Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.998
Filtrar
1.
J Agric Food Chem ; 72(19): 10970-10980, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708787

RESUMEN

Eleven alkaloids (1-11) including seven new ones, 1-7, were isolated from the solid fermentation of Aspergillus fumigatus VDL36, an endophytic fungus isolated from the leaves of Vaccinium dunalianum Wight (Ericaceae), a perennial evergreen shrub distributed across the Southwest regions of China, Myanmar, and Vietnam. Their structures were elucidated on the basis of extensive spectroscopic methods. The isolates were evaluated for in vitro antifungal activities against five phytopathogenic fungi (Fusarium oxysporum, Coriolus versicolor, Fusarium solani, Botrytis cinerea, Fusarium graminearum). As a result, the new compounds fumigaclavine I (1), 13-ethoxycyclotryprostatin A (5), 13-dehydroxycyclotryprostatin A (6), and 12ß-hydroxy-13-oxofumitremorgin C (7) exhibited antifungal activities with MIC values of 7.8-62.5 µg/mL which were comparable to the two positive controls ketoconazole (MIC = 7.8-31.25 µg/mL) and carbendazim (MIC = 1.95-7.8 µg/mL). Furthermore, compounds 1 and 5 demonstrated potent protective and curative effects against the tomato gray mold in vivo. Preliminary structure-activity relationships of the tested indole diketopiperazine alkaloids indicate that the introduction of a substituent group at position C-13 enhances their biological activities.


Asunto(s)
Alcaloides , Aspergillus fumigatus , Endófitos , Alcaloides/farmacología , Alcaloides/química , Aspergillus fumigatus/efectos de los fármacos , Endófitos/química , Estructura Molecular , Fusarium/efectos de los fármacos , Fungicidas Industriales/farmacología , Fungicidas Industriales/química , Hojas de la Planta/microbiología , Hojas de la Planta/química , Pruebas de Sensibilidad Microbiana , China , Enfermedades de las Plantas/microbiología
2.
Mycoses ; 67(5): e13732, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712846

RESUMEN

BACKGROUND: Triazole-resistant Aspergillus fumigatus (TRAF) isolates are a growing public health problem with worldwide distribution. Epidemiological data on TRAF is limited in Africa, particularly in West Africa. OBJECTIVES: This study aimed to screen for the environmental presence of TRAF isolates in the indoor air of two hospitals in Burkina Faso. MATERIALS AND METHODS: Air samples were collected in wards housing patients at risk for invasive aspergillosis, namely infectious diseases ward, internal medicine ward, nephrology ward, pulmonology ward, medical emergency ward and paediatric ward. Sabouraud Dextrose Agar supplemented with triazoles was used to screen the suspected TRAF isolates and EUCAST method to confirm the resistance of suspected isolates. Sequencing of cyp51A gene was used to identify the resistance mechanism of confirmed TRAF isolates. RESULTS: Of the 198 samples collected and analysed, 67 showed growth of A. fumigatus isolates. The prevalence of TRAF isolates was 3.23% (4/124). One TRAF isolate exhibited a pan-triazole resistance. Sequencing of cyp51A gene identified the TR34/L98H mutation for this pan-triazole resistant isolate. This study showed for the first time the circulation of the pan-azole resistant isolate harbouring the TR34/L98H mutation in Burkina Faso. CONCLUSIONS: These findings emphasise the need to map these TRAF isolates in all parts of Burkina Faso and to establish local and national continuous surveillance of environmental and clinical TRAF isolates in this country.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Sistema Enzimático del Citocromo P-450 , Farmacorresistencia Fúngica , Proteínas Fúngicas , Mutación , Triazoles , Aspergillus fumigatus/genética , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/aislamiento & purificación , Farmacorresistencia Fúngica/genética , Triazoles/farmacología , Humanos , Burkina Faso/epidemiología , Proteínas Fúngicas/genética , Antifúngicos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Pruebas de Sensibilidad Microbiana , Aspergilosis/microbiología , Aspergilosis/epidemiología , Microbiología del Aire
3.
Nat Commun ; 15(1): 3770, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704366

RESUMEN

Aspergillus fumigatus is the leading causative agent of life-threatening invasive aspergillosis in immunocompromised individuals. One antifungal class used to treat Aspergillus infections is the fungistatic echinocandins, semisynthetic drugs derived from naturally occurring fungal lipopeptides. By inhibiting beta-1,3-glucan synthesis, echinocandins cause both fungistatic stunting of hyphal growth and repeated fungicidal lysis of apical tip compartments. Here, we uncover an endogenous mechanism of echinocandin tolerance in A. fumigatus whereby the inducible oxylipin signal 5,8-diHODE confers protection against tip lysis via the transcription factor ZfpA. Treatment of A. fumigatus with echinocandins induces 5,8-diHODE synthesis by the fungal oxygenase PpoA in a ZfpA dependent manner resulting in a positive feedback loop. This protective 5,8-diHODE/ZfpA signaling relay is conserved among diverse isolates of A. fumigatus and in two other Aspergillus pathogens. Our findings reveal an oxylipin-directed growth program-possibly arisen through natural encounters with native echinocandin producing fungi-that enables echinocandin tolerance in pathogenic aspergilli.


Asunto(s)
Antifúngicos , Aspergilosis , Aspergillus fumigatus , Equinocandinas , Proteínas Fúngicas , Oxilipinas , Antifúngicos/farmacología , Equinocandinas/farmacología , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/antagonistas & inhibidores , Oxilipinas/metabolismo , Oxilipinas/farmacología , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Transducción de Señal/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
4.
Adv Biol (Weinh) ; 8(5): e2300545, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574244

RESUMEN

HapX and SreA are transcription factors that regulate the response of the fungus Aspergillus fumigatus to the availability of iron. During iron starvation, HapX represses genes involved in iron consuming pathways and upon a shift to iron excess, HapX activates these same genes. SreA blocks the expression of genes needed for iron uptake during periods of iron availability. Both proteins possess cysteine-rich regions (CRR) that are hypothesized to be necessary for the sensing of iron levels. However, the contribution of each of these domains to the function of the protein has remained unclear. Here, the ability of peptide analogs of each CRR is determined to bind an iron-sulfur cluster in vitro. UV-vis and resonance Raman (RR) spectroscopies reveal that each CRR is capable of coordinating a [2Fe-2S] cluster with comparable affinities. The iron-sulfur cluster coordinated to the CRR-B domain of HapX displays particularly high stability. The data are consistent with HapX and SreA mediating responses to cellular iron levels through the direct coordination of [2Fe-2S] clusters. The high stability of the CRR-B peptide may also find use as a starting point for the development of new green catalysts.


Asunto(s)
Cisteína , Proteínas Fúngicas , Proteínas Hierro-Azufre , Péptidos , Proteínas Hierro-Azufre/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Cisteína/metabolismo , Cisteína/química , Péptidos/metabolismo , Péptidos/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/química , Aspergillus fumigatus/genética , Hierro/metabolismo , Unión Proteica , Espectrometría Raman , Factores de Transcripción/metabolismo , Factores de Transcripción/química , Factores de Transcripción/genética
5.
Curr Microbiol ; 81(6): 156, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656548

RESUMEN

Aspergillus fumigatus and Fusarium solani infections have become severe health threat; both pathogens are considered a priority due to the increasing emergence of antifungal-resistant strains and high mortality rates. Therefore, the discovery of new therapeutic strategies has become crucial. In this study, we evaluated the antifungal and antivirulence effects of vanillin and tannic acid against Aspergillus fumigatus and Fusarium solani. The minimum inhibitory concentrations of the compounds were determined by the microdilution method in RPMI broth in 96-well microplates according to CLSI. Conidial germination, protease production, biofilm formation, and in vivo therapeutic efficacy assays were performed. The results demonstrated that vanillin and tannic acid had antifungal activity against Aspergillus fumigatus, while tannic acid only exhibited antifungal activity against Fusarium solani. We found that vanillin and tannic acid inhibited conidial germination and secreted protease production and biofilm formation of the fungal pathogens using sub-inhibitory concentrations. Besides, vanillin and tannic acid altered the fungal membrane permeability, and both compounds showed therapeutic effect against aspergillosis and fusariosis in an infection model in Galleria mellonella larvae. Our results highlight the antivirulence effect of vanillin and tannic acid against priority pathogenic fungi as a possible therapeutic alternative for human fungal infections.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Benzaldehídos , Biopelículas , Fusarium , Pruebas de Sensibilidad Microbiana , Polifenoles , Taninos , Benzaldehídos/farmacología , Fusarium/efectos de los fármacos , Taninos/farmacología , Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Animales , Aspergilosis/microbiología , Aspergilosis/tratamiento farmacológico , Virulencia/efectos de los fármacos , Larva/microbiología , Larva/efectos de los fármacos , Fusariosis/tratamiento farmacológico , Fusariosis/microbiología , Esporas Fúngicas/efectos de los fármacos , Mariposas Nocturnas/microbiología , Mariposas Nocturnas/efectos de los fármacos
6.
Molecules ; 29(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38611934

RESUMEN

Spirotryprostatin alkaloids, a class of alkaloids with a unique spirocyclic indoledionepiperazine structure, were first extracted from the fermentation broth of Aspergillus fumigatus and have garnered significant attention in the fields of biology and pharmacology. The investigation into the pharmacological potential of this class of alkaloids has unveiled promising applications in drug discovery and development. Notably, certain spirotryprostatin alkaloids have demonstrated remarkable anti-cancer activity, positioning them as potential candidates for anti-tumor drug development. In recent years, organic synthetic chemists have dedicated efforts to devise efficient and viable strategies for the total synthesis of spirotryprostatin alkaloids, aiming to meet the demands within the pharmaceutical domain. The construction of the spiro-C atom within the spirotryprostatin scaffold and the chirality control at the spiro atomic center emerge as pivotal aspects in the synthesis of these compounds. This review categorically delineates the synthesis of spirotryprostatin alkaloids based on the formation mechanism of the spiro-C atom.


Asunto(s)
Alcaloides , Fermentación , Aspergillus fumigatus , Descubrimiento de Drogas
7.
J Med Chem ; 67(8): 6238-6252, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38598688

RESUMEN

Thirty-one novel albaconazole derivatives were designed and synthesized based on our previous work. All compounds exhibited potent in vitro antifungal activities against seven pathogenic fungi. Among them, tetrazole compound D2 was the most potent antifungal with MIC values of <0.008, <0.008, and 2 µg/mL against Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus, respectively, the three most common and critical priority pathogenic fungi. In addition, compound D2 also exhibited potent activity against fluconazole-resistant C. auris isolates. Notably, compound D2 showed a lower inhibitory activity in vitro against human CYP450 enzymes as well as a lower inhibitory effect on the hERG K+ channel, indicating a low risk of drug-drug interactions and QT prolongation. Moreover, with improved pharmacokinetic profiles, compound D2 showed better in vivo efficacy than albaconazole at reducing fungal burden and extending the survival of C. albicans-infected mice. Taken together, compound D2 will be further investigated as a promising candidate.


Asunto(s)
Antifúngicos , Candida albicans , Cryptococcus neoformans , Pruebas de Sensibilidad Microbiana , Tetrazoles , Antifúngicos/farmacología , Antifúngicos/síntesis química , Antifúngicos/química , Antifúngicos/uso terapéutico , Tetrazoles/farmacología , Tetrazoles/química , Tetrazoles/síntesis química , Tetrazoles/farmacocinética , Tetrazoles/uso terapéutico , Animales , Humanos , Candida albicans/efectos de los fármacos , Ratones , Cryptococcus neoformans/efectos de los fármacos , Relación Estructura-Actividad , Aspergillus fumigatus/efectos de los fármacos , Descubrimiento de Drogas , Farmacorresistencia Fúngica/efectos de los fármacos , Candidiasis/tratamiento farmacológico , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Inhibidores Enzimáticos del Citocromo P-450/síntesis química , Inhibidores Enzimáticos del Citocromo P-450/química , Sistema Enzimático del Citocromo P-450/metabolismo
8.
J Infect Dev Ctries ; 18(3): 473-479, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38635625

RESUMEN

INTRODUCTION: Candida albicans and Aspergillus fumigatus are two important agents of Healthcare-associated infections. This study aimed to evaluate the antifungal activity of ozone (O3) gas produced by two commercial devices against cultures of these two species. METHODOLOGY: Sterile plastic plates were inoculated with C. albicans and A. fumigatus and placed on a countertop at three distances (30 cm, 1 m, and 2 m) and three positions in relation to the wall (near, middle, and away), considering the source of O3. Plates were exposed to O3 for one hour and incubated. After incubation, the counting of colony-forming units was performed. As a control, an inoculated plate was incubated, without being exposed to O3. Tests were carried out with two different devices (namely, Mod.I and Mod.II), with the air conditioner on and off, in triplicate. RESULTS: Both devices showed antifungal activity. Mod. I presented better results, due to a higher flow rate. The best activity was on plates at 30 cm, middle position. Contrarily, on plates at 2m, near the wall, the inhibition activity was lower. The best results were obtained with the air conditioner off. Candida albicans was more sensitive to O3 than A. fumigatus. CONCLUSIONS: This method of decontamination by O3 gas shows potential due to its fast and easy execution. The establishment of new protocols for hygiene and hospital disinfection using this approach should be considered, which may reduce environmental contamination by fungi and, consequently, the burden of fungal infections.


Asunto(s)
Candida albicans , Micosis , Aspergillus fumigatus , Antifúngicos/farmacología , Pruebas de Sensibilidad Microbiana
9.
Appl Environ Microbiol ; 90(4): e0178223, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38557086

RESUMEN

Aspergillus fumigatus is an important global fungal pathogen of humans. Azole drugs are among the most effective treatments for A. fumigatus infection. Azoles are also widely used in agriculture as fungicides against fungal pathogens of crops. Azole-resistant A. fumigatus has been increasing in Europe and Asia for two decades where clinical resistance is thought to be driven by agricultural use of azole fungicides. The most prevalent mechanisms of azole resistance in A. fumigatus are tandem repeats (TR) in the cyp51A promoter coupled with mutations in the coding region which result in resistance to multiple azole drugs (pan-azole resistance). Azole-resistant A. fumigatus has been isolated from patients in the United States (U.S.), but little is known about its environmental distribution. To better understand the distribution of azole-resistant A. fumigatus in the U.S., we collected isolates from agricultural sites in eight states and tested 202 isolates for sensitivity to azoles. We found azole-resistant A. fumigatus in agricultural environments in seven states showing that it is widespread in the U.S. We sequenced environmental isolates representing the range of U.S. sample sites and compared them with publicly available environmental worldwide isolates in phylogenetic, principal component, and ADMIXTURE analyses. We found worldwide isolates fell into three clades, and TR-based pan-azole resistance was largely in a single clade that was strongly associated with resistance to multiple agricultural fungicides. We also found high levels of gene flow indicating recombination between clades highlighting the potential for azole-resistance to continue spreading in the U.S.IMPORTANCEAspergillus fumigatus is a fungal pathogen of humans that causes over 250,000 invasive infections each year. It is found in soils, plant debris, and compost. Azoles are the first line of defense antifungal drugs against A. fumigatus. Azoles are also used as agricultural fungicides to combat other fungi that attack plants. Azole-resistant A. fumigatus has been a problem in Europe and Asia for 20 years and has recently been reported in patients in the United States (U.S.). Until this study, we did not know much about azole-resistant A. fumigatus in agricultural settings in the U.S. In this study, we isolated azole-resistant A. fumigatus from multiple states and compared it to isolates from around the world. We show that A. fumigatus which is resistant to azoles and to other strictly agricultural fungicides is widespread in the U.S.


Asunto(s)
Aspergillus fumigatus , Fungicidas Industriales , Humanos , Estados Unidos , Fungicidas Industriales/farmacología , Azoles/farmacología , Filogenia , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana
10.
Invest Ophthalmol Vis Sci ; 65(4): 31, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38635243

RESUMEN

Purpose: The poor visual outcomes associated with fungal keratitis (FK) underscore a need to identify fungal pathways that can serve as novel antifungal targets. In this report, we investigated whether hypoxia develops in the FK cornea and, by extension, if fungal hypoxia adaptation is essential for virulence in this setting. Methods: C57BL/6J mice were inoculated with Aspergillus fumigatus and Fusarium solani var. petroliphilum via topical overlay or intrastromal injection. At various time points post-inoculation (p.i.), animals were injected with pimonidazole for the detection of tissue hypoxia through immunofluorescence imaging. The A. fumigatus srbA gene was deleted through Cas9-mediated homologous recombination and its virulence was assessed in the topical infection model using slit-lamp microscopy and optical coherence tomography (OCT). Results: Topical inoculation with A. fumigatus resulted in diffuse pimonidazole staining across the epithelial and endothelial layers within 6 hours. Stromal hypoxia was evident by 48 hours p.i., which corresponded to leukocytic infiltration. Intrastromal inoculation with either A. fumigatus or F. solani similarly led to diffuse staining patterns across all corneal cell layers. The A. fumigatus srbA deletion mutant was unable to grow at oxygen levels below 3% in vitro, and corneas inoculated with the mutant failed to develop signs of corneal opacification, inflammation, or fungal burden. Conclusions: These results suggest that fungal antigen rapidly drives the development of corneal hypoxia, thus rendering fungal SrbA or related pathways essential for the establishment of infection. Such pathways may therefore serve as targets for novel antifungal intervention.


Asunto(s)
Úlcera de la Córnea , Infecciones Fúngicas del Ojo , Fusarium , Nitroimidazoles , Ratones , Animales , Ratones Endogámicos C57BL , Aspergillus fumigatus , Antifúngicos , Hipoxia
11.
Pestic Biochem Physiol ; 200: 105814, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38582586

RESUMEN

To explore active natural products against tobacco powdery mildew caused by Golovinomyces cichoracearum, an extract from the fermentation of endophytic Aspergillus fumigatus 0338 was investigated. The mechanisms of action for active compounds were also studied in detail. As a result, 14 indole alkaloid derivatives were isolated, with seven being newly discovered (1-7) and the remaining seven previously described (8-14). Notably, compounds 1-3 are rare linearly fused 6/6/5 tricyclic prenylated indole alkaloids, with asperversiamide J being the only known natural product of this kind. The isopentenyl substitutions at the 5-position in compounds 4 and 5 are also rare, with only compounds 1-(5-prenyl-1H-indol-3-yl)-propan-2-one (8) and 1-(6-methoxy-5-prenyl-1H-indol3-yl)-propan-2-one currently available. In addition, compounds 6 and 7 are new framework indole alkaloid derivatives bearing a 6-methyl-1,7-dihydro-2H-azepin-2-one ring. The purified compounds were evaluated for their activity against G. cichoracearum, and the results revealed that compounds 7 and 9 demonstrated obvious anti-G. cichoracearum activities with an inhibition rate of 82.6% and 85.2%, respectively, at a concentration of 250 µg/mL, these rates were better than that of the positive control agent, carbendazim (78.6%). The protective and curative effects of compounds 7 and 9 were also better than that of positive control, at the same concentration. Moreover, the mechanistic study showed that treatment with compound 9 significantly increased the structural tightness of tobacco leaves and directly affect the conidiospores of G. cichoracearum, thereby enhancing resistance. Compounds 7 and 9 could also induce systemic acquired resistance (SAR), directly regulating the expression of defense enzymes, defense genes, and plant semaphorins, which may further contribute to increased plant resistance. Based on the activity experiments and molecular dockings, the indole core structure may be the foundation of these compounds' anti-G. cichoracearum activity. Among them, the indole derivative parent structures of compounds 6, 7, and 9 exhibit strong effects. Moreover, the methoxy substitution in compound 7 can enhance their activity. By isolating and structurally identifying the above indole alkaloids, new candidates for anti-powdery mildew chemical screening were discovered, which could enhance the utilization of N. tabacum-derived fungi in pesticide development.


Asunto(s)
Alcaloides , Aspergillus fumigatus , Neopreno , Nicotiana , Alcaloides Indólicos/farmacología , Alcaloides Indólicos/química , Alcaloides/farmacología
12.
Nat Microbiol ; 9(5): 1325-1339, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589468

RESUMEN

Drug-resistant fungal infections pose a significant threat to human health. Dual-targeting compounds, which have multiple targets on a single pathogen, offer an effective approach to combat drug-resistant pathogens, although ensuring potent activity and high selectivity remains a challenge. Here we propose a dual-targeting strategy for designing antifungal compounds. We incorporate DNA-binding naphthalene groups as the hydrophobic moieties into the host defence peptide-mimicking poly(2-oxazoline)s. This resulted in a compound, (Gly0.8Nap0.2)20, which targets both the fungal membrane and DNA. This compound kills clinical strains of multidrug-resistant fungi including Candida spp., Cryptococcus neoformans, Cryptococcus gattii and Aspergillus fumigatus. (Gly0.8Nap0.2)20 shows superior performance compared with amphotericin B by showing not only potent antifungal activities but also high antifungal selectivity. The compound also does not induce antimicrobial resistance. Moreover, (Gly0.8Nap0.2)20 exhibits promising in vivo therapeutic activities against drug-resistant Candida albicans in mouse models of skin abrasion, corneal infection and systemic infection. This study shows that dual-targeting antifungal compounds may be effective in combating drug-resistant fungal pathogens and mitigating fungal resistance.


Asunto(s)
Antifúngicos , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Animales , Ratones , Humanos , Farmacorresistencia Fúngica Múltiple , Modelos Animales de Enfermedad , Cryptococcus neoformans/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Candida albicans/efectos de los fármacos , Naftalenos/farmacología , Naftalenos/química , Oxazoles/farmacología , Oxazoles/química , Candida/efectos de los fármacos , Micosis/tratamiento farmacológico , Micosis/microbiología
13.
Rev Alerg Mex ; 71(1): 56, 2024 Feb 01.
Artículo en Español | MEDLINE | ID: mdl-38683074

RESUMEN

OBJECTIVE: Conduct an in-silico assessment of potential molecular mimicry between human aquaporins, A. fumigatus, and diverse allergenic sources. METHODS: Amino acid sequences of human AQP3 and A. fumigatus aquaporin were compared through multiple alignments with 25 aquaporins from diverse allergenic sources. Phylogenetic analysis and homology-based modeling were executed, and the ElliPro server predicted conserved antigenic regions on 3D structures. RESULTS: Global identity among studied aquaporins was 32.6%, with a specific conserved local region at 71.4%. Five monophyletic clades (A-E) were formed, and Group B displayed the highest identity (95%), including 6 mammalian aquaporins, notably AQP3. A. fumigatus aquaporin exhibited the highest identity with Malassezia sympodialis (35%). Three linear and three discontinuous epitopes were identified in both human and A. fumigatus aquaporins. The Root Mean Square Deviation (RMSD) from overlapping aquaporin structures was 1.006. CONCLUSION: Identification of potential linear and conformational epitopes on human AQP3 suggests likely molecular mimicry with A. fumigatus aquaporins. High identity in a specific antigenic region indicates potential autoreactivity and a probable antigenic site involved in cross-reactivity. Validation through in vitro and in vivo studies is essential for further understanding and confirmation.


OBJETIVO: Realizar una evaluación in silico del posible mimetismo molecular entre las acuaporinas humanas, A. fumigatus y diversas fuentes alergénicas. MÉTODOS: Se compararon secuencias de aminoácidos de AQP3 humana y acuaporina de A. fumigatus mediante alineamientos múltiples con 25 acuaporinas de diversas fuentes alergénicas. Se ejecutaron análisis filogenéticos y modelos basados en homología, y el servidor ElliPro predijo regiones antigénicas preservadas en estructuras 3D. RESULTADOS: La identidad global entre las acuaporinas estudiadas fue del 32.6%, con una región local específica preservada en el 71.4%. Se formaron cinco clados monofiléticos (A-E), y el grupo B mostró la identidad más alta (95%), incluidas 6 acuaporinas de mamíferos, en particular AQP3. A. fumigatus aquaporin exhibió la mayor identidad con Malassezia sympodialis (35%). Se identificaron tres epítopos lineales y tres discontinuos en acuaporinas tanto humanas como de A. fumigatus. La desviación cuadrática media (RMSD) de las estructuras de acuaporinas superpuestas fue de 1,006. CONCLUSIÓN: La identificación de posibles epítopos lineales y conformacionales en AQP3 humano sugiere un probable mimetismo molecular con acuaporinas de A. fumigatus. La identidad alta en una región antigénica específica indica autorreactividad potencial y un sitio antigénico probable implicado en la reactividad cruzada. La validación mediante estudios in vitro e in vivo es desicivo para una mayor comprensión y confirmación.


Asunto(s)
Alérgenos , Acuaporina 3 , Acuaporinas , Aspergillus fumigatus , Simulación por Computador , Imitación Molecular , Aspergillus fumigatus/inmunología , Humanos , Acuaporinas/química , Acuaporinas/genética , Acuaporinas/metabolismo , Acuaporinas/inmunología , Acuaporina 3/metabolismo , Acuaporina 3/genética , Alérgenos/inmunología , Hipersensibilidad/inmunología , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Proteínas Fúngicas/genética , Secuencia de Aminoácidos , Filogenia , Epítopos/inmunología
14.
Nat Commun ; 15(1): 3642, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684680

RESUMEN

Triazole antifungals function as ergosterol biosynthesis inhibitors and are frontline therapy for invasive fungal infections, such as invasive aspergillosis. The primary mechanism of action of triazoles is through the specific inhibition of a cytochrome P450 14-α-sterol demethylase enzyme, Cyp51A/B, resulting in depletion of cellular ergosterol. Here, we uncover a clinically relevant secondary mechanism of action for triazoles within the ergosterol biosynthesis pathway. We provide evidence that triazole-mediated inhibition of Cyp51A/B activity generates sterol intermediate perturbations that are likely decoded by the sterol sensing functions of HMG-CoA reductase and Insulin-Induced Gene orthologs as increased pathway activity. This, in turn, results in negative feedback regulation of HMG-CoA reductase, the rate-limiting step of sterol biosynthesis. We also provide evidence that HMG-CoA reductase sterol sensing domain mutations previously identified as generating resistance in clinical isolates of Aspergillus fumigatus partially disrupt this triazole-induced feedback. Therefore, our data point to a secondary mechanism of action for the triazoles: induction of HMG-CoA reductase negative feedback for downregulation of ergosterol biosynthesis pathway activity. Abrogation of this feedback through acquired mutations in the HMG-CoA reductase sterol sensing domain diminishes triazole antifungal activity against fungal pathogens and underpins HMG-CoA reductase-mediated resistance.


Asunto(s)
Antifúngicos , Aspergillus fumigatus , Ergosterol , Proteínas Fúngicas , Hidroximetilglutaril-CoA Reductasas , Triazoles , Aspergillus fumigatus/efectos de los fármacos , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/genética , Antifúngicos/farmacología , Triazoles/farmacología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Ergosterol/metabolismo , Ergosterol/biosíntesis , Hidroximetilglutaril-CoA Reductasas/metabolismo , Hidroximetilglutaril-CoA Reductasas/genética , Aspergilosis/tratamiento farmacológico , Aspergilosis/microbiología , Farmacorresistencia Fúngica/genética , Farmacorresistencia Fúngica/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Pruebas de Sensibilidad Microbiana , Esterol 14-Desmetilasa/metabolismo , Esterol 14-Desmetilasa/genética , Humanos , Mutación
15.
Int Immunopharmacol ; 132: 112046, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38593508

RESUMEN

PURPOSE: To investigate the potential treatment of formononetin (FMN) on Aspergillus fumigatus (A. fumigatus) keratitis with anti-inflammatory and antifungal activity. METHODS: The effects of FMN on mice with A. fumigatus keratitis were evaluated through keratitis clinical scores, hematoxylin-eosin (HE) staining, and plate counts. The expression of pro-inflammatory factors was measured using RT-PCR, ELISA, or Western blot. The distribution of macrophages and neutrophils was explored by immunofluorescence staining. The antifungal properties of FMN were assessed through minimum inhibitory concentration (MIC), propidium iodide (PI) staining, fungal spore adhesion, and biofilm formation assay. RESULTS: In A. fumigatus keratitis mice, FMN decreased the keratitis clinical scores, macrophages and neutrophils migration, and the expression of TNF-α, IL-6, and IL-1ß. In A. fumigatus-stimulated human corneal epithelial cells (HCECs), FMN reduced the expression of IL-6, TNF-α, IL-1ß, and NLRP3. FMN also decreased the expression of thymic stromal lymphopoietin (TSLP) and thymic stromal lymphopoietin receptor (TSLPR). Moreover, FMN reduced the levels of reactive oxygen species (ROS) induced by A. fumigatus in HCECs. Furthermore, FMN inhibited A. fumigatus growth, prevented spore adhesion and disrupted fungal biofilm formation in vitro. In vivo, FMN treatment reduced the fungal load in mice cornea at 3 days post infection (p.i.). CONCLUSION: FMN demonstrated anti-inflammatory and antifungal properties, and exhibited a protective effect on mouse A. fumigatus keratitis.


Asunto(s)
Antiinflamatorios , Aspergilosis , Aspergillus fumigatus , Isoflavonas , Queratitis , Animales , Aspergillus fumigatus/efectos de los fármacos , Queratitis/tratamiento farmacológico , Queratitis/microbiología , Queratitis/inmunología , Aspergilosis/tratamiento farmacológico , Aspergilosis/inmunología , Isoflavonas/farmacología , Isoflavonas/uso terapéutico , Humanos , Ratones , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Citocinas/metabolismo , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Modelos Animales de Enfermedad , Especies Reactivas de Oxígeno/metabolismo , Femenino , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Biopelículas/efectos de los fármacos , Ratones Endogámicos C57BL , Córnea/patología , Córnea/efectos de los fármacos , Córnea/microbiología
16.
Appl Environ Microbiol ; 90(4): e0126023, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38501925

RESUMEN

The hydrophobic layer of Aspergillus conidia, composed of RodA, plays a crucial role in conidia transfer and immune evasion. It self-assembles into hydrophobic rodlets through intramolecular disulfide bonds. However, the secretory process of RodA and its regulatory elements remain unknown. Since protein disulfide isomerase (PDI) is essential for the secretion of many disulfide-bonded proteins, we investigated whether PDI is also involved in RodA secretion and assembly. By gene knockout and phenotypic analysis, we found that Pdi1, one of the four PDI-related proteins of Aspergillus fumigatus, determines the hydrophobicity and integrity of the rodlet layer of the conidia. Preservation of the thioredoxin-active domain of Pdi1 was sufficient to maintain conidial hydrophobicity, suggesting that Pdi1 mediates RodA assembly through its disulfide isomerase activity. In the absence of Pdi1, the disulfide mismatch of RodA in conidia may prevent its delivery from the inner to the outer layer of the cell wall for rodlet assembly. This was demonstrated using a strain expressing a key cysteine-mutated RodA. The dormant conidia of the Pdi1-deficient strain (Δpdi) elicited an immune response, suggesting that the defective conidia surface in the absence of Pdi1 exposes internal immunogenic sources. In conclusion, Pdi1 ensures the correct folding of RodA in the inner layer of conidia, facilitating its secretion into the outer layer of the cell wall and allowing self-assembly of the hydrophobic layer. This study has identified a regulatory element for conidia rodlet assembly.IMPORTANCEAspergillus fumigatus is the major cause of invasive aspergillosis, which is mainly transmitted by the inhalation of conidia. The spread of conidia is largely dependent on their hydrophobicity, which is primarily attributed to the self-assembly of the hydrophobic protein RodA on the cell wall. However, the mechanisms underlying RodA secretion and transport to the outermost layer of the cell wall are still unclear. Our study identified a critical role for Pdi1, a fungal protein disulfide isomerase found in regulating RodA secretion and assembly. Inhibition of Pdi1 prevents the formation of correct S-S bonds in the inner RodA, creating a barrier to RodA delivery and resulting in a defective hydrophobic layer. Our findings provided insight into the formation of the conidial hydrophobic layer and suggested potential drug targets to inhibit A. fumigatus infections by limiting conidial dispersal and altering their immune inertia.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Aspergillus fumigatus/genética , Proteína Disulfuro Isomerasas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteínas Fúngicas/metabolismo , Esporas Fúngicas/genética , Aspergilosis/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Disulfuros/metabolismo
17.
Sci Total Environ ; 923: 171189, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447726

RESUMEN

Antifungal resistance has emerged as a significant health concern with increasing reports of resistant variants in previously susceptible species. At present, little is known about occupational exposure to antifungal-resistant fungi. This study aimed to investigate Danish workers' occupational exposure to airborne fungi resistant to first-line treatment drugs. A retrospective study was performed on a unique collection of personal exposure samples gathered over a twenty-year period from Danish working environments, in sectors including agriculture, animal handling, waste management, and healthcare. A total of 669 samples were cultivated at 37 °C and fungal colonies were identified using MALDI-TOF MS. Subsequently, identification was confirmed by amplicon sequencing the genes of calmodulin and beta-tubulin to unveil potential cryptic species. Infectious fungi (495 isolates from 23 species) were tested for resistance against Itraconazole, Voriconazole, Posaconazole, and Amphotericin B. Working environments were highly variable in the overall fungal exposure, and showed vastly different species compositions. Resistance was found in 30 isolates of the species Aspergillus fumigatus (4 of 251 isolates), A. nidulans (2 of 13), A. niger complex (19 of 131), A. versicolor (3 of 18), and A. lentulus (2 of 2). Sequence analysis revealed several cryptic species within the A. niger complex including A. tubingensis, A. luchuensis, and A. phoenicis. Among the resistant A. fumigatus isolates, two contained the well-described TR34/L98H mutation in the cyp51A gene and promoter region, while the remainder harbored silent mutations. The results indicate that the working environment significantly contributes to exposure to resistant fungi, with particularly biofuel plant workers experiencing high exposure. Differences in the prevalence of resistance across working environments may be linked to the underlying species composition.


Asunto(s)
Antifúngicos , Proteínas Fúngicas , Antifúngicos/farmacología , Estudios Retrospectivos , Proteínas Fúngicas/genética , Hongos , Itraconazol , Aspergillus fumigatus , Pruebas de Sensibilidad Microbiana , Azoles
18.
Mycoses ; 67(4): e13719, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38551063

RESUMEN

BACKGROUND: Surveillance studies are crucial for updating trends in Aspergillus species and antifungal susceptibility information. OBJECTIVES: Determine the Aspergillus species distribution and azole resistance prevalence during this 3-year prospective surveillance study in a Spanish hospital. MATERIALS AND METHODS: Three hundred thirty-five Aspergillus spp. clinical and environmental isolates were collected during a 3-year study. All isolates were screened for azole resistance using an agar-based screening method and resistance was confirmed by EUCAST antifungal susceptibility testing. The azole resistance mechanism was confirmed by sequencing the cyp51A gene and its promoter. All Aspergillus fumigatus strains were genotyped using TRESPERG analysis. RESULTS: Aspergillus fumigatus was the predominant species recovered with a total of 174 strains (51.94%). The rest of Aspergillus spp. were less frequent: Aspergillus niger (14.93%), Aspergillus terreus (9.55%), Aspergillus flavus (8.36%), Aspergillus nidulans (5.37%) and Aspergillus lentulus (3.28%), among other Aspergillus species (6.57%). TRESPERG analysis showed 99 different genotypes, with 72.73% of the strains being represented as a single genotype. Some genotypes were common among clinical and environmental A. fumigatus azole-susceptible strains, even when isolated months apart. We describe the occurrence of two azole-resistant A. fumigatus strains, one clinical and another environmental, that were genotypically different and did not share genotypes with any of the azole-susceptible strains. CONCLUSIONS: Aspergillus fumigatus strains showed a very diverse population although several genotypes were shared among clinical and environmental strains. The isolation of azole-resistant strains from both settings suggest that an efficient analysis of clinical and environmental sources must be done to detect azole resistance in A. fumigatus.


Asunto(s)
Aspergilosis , Aspergillus nidulans , Humanos , Azoles/farmacología , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Aspergilosis/microbiología , Prevalencia , Estudios Prospectivos , Farmacorresistencia Fúngica , Aspergillus fumigatus , Hospitales , Proteínas Fúngicas/genética , Pruebas de Sensibilidad Microbiana
19.
Appl Environ Microbiol ; 90(4): e0001724, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38534143

RESUMEN

The emergence of azole-resistant Aspergillus fumigatus (ARAf) across the world is an important public health concern. We sought to determine if propiconazole, a demethylase inhibitor (DMI) fungicide, exerted a selective pressure for ARAf in a tomato production environment following multiple exposures to the fungicide. A tomato field trial was established in 2019 and propiconazole was applied weekly until harvest. Soil, leaf, and fruit (when present) samples were collected at baseline and after each propiconazole application. A. fumigatus isolates (n, 178) were recovered and 173 were tested for susceptibility to itraconazole, posaconazole, voriconazole, and propiconazole in accordance with CLSI M38 guidelines. All the isolates were susceptible to medical triazoles and the propiconazole MIC ranged from 0.25 to 8 mg/L. A linear regression model was fitted that showed no longitudinal increment in the log2-fold azole MIC of the isolates collected after each propiconazole exposure compared to the baseline isolates. AsperGenius real-time multiplex assay ruled out TR34/L98H and TR46/Y121F/T289A cyp51A resistance markers in these isolates. Sequencing of a subset of isolates (n, 46) demonstrated widespread presence of F46Y/M172V/E427K and F46Y/M172V/N248T/D255E/E427K cyp51A mutations previously associated with reduced susceptibility to triazoles. IMPORTANCE: The agricultural use of azole fungicides to control plant diseases has been implicated as a major contributor to ARAf infections in humans. Our study did not reveal imposition of selection pressure for ARAf in a vegetable production system. However, more surveillance studies for ARAf in food crop production and other environments are warranted in understanding this public and One Health issue.


Asunto(s)
Fungicidas Industriales , Solanum lycopersicum , Humanos , Aspergillus fumigatus/genética , Azoles/farmacología , Antifúngicos/farmacología , Proteínas Fúngicas/genética , Farmacorresistencia Fúngica/genética , Triazoles/farmacología , Fungicidas Industriales/farmacología , Verduras , Pruebas de Sensibilidad Microbiana
20.
Appl Environ Microbiol ; 90(4): e0232923, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38440989

RESUMEN

Disulfide bonds are important for maintaining the structural conformation and stability of the protein. The introduction of the disulfide bond is a promising strategy to increase the thermostability of the protein. In this report, cysteine residues are introduced to form disulfide bonds in the Glycoside Hydrolase family GH 7 cellobiohydrolase (GH7 CBHs) or Cel7A of Aspergillus fumigatus. Disulfide by Design 2.0 (DbD2), an online tool is used for the detection of the mutation sites. Mutations are created (D276C-G279C; DSB1, D322C-G327C; DSB2, T416C-I432C; DSB3, G460C-S465C; DSB4) inside and outside of the peripheral loops but, not in the catalytic region. The introduction of cysteine in the A2 and A4 loop of DSB3 mutant showed higher thermostability (70% activity at 70°C), higher substrate affinity (Km = 0.081 mM) and higher catalytic activity (Kcat = 9.75 min-1; Kcat/Km = 120.37 mM min-1) compared to wild-type AfCel7A (50% activity at 70°C; Km = 0.128 mM; Kcat = 4.833 min-1; Kcat/Km = 37.75 mM min-1). The other three mutants with high B factor showed loss of thermostability and catalytic activity. Molecular dynamic simulations revealed that the mutation T416C-I432C makes the tunnel wider (DSB3: 13.6 Å; Wt: 5.3 Å) at the product exit site, giving flexibility in the entrance region or mobility of the substrate in the exit region. It may facilitate substrate entry into the catalytic tunnel and release the product faster than the wild type, whereas in other mutants, the tunnel is not prominent (DSB4), the exit is lost (DSB1), and the ligand binding site is absent (DSB2). This is the first report of the gain of function of both thermostability and enzyme activity of cellobiohydrolase Cel7A by disulfide bond engineering in the loop.IMPORTANCEBioethanol is one of the cleanest renewable energy and alternatives to fossil fuels. Cost efficient bioethanol production can be achieved through simultaneous saccharification and co-fermentation that needs active polysaccharide degrading enzymes. Cellulase enzyme complex is a crucial enzyme for second-generation bioethanol production from lignocellulosic biomass. Cellobiohydrolase (Cel7A) is an important member of this complex. In this work, we engineered (disulfide bond engineering) the Cel7A to increase its thermostability and catalytic activity which is required for its industrial application.


Asunto(s)
Aspergillus fumigatus , Celulosa 1,4-beta-Celobiosidasa , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Cisteína , Mutación , Disulfuros , Estabilidad de Enzimas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...