides in frataxin-deficient cells. In the present study, we show that the malate-aspartate NADH shuttle is impaired in Saccharomyces cerevisiae frataxin-deficient cells (Δyfh1) due to decreased activity of cytosolic and mitochondrial isoforms of malate dehydrogenase and to complete inactivation of the mitochondrial aspartate aminotransferase (Aat1). A considerable decrease in the amount of mitochondrial acetylated proteins was observed in the Δyfh1 mutant compared with wild-type. Aat1 is acetylated in wild-type mitochondria and deacetylated in Δyfh1 mitochondria suggesting that inactivation could be due to this post-translational modification. Mutants deficient in iron-sulfur cluster assembly or lacking mitochondrial DNA also showed decreased activity of Aat1, suggesting that Aat1 inactivation was a secondary phenotype in Δyfh1 cells. Interestingly, deletion of the AAT1 gene in a wild-type strain caused respiratory deficiency and disruption of iron homoeostasis without any sensitivity to oxidative stress. Our results show that secondary inactivation of Aat1 contributes to the amplification of the respiratory defect observed in Δyfh1 cells. Further implication of mitochondrial protein deacetylation in the physiology of frataxin-deficient cells is anticipated.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/antagonistas & inhibidores , Transporte de Electrón/genética , Proteínas de Unión a Hierro/genética , Levaduras/metabolismo , Aspartato Aminotransferasa Mitocondrial/metabolismo , Aspartato Aminotransferasa Mitocondrial/fisiología , ADN Mitocondrial/genética , Transporte de Electrón/fisiología , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Hierro/metabolismo , Proteínas de Unión a Hierro/metabolismo , Proteínas Hierro-Azufre/deficiencia , Proteínas Hierro-Azufre/genética , Mitocondrias/enzimología , Mitocondrias/metabolismo , Familia de Multigenes , Organismos Modificados Genéticamente , Estrés Oxidativo/fisiología , Levaduras/enzimología , Levaduras/genética , Frataxina
18.
J Mol Biol ; 412(3): 412-22, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21803047

RESUMEN

Molecular interactions are necessary for proteins to perform their functions. The identification of a putative plasma membrane fatty acid transporter as mitochondrial aspartate aminotransferase (mAsp-AT) indicated that the protein must have a fatty acid binding site. Molecular modeling suggests that such a site exists in the form of a 500-Å(3) hydrophobic cleft on the surface of the molecule and identifies specific amino acid residues that are likely to be important for binding. The modeling and comparison with the cytosolic isoform indicated that two residues (Arg201 and Ala219) were likely to be important to the structure and function of the binding site. These residues were mutated to determine if they were essential to that function. Expression constructs with wild-type or mutated cDNAs were produced for bacteria and eukaryotic cells. Proteins expressed in Escherichia coli were tested for oleate binding affinity, which was decreased in the mutant proteins. 3T3 fibroblasts were transfected with expression constructs for both normal and mutated forms. Plasma membrane expression was documented by indirect immunofluorescence before [(3)H]oleic acid uptake kinetics were assayed. The V(max) for uptake was significantly increased by overexpression of the wild-type protein but changed little after transfection with mutated proteins, despite their presence on the plasma membrane. The hydrophobic cleft in mAsp-AT can serve as a fatty acid binding site. Specific residues are essential for normal fatty acid binding, without which fatty acid uptake is compromised. These results confirm the function of this protein as a fatty acid binding protein.


Asunto(s)
Aspartato Aminotransferasa Mitocondrial/química , Aspartato Aminotransferasa Mitocondrial/metabolismo , Ácidos Grasos/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Animales , Aspartato Aminotransferasa Mitocondrial/genética , Sitios de Unión , Línea Celular , Pollos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Ratas , Alineación de Secuencia
19.
Toxicol Sci ; 118(2): 686-95, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20889679

RESUMEN

Exposure during the organogenesis stage of the mouse embryo to the model teratogen, hydroxyurea (HU), induces curly tail and limb malformations. Oxidative stress contributes to the developmental toxicity of HU. Reactive oxygen species (ROS) interact with polyunsaturated bilipid membranes to form α,ß-unsaturated reactive aldehydes; 4-hydroxy-2-nonenal (4-HNE), one of the most cytotoxic of these aldehydes, covalently adducts with proteins, lipids, and nucleic acids. The goal of the current study is to determine if HU exposure of CD1 mice on gestation day 9 generates region-specific 4-HNE-protein adducts in the embryo and to identify the proteins targeted. The formation of 4-HNE-protein adducts was elevated in the caudal region of control embryos; HU exposure further increased 4-HNE-protein adduct formation in this area. Interestingly, three of the 4-HNE-modified proteins, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutamate oxaloacetate transaminase 2, and aldolase 1, A isoform, are involved in energy metabolism. The formation of 4-HNE-GAPDH protein adducts reduced GAPDH enzymatic activity by 20% and attenuated lactate production by 40%. Furthermore, HU exposure induced the nuclear translocation of GAPDH in the caudal region of exposed embryos; this nuclear translocation may be associated with the reactivation of oxidized proteins involved in DNA repair, such as apurinic/apyrimidinic endonuclease-1, and the stimulation of E1A-associated P300 protein/creb-binding protein (p300/CBP) activity, initiating cell death in a p53-dependent pathway. We propose that GAPDH is a redox-sensitive target in the embryo and may play a role in a stress response during development.


Asunto(s)
Embrión de Mamíferos/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hidroxiurea/toxicidad , Organogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Teratógenos/toxicidad , Anomalías Inducidas por Medicamentos/enzimología , Anomalías Inducidas por Medicamentos/etiología , Aldehídos/metabolismo , Animales , Aspartato Aminotransferasa Mitocondrial/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/embriología , Embrión de Mamíferos/enzimología , Fructosa-Bifosfato Aldolasa/metabolismo , Ratones , Organogénesis/fisiología , Translocación Genética
20.
Am J Physiol Endocrinol Metab ; 298(6): E1219-25, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20332361

RESUMEN

The hyperinsulism/hyperammonemia (HI/HA) syndrome is caused by glutamate dehydrogenase (GDH) gain-of-function mutations that reduce the inhibition by GTP, consequently increasing the activity of GDH in vivo. The source of the hyperammonemia in the HI/HA syndrome remains unclear. We examined the effect of systemic activation of GDH on ammonia metabolism in the rat. 2-Aminobicyclo[2,2,1]heptane-2-carboxylic acid (BCH) is a nonmetabolizable analog of the natural GDH allosteric activator leucine. A dose of 100 mumol BCH/100 g rat resulted in a mild systemic hyperammonemia. Using arterial-venous (A-V) differences, we exclude the liver, intestine, and skeletal muscle as major contributors to this BCH-induced hyperammonemia. However, renal ammonia output increased, as demonstrated by an increase in A-V difference for ammonia across the kidney in BCH-treated animals. Isolated renal cortical tubules incubated with BCH increased the rate of ammoniagenesis from glutamine by 40%. The flux through GDH increased more than twofold when BCH was added to renal mitochondria respiring on glutamine. The flux through glutaminase was not affected by BCH, whereas glutamate-oxaloacetate transaminase flux decreased when normalized to glutaminase flux. These data show that increased renal ammoniagenesis due to activation of GDH can explain the BCH-induced hyperammonemia. These results are discussed in relation to the organ source of the ammonia in the HI/HA syndrome as well as the role of GDH in regulating renal ammoniagenesis.


Asunto(s)
Glutamato Deshidrogenasa/metabolismo , Hiperamonemia/metabolismo , Hiperinsulinismo/metabolismo , Riñón/metabolismo , Animales , Aspartato Aminotransferasa Mitocondrial/metabolismo , Activación Enzimática , Glutamato Deshidrogenasa/genética , Glutaminasa/metabolismo , Hiperamonemia/enzimología , Hiperamonemia/orina , Hiperinsulinismo/enzimología , Técnicas In Vitro , Riñón/enzimología , Masculino , Mitocondrias/metabolismo , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...