Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.023
Filtrar
1.
J Neurosci ; 44(39)2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39174351

RESUMEN

Nerve injury can induce aberrant changes in the spine; these changes are due to, or at least partly governed by, transcription factors that contribute to the genesis of neuropathic allodynia. Here, we showed that spinal nerve ligation (SNL, a clinical neuropathic allodynia model) increased the expression of the transcription factor Tbx5 in the injured dorsal horn in male Sprague Dawley rats. In contrast, blocking this upregulation alleviated SNL-induced mechanical allodynia, and there was no apparent effect on locomotor function. Moreover, SNL-induced Tbx5 upregulation promoted the recruitment and interaction of GATA4 and Brd4 by enhancing its binding activity to H3K9Ac, which was enriched at the Trpv1 promotor, leading to an increase in TRPV1 transcription and the development of neuropathic allodynia. In addition, nerve injury-induced expression of Fbxo3, which abates Fbxl2-dependent Tbx5 ubiquitination, promoted the subsequent Tbx5-dependent epigenetic modification of TRPV1 expression during SNL-induced neuropathic allodynia. Collectively, our findings indicated that spinal Tbx5-dependent TRPV1 transcription signaling contributes to the development of neuropathic allodynia via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic allodynia by targeting Tbx5.


Asunto(s)
Epigénesis Genética , Hiperalgesia , Neuralgia , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal , Proteínas de Dominio T Box , Canales Catiónicos TRPV , Animales , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Masculino , Ratas , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Hiperalgesia/metabolismo , Hiperalgesia/genética , Hiperalgesia/fisiopatología , Neuralgia/metabolismo , Neuralgia/genética , Asta Dorsal de la Médula Espinal/metabolismo
2.
Neuropharmacology ; 259: 110120, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159835

RESUMEN

A large portion of neuropathic pain suffering patients may also concurrently experience neuropathic itch, with a negative impact on the quality of life. The limited understanding of neuropathic itch and the low efficacy of current anti-itch therapies dictate the urgent need of a better comprehension of molecular mechanisms involved and development of relevant animal models. This study was aimed to characterize the itching phenotype in a model of trauma-induced peripheral neuropathy, the spared nerve injury (SNI), and the molecular events underlying the overlap with the nociceptive behavior. SNI mice developed hyperknesis and spontaneous itch 7-14 days after surgery that was prevented by gabapentin treatment. Itch was associated with pain hypersensitivity, loss of intraepidermal nerve fiber (IENF) density and increased epidermal thickness. In coincidence with the peak of scratching behavior, SNI mice showed a spinal overexpression of IBA1 and GFAP, microglia and astrocyte markers respectively. An increase of the itch neuropeptide B-type natriuretic peptide (BNP) in NeuN+ cells, of its downstream effector interleukin 17 (IL17) along with increased pERK1/2 levels occurred in the spinal cord dorsal horn and DRG. A raise in BNP and IL17 was also detected at skin level. Stimulation of HaCat cells with conditioned medium from BV2-stimulated SH-SY5Y cells produced a dramatic reduction of HaCat cell viability. This study showed that SNI mice might represent a model for neuropathic itch and pain. Collectively, our finding suggest that neuropathic itch might initiate at spinal level, then affecting skin epidermis events, through a glia-mediated neuroinflammation-evoked BNP/IL17 mechanism.


Asunto(s)
Modelos Animales de Enfermedad , Neuralgia , Enfermedades Neuroinflamatorias , Prurito , Animales , Prurito/metabolismo , Prurito/patología , Neuralgia/metabolismo , Neuralgia/etiología , Ratones , Masculino , Enfermedades Neuroinflamatorias/metabolismo , Humanos , Gabapentina/farmacología , Interleucina-17/metabolismo , Ratones Endogámicos C57BL , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Células HaCaT , Microglía/metabolismo , Microglía/efectos de los fármacos , Hiperalgesia/metabolismo , Proteínas de Microfilamentos/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Proteínas de Unión al Calcio
3.
J Mol Neurosci ; 74(3): 79, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39162890

RESUMEN

Diabetic neuropathic pain (DNP) is a diabetic complication that causes severe pain and deeply impacts the quality of the sufferer's daily life. Currently, contemporary clinical treatments for DNP generally exhibit a deficiency in effectiveness. Electroacupuncture (EA) is recognized as a highly effective and safe treatment for DNP with few side effects. Regrettably, the processes via which EA alleviates DNP are still poorly characterized. Transient receptor potential vanilloid 1 (TRPV1) and phosphorylated calcium/calmodulin-dependent protein kinase II (p-CaMKII) are overexpressed on spinal cord dorsal horn (SCDH) in DNP rats, and co-localization is observed between them. Capsazepine, a TRPV1 antagonist, effectively reduced nociceptive hypersensitivity and downregulated the overexpression of phosphorylated CaMKIIα in rats with DNP. Conversely, the CaMKII inhibitor KN-93 did not have any impact on TRPV1. EA alleviated heightened sensitivity to pain caused by nociceptive stimuli and downregulated the level of TRPV1, p-CaMKIIα, and phosphorylated cyclic adenosine monophosphate response element-binding protein (p-CREB) in DNP rats. Intrathecal injection of capsaicin, on the other hand, reversed the above effects of EA. These findings indicated that the CaMKII/CREB pathway on SCDH is located downstream of TRPV1 and is affected by TRPV1. EA alleviates DNP through the TRPV1-mediated CaMKII/CREB pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Neuropatías Diabéticas , Electroacupuntura , Ratas Sprague-Dawley , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Electroacupuntura/métodos , Ratas , Masculino , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Neuropatías Diabéticas/terapia , Neuropatías Diabéticas/metabolismo , Capsaicina/farmacología , Capsaicina/análogos & derivados , Transducción de Señal , Asta Dorsal de la Médula Espinal/metabolismo , Bencenosulfonamidas , Bencilaminas
4.
Biochem Biophys Res Commun ; 729: 150362, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38972142

RESUMEN

The therapeutic benefits of photobiomodulation (PBM) in pain management, although well documented, are accompanied by concerns about potential risks, including pain, particularly at higher laser intensities. This study investigated the effects of laser intensity on pain perception using behavioral and electrophysiological evaluations in rats. Our results show that direct laser irradiation of 1000 mW/cm2 to the sciatic nerve transiently increases the frequency of spontaneous firing in the superficial layer without affecting the deep layer of the spinal dorsal horn, and this effect reverses to pre-irradiation levels after irradiation. Interestingly, laser irradiation at 1000 mW/cm2, which led to an increase in spontaneous firing, did not prompt escape behavior. Furthermore, a significant reduction in the time to initiate escape behavior was observed only at 9500 mW/cm2 compared to 15, 510, 1000, and 4300 mW/cm2. This suggests that 1000 mW/cm2, the laser intensity at which an increase in spontaneous firing was observed, corresponds to a stimulus that did not cause pain. It is expected that a detailed understanding of the risks and mechanisms of PBM from a neurophysiological perspective will lead to safer and more effective use of PBM.


Asunto(s)
Terapia por Luz de Baja Intensidad , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal , Animales , Terapia por Luz de Baja Intensidad/métodos , Masculino , Ratas , Asta Dorsal de la Médula Espinal/efectos de la radiación , Nervio Ciático/efectos de la radiación , Nervio Ciático/fisiología , Potenciales de Acción/efectos de la radiación
5.
Brain Struct Funct ; 229(7): 1757-1768, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39052094

RESUMEN

Multiple studies have shown that astrocytes in the medullary dorsal horn (MDH) play an important role in the development of pathologic pain. However, little is known about the structural reorganization of the peripheral astrocytic processes (PAP), the main functional part of the astrocyte, in MDH in neuropathic state. For this, we investigated the structural relationship between PAP and their adjacent presynaptic axon terminals and postsynaptic dendrites in the superficial laminae of the MDH using electron microscopical immunohistochemistry for ezrin, a marker for PAP, and quantitative analysis in a rat model of neuropathic pain following chronic constriction injury of the infraorbital nerve (CCI-ION). We found that, compared to controls, in rats with CCI-ION, (1) the number, % area, surface density, and volume fraction of ezrin-positive (+) PAP, as well as the fraction of synaptic edge apposed by ezrin + PAP and the degree of its coverage of presynaptic axon terminals and postsynaptic dendrites increased significantly, (2) these effects were abolished by administration of the mGluR5 antagonist 2-methyl-6-(phenylethynyl) pyridine (MPEP). These findings indicate that PAP undergoes structural reorganization around the central synapses of sensory afferents following nerve injury, suggest that it may be mediated by mGluR5, and may represent the structural basis for enhancing astrocyte-neuron interaction in neuropathic pain.


Asunto(s)
Astrocitos , Modelos Animales de Enfermedad , Neuralgia , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal , Animales , Astrocitos/metabolismo , Astrocitos/patología , Neuralgia/patología , Neuralgia/metabolismo , Masculino , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/patología , Ratas , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/patología , Receptor del Glutamato Metabotropico 5/metabolismo , Proteínas del Citoesqueleto/metabolismo , Dendritas/metabolismo , Dendritas/patología , Terminales Presinápticos/metabolismo , Terminales Presinápticos/patología , Terminales Presinápticos/ultraestructura
6.
J Neurosci ; 44(32)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38955487

RESUMEN

Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.


Asunto(s)
Astrocitos , Potenciación a Largo Plazo , Receptores de Dopamina D1 , Receptores de Dopamina D5 , Sinapsis , Animales , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/genética , Potenciación a Largo Plazo/fisiología , Astrocitos/metabolismo , Astrocitos/fisiología , Ratones , Masculino , Receptores de Dopamina D5/metabolismo , Receptores de Dopamina D5/agonistas , Receptores de Dopamina D5/genética , Femenino , Sinapsis/fisiología , Sinapsis/metabolismo , Ganglios Espinales/citología , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/citología , Ratones Transgénicos , Ratones Endogámicos C57BL
7.
Neural Dev ; 19(1): 13, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39049046

RESUMEN

The cell-adhesion molecule NEPH1 is required for maintaining the structural integrity and function of the glomerulus in the kidneys. In the nervous system of Drosophila and C. elegans, it is involved in synaptogenesis and axon branching, which are essential for establishing functional circuits. In the mammalian nervous system, the expression regulation and function of Neph1 has barely been explored. In this study, we provide a spatiotemporal characterization of Neph1 expression in mouse dorsal root ganglia (DRGs) and spinal cord. After the neurogenic phase, Neph1 is broadly expressed in the DRGs and in their putative targets at the dorsal horn of the spinal cord, comprising both GABAergic and glutamatergic neurons. Interestingly, we found that PRRXL1, a homeodomain transcription factor that is required for proper establishment of the DRG-spinal cord circuit, prevents a premature expression of Neph1 in the superficial laminae of the dorsal spinal cord at E14.5, but has no regulatory effect on the DRGs or on either structure at E16.5. By chromatin immunoprecipitation analysis of the dorsal spinal cord, we identified four PRRXL1-bound regions within the Neph1 introns, suggesting that PRRXL1 directly regulates Neph1 transcription. We also showed that Neph1 is required for branching, especially at distal neurites. Together, our work showed that Prrxl1 prevents the early expression of Neph1 in the superficial dorsal horn, suggesting that Neph1 might function as a downstream effector gene for proper assembly of the DRG-spinal nociceptive circuit.


Asunto(s)
Ganglios Espinales , Proteínas de Homeodominio , Neuritas , Asta Dorsal de la Médula Espinal , Factores de Transcripción , Animales , Ratones , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/citología , Neuritas/metabolismo , Neuritas/fisiología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Ganglios Espinales/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso
8.
Neuroreport ; 35(11): 692-701, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-38874969

RESUMEN

OBJECTIVE: Diabetic neuropathic pain (DNP) is one of the most prevalent symptoms of diabetes. The alteration of proteins in the spinal cord dorsal horn (SCDH) plays a significant role in the genesis and the development of DNP. Our previous study has shown electroacupuncture could effectively relieve DNP. However, the potential mechanism inducing DNP's genesis and development remains unclear and needs further research. METHODS: This study established DNP model rats by intraperitoneally injecting a single high-dose streptozotocin; 2 Hz electroacupuncture was used to stimulate Zusanli (ST36) and Kunlun (BL60) of DNP rats daily from day 15 to day 21 after streptozotocin injection. Behavioral assay, quantitative PCR, immunofluorescence staining, and western blotting were used to study the analgesic mechanism of electroacupuncture. RESULTS: The bradykinin B1 receptor (B1R) mRNA, nuclear factor-κB p65 (p65), substance P, and calcitonin gene-related peptide (CGRP) protein expression were significantly enhanced in SCDH of DNP rats. The paw withdrawal threshold was increased while body weight and fasting blood glucose did not change in DNP rats after the electroacupuncture treatment. The expression of B1R, p65, substance P, and CGRP in SCDH of DNP rats was also inhibited after the electroacupuncture treatment. CONCLUSION: This work suggests that the potential mechanisms inducing the allodynia of DNP rats were possibly related to the increased expression of B1R, p65, substance P, and CGRP in SCDH. Downregulating B1R, p65, substance P, and CGRP expression levels in SCDH may achieve the analgesic effect of 2 Hz electroacupuncture treatment.


Asunto(s)
Diabetes Mellitus Experimental , Regulación hacia Abajo , Electroacupuntura , Hiperalgesia , Ratas Sprague-Dawley , Receptor de Bradiquinina B1 , Asta Dorsal de la Médula Espinal , Animales , Electroacupuntura/métodos , Masculino , Asta Dorsal de la Médula Espinal/metabolismo , Hiperalgesia/terapia , Hiperalgesia/metabolismo , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Receptor de Bradiquinina B1/metabolismo , Receptor de Bradiquinina B1/genética , Neuropatías Diabéticas/metabolismo , Neuropatías Diabéticas/terapia , Ratas , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/genética , Sustancia P/metabolismo
9.
Aging (Albany NY) ; 16(11): 9680-9691, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843384

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) is a devastating disease for which there is no safe and effective treatment at present. Daphnoretin is a natural discoumarin compound isolated from Wikstroemia indica with various pharmacological activities. Our study aimed to investigate the role of Daphnoretin in NF-κB pathway activation and inflammatory response after SCI. METHODS: A mouse SCI model was constructed, and the Basso Mouse Scale Score and subscore were used to evaluate the effect of Daphnoretin on the movement capacity of mice. The effect of Daphnoretin on the activation of glial cells in the mouse model and BV2 cells was observed by immunofluorescence. PCR and ELISA were used to detect the expression of inflammatory factors, and Western blot was performed to detect the protein expression associated with NF-κB pathway. RESULTS: Daphnoretin inhibited the loss of movement ability and the activation of glial cells in mice after SCI, and it also inhibited the activation of NF-κB pathway and the expression of inflammatory factors TNF-α and IL-1ß in vivo and in vitro. CONCLUSIONS: Daphnoretin can inhibit the activation of NF-κB pathway and the inflammatory response induced by SCI. Our study demonstrates the potential of Daphnoretin on clinical application for the treatment of SCI.


Asunto(s)
FN-kappa B , Transducción de Señal , Traumatismos de la Médula Espinal , Animales , FN-kappa B/metabolismo , Ratones , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Asta Dorsal de la Médula Espinal/metabolismo , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Modelos Animales de Enfermedad , Masculino
10.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750803

RESUMEN

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Asunto(s)
Analgésicos , Antracenos , Carbamatos , Canales de Potasio KCNQ , Fenilendiaminas , Animales , Masculino , Carbamatos/farmacología , Fenilendiaminas/farmacología , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/efectos de los fármacos , Antracenos/farmacología , Ratones , Analgésicos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuralgia/tratamiento farmacológico , Células del Asta Posterior/efectos de los fármacos , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/fisiología , Asta Dorsal de la Médula Espinal/efectos de los fármacos
11.
Neuroscience ; 548: 39-49, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38697463

RESUMEN

Chronic inflammatory pain is the highest priority for people with osteoarthritis when seeking medical attention. Despite the availability of NSAIDs and glucocorticoids, central sensitization and peripheral sensitization make pain increasingly difficult to control. Previous studies have identified the ubiquitination system as an important role in the chronic inflammatory pain. Our study displayed that the E3 ubiquitin ligase tripartite motif-containing 14 (Trim14) was abnormally elevated in the serum of patients with osteoarthritis and pain, and the degree of pain was positively correlated with the degree of Trim14 elevation. Furthermore, CFA-induced inflammatory pain rat model showed that Trim14 was significantly increased in the L3-5 spinal dorsal horn (SDH) and dorsal root ganglion (DRG), and in turn the inhibitor of nuclear factor Kappa-B isoform α (IκBα) was decreased after Trim14 elevation. After intrathecal injection of Trim14 siRNA to inhibit Trim14 expression, IκBα expression was reversed and increased, and the pain behaviors and anxiety behaviors of rats were significantly relieved. Overall, these findings suggested that Trim14 may contribute to chronic inflammatory pain by degrading IκBα, and that Trim14 may become a novel therapeutic target for chronic inflammatory pain.


Asunto(s)
Dolor Crónico , Inflamación , Inhibidor NF-kappaB alfa , Osteoartritis , Ratas Sprague-Dawley , Transducción de Señal , Anciano , Animales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Ratas , Dolor Crónico/metabolismo , Ganglios Espinales/metabolismo , Inflamación/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Osteoartritis/metabolismo , Transducción de Señal/fisiología , Asta Dorsal de la Médula Espinal/metabolismo , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo
12.
BMC Oral Health ; 24(1): 552, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735923

RESUMEN

Patients who suffer from myofascial orofacial pain could affect their quality of life deeply. The pathogenesis of pain is still unclear. Our objective was to assess Whether Voltage-gated calcium channel α2δ-1(Cavα2δ-1) is related to myofascial orofacial pain. Rats were divided into the masseter tendon ligation group and the sham group. Compared with the sham group, the mechanical pain threshold of the masseter tendon ligation group was reduced on the 4th, 7th, 10th and 14th day after operation(P < 0.05). On the 14th day after operation, Cavα2δ-1 mRNA expression levels in trigeminal ganglion (TG) and the trigeminal spinal subnucleus caudalis and C1-C2 spinal cervical dorsal horn (Vc/C2) of the masseter tendon ligation group were increased (PTG=0.021, PVc/C2=0.012). Rats were divided into three groups. On the 4th day after ligating the superficial tendon of the left masseter muscle of the rats, 10 ul Cavα2δ-1 antisense oligonucleotide, 10 ul Cavα2δ-1 mismatched oligonucleotides and 10 ul normal saline was separately injected into the left masseter muscle of rats in Cavα2δ-1 antisense oligonucleotide group, Cavα2δ-1 mismatched oligonucleotides group and normal saline control group twice a day for 4 days. The mechanical pain threshold of the Cavα2δ-1 antisense oligonucleotides group was higher than Cavα2δ-1 mismatched oligonucleotides group on the 7th and 10th day after operation (P < 0.01). After PC12 cells were treated with lipopolysaccharide, Cavα2δ-1 mRNA expression level increased (P < 0.001). Cavα2δ-1 may be involved in the occurrence and development in myofascial orofacial pain.


Asunto(s)
Canales de Calcio Tipo L , Dolor Facial , Músculo Masetero , Ganglio del Trigémino , Animales , Masculino , Ratas , Canales de Calcio/metabolismo , Dolor Facial/metabolismo , Músculo Masetero/metabolismo , Síndromes del Dolor Miofascial , Oligonucleótidos Antisentido/farmacología , Umbral del Dolor , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Ganglio del Trigémino/metabolismo
13.
Zhen Ci Yan Jiu ; 49(5): 448-455, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764115

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at different intensities on nociceptive discharges of wide dynamic range (WDR) neurons in the spinal dorsal horns (DHs) of rats, so as to explore its regulatory characteristics on nociceptive signals at the spinal level. METHODS: A total of 25 male SD rats were used in the present study. A microelectrode array was used to record the discharge activity of WDR neurons in the lumbar spinal DHs of normal rats. After finding the WDR neuron, electrical stimulation (pulse width of 2 ms) was administered to the plantar receptive field (RF) for determining its response component of discharges according to the latency of action potential generation (Aß ï¼»0 to 20 msï¼½, Aδ ï¼»20 to 90 msï¼½, C ï¼»90 to 500 msï¼½ and post-discharge ï¼»500 to 800 msï¼½). High-intensity electrical stimulation was continuously applied to the RF at the paw's plantar surface to induce DHs neuronal windup response. Subsequently, EA stimulation at different intensities (1 mA and 2 mA) was applied to the left "Zusanli"(ST36) at a frequency of 2 Hz/15 Hz for 10 min. The induction of WDR neuronal windup was then repeated under the same conditions. The quantity of nociceptive discharge components and the windup response of WDR neurons before and after EA stimulations at different intensities were compared. RESULTS: Compared to pre-EA, both EA1 mA and EA2 mA significantly reduced the number of Aδ and C component discharges of WDR neurons during stimulation, as well as post-discharge (P<0.01, P<0.001). The inhibitory rate of C component by EA2 mA was significantly higher than that by EA1 mA (P<0.05). Meanwhile, both EA1 mA and EA2 mA attenuated the windup response of WDR neurons (P<0.05, P<0.01), and the effect of EA2 mA was stronger than that of EA1 mA (P<0.05). Further analysis showed that when EA1 mA and EA2 mA respectively applied to both non-receptive field (non-RF) and RF, a significant reduction in the number of Aδ component, C component and post-discharge was observed (P<0.05, P<0.01). EA2 mA at the non-RF and RF demonstrated a significant inhibitory effect on the windup response of WDR neurons (P<0.01, P<0.05), but EA1 mA only at the non-RF showed a significant inhibitory effect on the windup response (P<0.01). CONCLUSIONS: EA can suppress nociceptive discharges of spinal DHs WDR neurons in rats. The inhibitory impact of EA is strongly correlated with the location and intensity of EA stimulation, and EA2 mA has a stronger inhibitory effect than EA1 mA.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Humanos , Nocicepción , Asta Dorsal de la Médula Espinal/fisiopatología , Células del Asta Posterior/fisiología , Potenciales de Acción
14.
Biochem Biophys Res Commun ; 710: 149873, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583230

RESUMEN

Photobiomodulation (PBM) has attracted attention as a treatment for chronic pain. Previous studies have reported that PBM of the sciatic nerve inhibits neuronal firing in the superficial layers (lamina I-II) of the spinal dorsal horn of rats, which is evoked by mechanical stimulation that corresponds to noxious stimuli. However, the effects of PBM on the deep layers (lamina III-IV) of the spinal dorsal horn, which receive inputs from innocuous stimuli, remain poorly understood. In this study, we examined the effect of PBM of the sciatic nerve on firing in the deep layers of the spinal dorsal horn evoked by mechanical stimulation. Before and after PBM, mechanical stimulation was administered to the cutaneous receptive field using 0.6-26.0 g von Frey filaments (vFFs), and vFF-evoked firing in the deep layers of the spinal dorsal horn was recorded. The vFF-evoked firing frequencies were not altered after the PBM for any of the vFFs. The inhibition rate for 26.0 g vFF-evoked firing was approximately 13 % in the deep layers and 70 % in the superficial layers. This suggests that PBM selectively inhibits the transmission of pain information without affecting the sense of touch. PBM has the potential to alleviate pain while preserving the sense of touch.


Asunto(s)
Terapia por Luz de Baja Intensidad , Ratas , Animales , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal , Neuronas , Nervio Ciático , Dolor , Médula Espinal/fisiología
15.
Biochem Biophys Res Commun ; 710: 149896, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38604072

RESUMEN

Pain is a widespread motivation for seeking healthcare and stands as a substantial global public health concern. Despite comprehensive investigations into the mechanisms of pain sensitization induced by inflammation, efficacious treatments options remain scarce. Neutrophil extracellular traps (NETs) have been associated with the progression and tissue damage of diverse inflammatory diseases. This study aims to explore the impact of NETs on the progression of inflammatory pain and explore potential therapeutic approaches. Initially, we observed neutrophil infiltration and the formation of NETs in the left hind paw of mice with inflammatory pain induced by complete Freund's adjuvant (CFA). Furthermore, we employed the peptidyl arginine deiminase 4 (PAD4) inhibitor Cl-amidine (diluted at 50 mg/kg in saline, administered via tail vein injection once daily for three days) to impede NETs formation and administered DNase1 (diluted at 10 mg/kg in saline, once daily for three days) to break down NETs. We investigated the pathological importance of peripheral NETs formation in inflammatory pain and its influence on the activation of spinal dorsal horn microglia. The findings indicate that neutrophils infiltrating locally generate NETs, leading to an increased release of inflammatory mediators that worsen peripheral inflammatory reactions. Consequently, this results in the transmission of more harmful peripheral stimuli to the spinal cord, triggering microglial activation and NF-κB phosphorylation, thereby escalating neuroinflammation and fostering pain sensitization. Suppression of peripheral NETs can mitigate peripheral inflammation in mice with inflammatory pain, reverse mechanical and thermal hypersensitivity by suppressing microglial activation in the spinal cord, ultimately diminishing inflammatory pain. In conclusion, these discoveries propose that obstructing or intervening with NETs introduces a novel therapeutic avenue for addressing inflammatory pain.


Asunto(s)
Trampas Extracelulares , Ratones , Animales , Dolor/tratamiento farmacológico , Inflamación/patología , Neutrófilos/patología , Asta Dorsal de la Médula Espinal
16.
Neuron ; 112(8): 1302-1327.e13, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38452762

RESUMEN

Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.


Asunto(s)
Parvalbúminas , Asta Dorsal de la Médula Espinal , Ratones , Animales , Células del Asta Posterior/fisiología , Locomoción , Interneuronas/fisiología , Médula Espinal
17.
Cells ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474361

RESUMEN

Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.


Asunto(s)
Gliosis , Células del Asta Posterior , Humanos , Gliosis/metabolismo , Células del Asta Posterior/metabolismo , Dolor/metabolismo , Asta Dorsal de la Médula Espinal , Derivados de la Morfina/metabolismo
18.
PLoS One ; 19(3): e0300282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483883

RESUMEN

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Asunto(s)
Dinorfinas , Proteína Fluorescente Roja , Asta Dorsal de la Médula Espinal , Ratones , Animales , Médula Espinal/metabolismo , Ratones Transgénicos , Interneuronas/metabolismo , Células del Asta Posterior/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo
19.
Biomed Pharmacother ; 173: 116369, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452657

RESUMEN

Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.


Asunto(s)
Ácidos Araquidónicos , Benzamidas , Carbamatos , Endocannabinoides , Nocicepción , Humanos , Endocannabinoides/farmacología , Alcamidas Poliinsaturadas/farmacología , Asta Dorsal de la Médula Espinal , Analgésicos/farmacología , Inflamación/tratamiento farmacológico , Amidohidrolasas
20.
Neurobiol Dis ; 194: 106471, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38461868

RESUMEN

Emerging evidence has implicated an important role of synapse-associated protein-97 (SAP97)-regulated GluA1-containing AMPARs membrane trafficking in cocaine restate and in contextual episodic memory of schizophrenia. Herein, we investigated the role of SAP97 in neuropathic pain following lumbar 5 spinal nerve transection (SNT) in rats. Our results showed that SNT led to upregulation of SAP97, enhanced the interaction between SAP97 and GluA1, and increased GluA1-containing AMPARs membrane trafficking in the dorsal horn. Microinjection of AAV-EGFP-SAP97 shRNA in lumbar 5 spinal dorsal horn inhibited SAP97 production, decreased SAP97-GluA1 interaction, reduced the membrane trafficking of GluA1-containing AMPARs, and partially attenuated neuropathic pain following SNT. Intrathecal injections of SAP97 siRNA or NASPM, an antagonist of GluA1-containing AMPARs, also partially reversed neuropathic pain on day 7, but not on day 14, after SNT. Spinal overexpression of SAP97 by AAV-EGFP-SAP97 enhanced SAP97-GluA1 interaction, increased the membrane insertion of GluA1-containing AMPARs, and induced abnormal pain in naïve rats. In addition, treatment with SAP97 siRNA or NASPM i.t. injection alleviated SNT-induced allodynia and hyperalgesia and exhibited a longer effect in female rats. Together, our results indicate that the SNT-induced upregulation of SAP97 via promoting GluA1-containing AMPARs membrane trafficking in the dorsal horn contributes to the pathogenesis of neuropathic pain. Targeting spinal SAP97 might be a promising therapeutic strategy to treatment of chronic pain.


Asunto(s)
Neuralgia , Receptores AMPA , Espermina , Animales , Femenino , Ratas , Hiperalgesia , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , ARN Interferente Pequeño , Espermina/análogos & derivados , Asta Dorsal de la Médula Espinal/metabolismo , Nervios Espinales , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA