Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 7298, 2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31086212

RESUMEN

The World Health Organization has declared ZIKA virus (ZIKV) a global public health emergency, prompted by the association of ZIKV infections with severe brain abnormalities in the human fetus. ZIKV preferentially targets human neuronal precursor cells (NPCs) in both monolayer and cortical brain organoid culture systems and stunts their growth. Although ZIKV is well recognized to cause microcephaly, there is no systematic analysis to demonstrate the effect of ZIKV on central nervous system (CNS) development, including brain malformations and spinal cord dysfunction. Here, we conducted a longitudinal analysis to show that a novel mouse model (infected in utero and monitored after birth until adulthood) recapitulates the effects of ZIKV infection affecting neural stem cells fate and leads to a thinner cortex and a smaller brain. Furthermore, we demonstrate the effect of ZIKV on spinal cord function. Specifically, we found significant reductions in neuron numbers in the anterior horn of grey matter of the spinal cord and muscle dystrophy with a significant decrease in forepaw grip strength in the ZIKV group. Thus, the established mouse model of ZIKV infection leading to abnormal CNS development will help to further advance our understanding of the disease pathogenesis.


Asunto(s)
Microcefalia/virología , Distrofia Muscular Animal/virología , Efectos Tardíos de la Exposición Prenatal/virología , Infección por el Virus Zika/complicaciones , Virus Zika/patogenicidad , Animales , Encéfalo/citología , Encéfalo/embriología , Encéfalo/virología , Recuento de Células , Modelos Animales de Enfermedad , Extremidades/fisiopatología , Femenino , Humanos , Ratones , Microcefalia/patología , Fuerza Muscular/fisiología , Distrofia Muscular Animal/patología , Distrofia Muscular Animal/fisiopatología , Células-Madre Neurales/patología , Células-Madre Neurales/virología , Neuronas/patología , Neuronas/virología , Embarazo , Efectos Tardíos de la Exposición Prenatal/patología , Asta Ventral de la Médula Espinal/citología , Asta Ventral de la Médula Espinal/embriología , Asta Ventral de la Médula Espinal/virología , Virus Zika/aislamiento & purificación , Infección por el Virus Zika/virología
2.
Dev Neurobiol ; 76(9): 956-71, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26600420

RESUMEN

A prevalent developmental mechanism for the assignment of cell identities is the production of spatiotemporal concentration gradients of extracellular signaling molecules that are interpreted by the responding cells. One of such signaling systems is the Shh gradient that controls neuronal subtype identity in the ventral spinal cord. Using loss and gain of function approaches in chick and mouse embryos, we show here that the fibroblast growth factor (FGF) signaling pathway is required to restrict the domains of ventral gene expression as neuroepithelial cells become exposed to Shh during caudal extension of the embryo. FGF signaling activates the expression of the Shh receptor and negative pathway regulator Patched 2 (Ptch2) and therefore can enhance a negative feedback loop that restrains the activity of the pathway. Thus, we identify one of the mechanisms by which FGF signaling acts as a modulator of the onset of Shh signaling activity in the context of coordination of ventral patterning and caudal axis extension. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 956-971, 2016.


Asunto(s)
Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Hedgehog/fisiología , Transducción de Señal/fisiología , Asta Ventral de la Médula Espinal/fisiología , Animales , Embrión de Pollo , Humanos , Ratones , Asta Ventral de la Médula Espinal/embriología
3.
Dev Neurobiol ; 76(7): 764-79, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26506510

RESUMEN

The cation-chloride co-transporters are important regulators of the cellular Cl(-) homeostasis. Among them the Na(+) -K(+) -2Cl(-) co-transporter (NKCC1) is responsible for intracellular chloride accumulation in most immature brain structures, whereas the K(+) -Cl(-) co-transporter (KCC2) extrudes chloride from mature neurons, ensuring chloride-mediated inhibitory effects of GABA/glycine. We have shown that both KCC2 and NKCC1 are expressed at early embryonic stages (E11.5) in the ventral spinal cord (SC). The mechanisms by which KCC2 is prematurely expressed are unknown. In this study, we found that chronically blocking glycine receptors (GlyR) by strychnine led to a loss of KCC2 expression, without affecting NKCC1 level. This effect was not dependent on the firing of Na(+) action potentials but was mimicked by a Ca(2+) -dependent PKC blocker. Blocking the vesicular release of neurotransmitters did not impinge on strychnine effect whereas blocking volume-sensitive outwardly rectifying (VSOR) chloride channels reproduced the GlyR blockade, suggesting that KCC2 is controlled by a glycine release from progenitor radial cells in immature ventral spinal networks. Finally, we showed that the strychnine treatment prevented the maturation of rhythmic spontaneous activity. Thereby, the GlyR-activation is a necessary developmental process for the expression of functional spinal motor networks. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 764-779, 2016.


Asunto(s)
Canales de Calcio/metabolismo , Glicina/metabolismo , Células-Madre Neurales/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Glicina/metabolismo , Asta Ventral de la Médula Espinal/fisiología , Simportadores/metabolismo , Animales , Fenómenos Electrofisiológicos , Femenino , Glicinérgicos/farmacología , Ratones , Embarazo , Receptores de Glicina/efectos de los fármacos , Asta Ventral de la Médula Espinal/embriología , Asta Ventral de la Médula Espinal/metabolismo , Estricnina/farmacología , Cotransportadores de K Cl
4.
J Neurophysiol ; 114(5): 2661-71, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26334015

RESUMEN

The spinal cord is critical for modifying and relaying sensory information to, and motor commands from, higher centers in the central nervous system to initiate and maintain contextually relevant locomotor responses. Our understanding of how spinal sensorimotor circuits are established during in utero development is based largely on studies in rodents. In contrast, there is little functional data on the development of sensory and motor systems in humans. Here, we use patch-clamp electrophysiology to examine the development of neuronal excitability in human fetal spinal cords (10-18 wk gestation; WG). Transverse spinal cord slices (300 µm thick) were prepared, and recordings were made, from visualized neurons in either the ventral (VH) or dorsal horn (DH) at 32°C. Action potentials (APs) could be elicited in VH neurons throughout the period examined, but only after 16 WG in DH neurons. At this age, VH neurons discharged multiple APs, whereas most DH neurons discharged single APs. In addition, at 16-18 WG, VH neurons also displayed larger AP and after-hyperpolarization amplitudes than DH neurons. Between 10 and 18 WG, the intrinsic properties of VH neurons changed markedly, with input resistance decreasing and AP and after-hyperpolarization amplitudes increasing. These findings are consistent with the hypothesis that VH motor circuitry matures more rapidly than the DH circuits that are involved in processing tactile and nociceptive information.


Asunto(s)
Potenciales de Acción , Células del Asta Anterior/fisiología , Feto/fisiología , Células del Asta Posterior/fisiología , Asta Dorsal de la Médula Espinal/embriología , Asta Ventral de la Médula Espinal/embriología , Humanos , Asta Dorsal de la Médula Espinal/fisiología , Asta Ventral de la Médula Espinal/fisiología
5.
J Neurophysiol ; 112(3): 660-70, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24848463

RESUMEN

Motoneurons die following spinal cord trauma and with neurological disease. Intact axons reinnervate nearby muscle fibers to compensate for the death of motoneurons, but when an entire motoneuron pool dies, there is complete denervation. To reduce denervation atrophy, we have reinnervated muscles in Fisher rats from local transplants of embryonic motoneurons in peripheral nerve. Since growth of axons from embryonic neurons is activity dependent, our aim was to test whether brief electrical stimulation of the neurons immediately after transplantation altered motor unit numbers and muscle properties 10 wk later. All surgical procedures and recordings were done in anesthetized animals. The muscle consequences of motoneuron death were mimicked by unilateral sciatic nerve section. One week later, 200,000 embryonic day 14 and 15 ventral spinal cord cells, purified for motoneurons, were injected into the tibial nerve 10-15 mm from the gastrocnemii muscles as the only neuron source for muscle reinnervation. The cells were stimulated immediately after transplantation for up to 1 h using protocols designed to examine differential effects due to pulse number, stimulation frequency, pattern, and duration. Electrical stimulation that included short rests and lasted for 1 h resulted in higher motor unit counts. Muscles with higher motor unit counts had more reinnervated fibers and were stronger. Denervated muscles had to be stimulated directly to evoke contractions. These results show that brief electrical stimulation of embryonic neurons, in vivo, has long-term effects on motor unit formation and muscle force. This muscle reinnervation provides the opportunity to use patterned electrical stimulation to produce functional movements.


Asunto(s)
Estimulación Eléctrica , Neuronas Motoras/fisiología , Neuronas Motoras/trasplante , Músculo Esquelético/inervación , Animales , Muerte Celular/fisiología , Femenino , Contracción Muscular/fisiología , Desnervación Muscular , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Regeneración Nerviosa , Ratas Endogámicas F344 , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Asta Ventral de la Médula Espinal/embriología , Asta Ventral de la Médula Espinal/fisiología , Asta Ventral de la Médula Espinal/trasplante , Nervio Tibial/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...