Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.374
Filtrar
1.
Mol Biol Rep ; 51(1): 618, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38705956

RESUMEN

BACKGROUND: Astragalus membranaceus is a plant of the Astragalus genus, which is used as a traditional Chinese herbal medicine with extremely high medicinal and edible value. Astragalus mongholicus, as one of the representative medicinal materials with the same origin of medicine and food, has a rising market demand for its raw materials, but the quality is different in different production areas. Growth-regulating factors (GRF) are transcription factors unique to plants that play important roles in plant growth and development. Up to now, there is no report about GRF in A. mongholicus. METHODS AND RESULTS: This study conducted a genome-wide analysis of the AmGRF gene family, identifying a total of nine AmGRF genes that were classified into subfamily V based on phylogenetic relationships. In the promoter region of the AmGRF gene, we successfully predicted cis-elements that respond to abiotic stress, growth, development, and hormone production in plants. Based on transcriptomic data and real-time quantitative polymerase chain reaction (qPCR) validation, the results showed that AmGRFs were expressed in the roots, stems, and leaves, with overall higher expression in leaves, higher expression of AmGRF1 and AmGRF8 in roots, and high expression levels of AmGRF1 and AmGRF9 in stems. CONCLUSIONS: The results of this study provide a theoretical basis for the further exploration of the functions of AmGRFs in plant growth and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas , Factores de Transcripción , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/metabolismo , Familia de Multigenes , Genoma de Planta , Perfilación de la Expresión Génica/métodos , Regiones Promotoras Genéticas/genética , Planta del Astrágalo/genética , Planta del Astrágalo/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Fisiológico/genética , Transcriptoma/genética , Reguladores del Crecimiento de las Plantas/metabolismo
2.
BMC Plant Biol ; 24(1): 358, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698337

RESUMEN

BACKGROUND: Astragalus membranaceus var. mongholicus (Astragalus), acknowledged as a pivotal "One Root of Medicine and Food", boasts dual applications in both culinary and medicinal domains. The growth and metabolite accumulation of medicinal roots during the harvest period is intricately regulated by a transcriptional regulatory network. One key challenge is to accurately pinpoint the harvest date during the transition from conventional yield content of medicinal materials to high and to identify the core regulators governing such a critical transition. To solve this problem, we performed a correlation analysis of phenotypic, transcriptome, and metabolome dynamics during the harvesting of Astragalus roots. RESULTS: First, our analysis identified stage-specific expression patterns for a significant proportion of the Astragalus root genes and unraveled the chronology of events that happen at the early and later stages of root harvest. Then, the results showed that different root developmental stages can be depicted by co-expressed genes of Astragalus. Moreover, we identified the key components and transcriptional regulation processes that determine root development during harvest. Furthermore, through correlating phenotypes, transcriptomes, and metabolomes at different harvesting periods, period D (Nov.6) was identified as the critical period of yield and flavonoid content increase, which is consistent with morphological and metabolic changes. In particular, we identified a flavonoid biosynthesis metabolite, isoliquiritigenin, as a core regulator of the synthesis of associated secondary metabolites in Astragalus. Further analyses and experiments showed that HMGCR, 4CL, CHS, and SQLE, along with its associated differentially expressed genes, induced conversion of metabolism processes, including the biosynthesis of isoflavones and triterpenoid saponins substances, thus leading to the transition to higher medicinal materials yield and active ingredient content. CONCLUSIONS: The findings of this work will clarify the differences in the biosynthetic mechanism of astragaloside IV and calycosin 7-O-ß-D-glucopyranoside accumulation between the four harvesting periods, which will guide the harvesting and production of Astragalus.


Asunto(s)
Astragalus propinquus , Metabolómica , Fenotipo , Raíces de Plantas , Plantas Medicinales , Transcriptoma , Astragalus propinquus/metabolismo , Astragalus propinquus/genética , Astragalus propinquus/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Medicinales/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Perfilación de la Expresión Génica
3.
Molecules ; 29(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38675511

RESUMEN

Astragali radix is a traditional medicinal herb with a long history and wide application. It is frequently used in prescriptions with other medicinal materials to replenish Qi. According to the classics of traditional Chinese medicine, Astragali radix is attributed with properties such as Qi replenishing and surface solidifying, sore healing and muscle generating, and inducing diuresis to reduce edema. Modern pharmacological studies have demonstrated that some extracts and active ingredients in Astragali radix function as antioxidants. The polysaccharides, saponins, and flavonoids in Astragali radix offer beneficial effects in preventing and controlling diseases caused by oxidative stress. However, there is still a lack of comprehensive research on the effective components and molecular mechanisms through which Astragali radix exerts antioxidant activity. In this paper, we review the active components with antioxidant effects in Astragali radix; summarize the content, bioavailability, and antioxidant mechanisms; and offer a reference for the clinical application of Astragalus and the future development of novel antioxidants.


Asunto(s)
Antioxidantes , Astragalus propinquus , Medicamentos Herbarios Chinos , Antioxidantes/farmacología , Antioxidantes/química , Astragalus propinquus/química , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/farmacología , Humanos , Planta del Astrágalo/química , Estrés Oxidativo/efectos de los fármacos , Animales , Flavonoides/química , Flavonoides/farmacología , Medicina Tradicional China , Saponinas/farmacología , Saponinas/química
4.
Phytomedicine ; 128: 155412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38579666

RESUMEN

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.


Asunto(s)
Células HaCaT , Isoflavonas , Psoriasis , Transducción de Señal , Isoflavonas/farmacología , Psoriasis/tratamiento farmacológico , Animales , Transducción de Señal/efectos de los fármacos , Humanos , Ratones , Interferones , Supervivencia Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Inflamación/tratamiento farmacológico , Astragalus propinquus/química , Ratones Endogámicos BALB C , Masculino , Modelos Animales de Enfermedad
5.
Phytochemistry ; 222: 114072, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38561105

RESUMEN

Phytochemical investigations of the leaves of Astragalus membranaceus (Fisch.) Bge. have led to the isolation of 12 undescribed triterpenoid saponins named huangqiyenins M-X. The structures of the undescribed compounds were determined using NMR and HRESIMS data. The cytotoxicity of these compounds against the RKO and HT-29 colon cancer cell lines was evaluated. Among these compounds, huangqiyenin W exhibited the highest cytotoxic activity against RKO colon cancer cells, whereas huangqiyenin Q and W showed moderate cytotoxic activity against HT-29 colon cancer cells. The network pharmacology results indicated that STAT3, IL-2 and CXCR1 are the correlated targets of huangqiyenin W against colon cancer, with AGE-RAGE and Th17 cell differentiation as the key signaling pathways.


Asunto(s)
Antineoplásicos Fitogénicos , Astragalus propinquus , Saponinas , Triterpenos , Saponinas/química , Saponinas/farmacología , Saponinas/aislamiento & purificación , Humanos , Astragalus propinquus/química , Triterpenos/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Hojas de la Planta/química , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Interleucina-2/metabolismo , Células HT29
6.
Am J Chin Med ; 52(2): 513-539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38533568

RESUMEN

Aging can cause degenerative changes in multiple tissues and organs. Gastrointestinal diseases and dysfunctions are common in the elderly population. In this study, we investigated the effects of Astragalus membranaceus polysaccharide (APS) and Astragalus membranaceus ethanol extract (AEE) on age-related intestinal dysfunction and gut microbiota dysbiosis in naturally aging mice. The energy expenditure and physical activity of 23-month-old C57BL6/J mice were recorded using a metabolic cage system. Pathological changes in the intestine were evaluated using Alcian blue staining. The protein levels of leucine-rich repeats containing G protein-coupled receptor 5 (Lgr5) and Stat3 in the small intestine were determined using immunohistochemistry. The intestinal cell migration distance was assessed using bromodeoxyuridine (BrdU) immunofluorescence staining. The gene transcription levels of intestinal stem cell (ISC) markers and ISC-related signaling pathways were detected using quantitative real-time PCR (qRT-PCR). Microbiota analysis based on 16S rDNA was performed to evaluate the composition of the gut microbiota. APS and AEE improved a series of aging phenotypes in female but not in male aging mice. APS and AEE ameliorate intestinal dysfunction and histopathological changes in aging mice. APS had a more significant anti-aging effect than AEE, particularly on intestinal dysfunction. APS promotes ISC regeneration by activating the IL-22 signaling pathway. Cohousing (CH) experiments further confirmed that APS induced the IL-22 signaling pathway by increasing the abundance of Lactobacillus, thereby promoting the regeneration of ISCs. Our results show that APS may serve as a promising agent for improving age-related intestinal dysfunction.


Asunto(s)
Astragalus propinquus , Interleucina-22 , Anciano , Humanos , Ratones , Masculino , Femenino , Animales , Lactante , Preescolar , Astragalus propinquus/química , Intestinos , Transducción de Señal , Intestino Delgado , Células Madre , Polisacáridos/farmacología , Envejecimiento , Regeneración
7.
J Pharm Biomed Anal ; 244: 116125, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554553

RESUMEN

As a pivotal enzyme that regulates dephosphorylation in cell activities and participates in the insulin signaling pathway, protein tyrosine phosphatase 1B (PTP1B) is considered to be an important target for the therapy of diabetes. In this work, a rapid and efficient inhibitor screening method of PTP1B was established based on capillary electrophoresis (CE), and used for screening and evaluating the inhibition effect of Traditional Chinese Medicine on PTP1B. Response Surface Methodology was used for optimizing the conditions of analysis. After method validation, the enzyme kinetic study and inhibition test were performed. As a result, the IC50 of PTP1B inhibitors Ⅳ and ⅩⅧ were consistent with reported values measured by a conventional method. It was found that the extracts of Astragalus membranaceus (Fisch) Bunge and Morus alba L. showed prominent inhibition on the activity of PTP1B, which were stronger than the positive controls. Meanwhile, on top of the excellent advantages of CE, the whole analysis time is less than 2 min. Thus, the results demonstrated that a fast and efficient screening method was successfully developed. This method could be a powerful tool for screening inhibitors from complex systems. It can also provide an effective basis for lead compound development in drug discovery.


Asunto(s)
Medicamentos Herbarios Chinos , Electroforesis Capilar , Hipoglucemiantes , Medicina Tradicional China , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteína Tirosina Fosfatasa no Receptora Tipo 1/antagonistas & inhibidores , Proteína Tirosina Fosfatasa no Receptora Tipo 1/metabolismo , Electroforesis Capilar/métodos , Hipoglucemiantes/farmacología , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/química , Medicamentos Herbarios Chinos/análisis , Medicina Tradicional China/métodos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/análisis , Morus/química , Astragalus propinquus , Humanos , Cinética
8.
Arch Pharm Res ; 47(3): 165-218, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38493280

RESUMEN

Astragali Radix (A. Radix) is the dried root of Astragalus membranaceus var. mongholicus (Bge) Hsiao or Astragalus membranaceus (Fisch.) Bge., belonging to the family Leguminosae, which is mainly distributed in China. A. Radix has been consumed as a tonic in China for more than 2000 years because of its medicinal effects of invigorating the spleen and replenishing qi. Currently, more than 400 natural compounds have been isolated and identified from A. Radix, mainly including saponins, flavonoids, phenylpropanoids, alkaloids, and others. Modern pharmacological studies have shown that A. Radix has anti-tumor, anti-inflammatory, immunomodulatory, anti-atherosclerotic, cardioprotective, anti-hypertensive, and anti-aging effects. It has been clinically used in the treatment of tumors, cardiovascular diseases, and cerebrovascular complications associated with diabetes with few side effects and high safety. This paper reviewed the progress of research on its chemical constituents, pharmacological effects, clinical applications, developing applications, and toxicology, which provides a basis for the better development and utilization of A. Radix.


Asunto(s)
Planta del Astrágalo , Botánica , Medicamentos Herbarios Chinos , Saponinas , Planta del Astrágalo/química , Astragalus propinquus/química , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Saponinas/farmacología
9.
J Tradit Chin Med ; 44(2): 229-242, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504529

RESUMEN

OBJECTIVE: To assess the long-term effectiveness of Huangqi (Radix Astragali Mongolici, HQ)-based Traditional Chinese Medicine (TCM) in the treatment of diabetic peripheral neuropathy (DPN). METHODS: Nine databases were searched to retrieve available randomized controlled trials that compared HQ-based TCM and Western Medicines in the treatment of DPN. The methodological quality of the included studies was assessed using the Cochrane bias risk tool, and RevMan 5.4 was used for data analysis. The effect estimates of interest were risk ratio (RR), mean difference (MD) or standardized mean difference (SMD) with 95% confidence interval (CI). RESULTS: The results from 48 available studies assessing 3759 patients demonstrated that cases administered HQ-based TCM [RR = 1.30, 95% CI (1.21, 1.40), P < 0.000 01] or HQ-based TCM combined with Western Medicines [RR = 1.25, 95% CI (1.19, 1.31), P < 0.000 01] exhibited higher total efficacy rates than individuals who received Western Medicine alone. The results showed that the HQ-based TCM group had decreased Toronto Clinical Scoring System scores [MD =-1.50, 95% CI (-1.83, -1.17), P < 0.000 01], and reduced serum interleukin 6 [SMD = -0.57, 95% CI (-0.87, -0.27), P = 0.0002] and tumor necrosis factors-α levels [SMD = -0.60, 95% CI (-0.95, -0.25), P = 0.0009]. In addition, both HQ-based TCM and HQ-based TCM combined with Western Medicine increased nerve conduction velocity and decreased glycaemia compared with Western Medicine alone. In terms of blood lipids, oxidative stress and adverse drug reactions, there were no significant differences between the HQ-based TCM groups and the Western Medicine control group. CONCLUSION: The current Meta-analysis revealed that HQ-based TCM yields higher efficacy and safety than Western Medicine alone for the treatment of DPN, although further well-designed RCTs are required to validate these findings.


Asunto(s)
Astragalus propinquus , Diabetes Mellitus , Neuropatías Diabéticas , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China/métodos , Neuropatías Diabéticas/tratamiento farmacológico , Neuropatías Diabéticas/etiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Medicamentos Herbarios Chinos/efectos adversos , Diabetes Mellitus/tratamiento farmacológico
10.
J Tradit Chin Med ; 44(2): 324-333, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504538

RESUMEN

OBJECTIVE: To examine the nephroprotective mechanism of modified Huangqi Chifeng decoction (, MHCD) in immunoglobulin A nephropathy (IgAN) rats. METHODS: To establish the IgAN rat model, the bovine serum albumin, lipopolysaccharide, and carbon tetrachloride 4 method was employed. The rats were then randomly assigned to the control, model, telmisartan, and high-, medium-, and low-dose MHCD groups, and were administered the respective treatments via intragastric administration for 8 weeks. The levels of 24-h urinary protein, serum creatinine (CRE), and blood urea nitrogen (BUN) were measured in each group. Pathological alterations were detected. IgA deposition was visualized through the use of immunofluorescence staining. The ultrastructure of the kidney was observed using a transmission electron microscope. The expression levels of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-ß1 (TGF-ß1) were examined by immunohistochemistry and quantitative polymerase chain reaction. Levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) P65, were examined by immunohistochemistry, Western blotting, and quantitative polymerase chain reaction. RESULTS: The 24-h urine protein level in each group increased significantly at week 6, and worsen from then on. But this process can be reversed by treatments of telmisartan, and high-, medium-, and low-dose of MHCD, and these treatments did not affect renal function. Telmisartan, and high-, and medium-dose of MHCD reduced IgA deposition. Renal histopathology demonstrated the protective effect of high-, medium-, and low-dose of MHCD against kidney injury. The expression levels of MCP-1, IL-6, and TGF-ß1 in kidney tissues were downregulated by low, medium and high doses of MHCD treatment. Additionally, treatment of low, medium and high doses of MHCD decreased the protein and mRNA levels of TLR4, MyD88, and NF-κB. CONCLUSIONS: MHCD exerted nephroprotective effects on IgAN rats, and MHCD regulated the expressions of key targets in TLR4/MyD88/NF-κB signaling pathway, thereby alleviating renal inflammation by inhibiting MCP-1, IL-6 expressions, and ameliorating renal fibrosis by inhibiting TGF-ß1 expression.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Glomerulonefritis por IGA , Ratas , Animales , Glomerulonefritis por IGA/tratamiento farmacológico , Glomerulonefritis por IGA/genética , Glomerulonefritis por IGA/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Telmisartán/farmacología , Transducción de Señal , Inmunoglobulina A
11.
Carbohydr Polym ; 333: 121974, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38494227

RESUMEN

Astragalus membranaceus polysaccharide (APS) possesses excellent immunomodulatory activity. However, there are several studies on the structural characterization of APS. Here, we aimed to elucidate the repeating units of polysaccharides (APS1, 106.5 kDa; APS2, 114.5 kDa) obtained from different Astragalus membranaceus origins and further investigated their immunomodulatory activities. Based on structural analysis, types of the two polysaccharides were identified as arabinogalactan-I (AG-I) and arabinogalactan-II (AG-II), and co-elution of arabinogalactans (AGs) and α-glucan was observed. The backbone of AG-I was 1,4-linked ß-Galp occasionally substituted by α-Araf at O-2 and/or O-3. AG-II was a highly branched polysaccharide with long branches of α-Araf, which were attached to the O-3 of 1,6-linked ß-Galp of the backbone. The presence of AGs in A. membranaceus was confirmed for the first time. The two polysaccharides could promote the expression of IL-6, IL-1ß and TNF-α in RAW264.7 cells via MAPKs and NF-κB signaling pathways. The constants for APS1 and APS2 binding to Toll-like receptor 4 (TLR4) were 1.83 × 10-5 and 2.08 × 10-6, respectively. Notably, APS2 showed better immunomodulatory activity than APS1, possibly because APS2 contained more AGs. Hence, the results suggested that AGs were the vital components of APS in the immunomodulatory effect.


Asunto(s)
Astragalus propinquus , Galactanos , Galactanos/farmacología , Galactanos/química , Polisacáridos/farmacología , Polisacáridos/química , Transducción de Señal
12.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38426326

RESUMEN

Herbs applicability in disease treatment has been verified through experiences over thousands of years. The understanding of herb-disease associations (HDAs) is yet far from complete due to the complicated mechanism inherent in multi-target and multi-component (MTMC) botanical therapeutics. Most of the existing prediction models fail to incorporate the MTMC mechanism. To overcome this problem, we propose a novel dual-channel hypergraph convolutional network, namely HGHDA, for HDA prediction. Technically, HGHDA first adopts an autoencoder to project components and target protein onto a low-dimensional latent space so as to obtain their embeddings by preserving similarity characteristics in their original feature spaces. To model the high-order relations between herbs and their components, we design a channel in HGHDA to encode a hypergraph that describes the high-order patterns of herb-component relations via hypergraph convolution. The other channel in HGHDA is also established in the same way to model the high-order relations between diseases and target proteins. The embeddings of drugs and diseases are then aggregated through our dual-channel network to obtain the prediction results with a scoring function. To evaluate the performance of HGHDA, a series of extensive experiments have been conducted on two benchmark datasets, and the results demonstrate the superiority of HGHDA over the state-of-the-art algorithms proposed for HDA prediction. Besides, our case study on Chuan Xiong and Astragalus membranaceus is a strong indicator to verify the effectiveness of HGHDA, as seven and eight out of the top 10 diseases predicted by HGHDA for Chuan-Xiong and Astragalus-membranaceus, respectively, have been reported in literature.


Asunto(s)
Algoritmos , Astragalus propinquus , Benchmarking , Carbamatos
13.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38474045

RESUMEN

Although Astragalus membranaceus is known to have anti-inflammatory, anti-obesity, and anti-oxidant properties, the underlying apoptotic mechanism of Astragalus membranaceus extract has never been elucidated in prostate cancer. In this paper, the apoptotic mechanism of a water extract from the dried root of Astragalus membranaceus (WAM) was investigated in prostate cancer cells in association with heat shock protein 27 (HSP27)/androgen receptor (AR) signaling. WAM increased cytotoxicity and the sub-G1 population, cleaved poly (ADP-ribose) polymerase (PARP) and cysteine aspartyl-specific protease 3 (caspase 3), and attenuated the expression of B-cell lymphoma 2 (Bcl-2) in LNCaP cells after 24 h of exposure. Consistently, WAM significantly increased the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive LNCaP cells. WAM decreased the phosphorylation of HSP27 on Ser82 and inhibited the expression of the AR and prostate-specific antigen (PSA), along with reducing the nuclear translocation of p-HSP27 and the AR via the disturbed binding of p-HSP27 with the AR in LNCaP cells. WAM consistently inhibited the expression of the AR and PSA in dihydrotestosterone (DHT)-treated LNCaP cells. WAM also suppressed AR stability, both in the presence and absence of cycloheximide, in LNCaP cells. Taken together, these findings provide evidence that WAM induces apoptosis via the inhibition of HSP27/AR signaling in prostate cancer cells and is a potent anticancer candidate for prostate cancer treatment.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Antígeno Prostático Específico/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Especies Reactivas de Oxígeno , Astragalus propinquus/metabolismo , Neoplasias de la Próstata/metabolismo , Apoptosis , Línea Celular Tumoral
14.
Biomed Pharmacother ; 173: 116350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430632

RESUMEN

Diabetic peripheral neuropathy (DPN) is one of the most prevalent consequences of diabetes, with a high incidence and disability rate. The DPN's pathogenesis is extremely complex and yet to be fully understood. Persistent high glucose metabolism, nerve growth factor deficiency, microvascular disease, oxidative stress, peripheral nerve cell apoptosis, immune factors, and other factors have been implicated in the pathogenesis of DPN. Astragalus mongholicus is a commonly used plant used to treat DPN in clinical settings. Its rich chemical components mainly include Astragalus polysaccharide, Astragalus saponins, Astragalus flavones, etc., which play a vital role in the treatment of DPN. This review aimed to summarize the pathogenesis of DPN and the studies on the mechanism of the effective components of Astragalus mongholicus in treating DPN. This is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.


Asunto(s)
Planta del Astrágalo , Diabetes Mellitus , Neuropatías Diabéticas , Medicamentos Herbarios Chinos , Astragalus propinquus , Neuropatías Diabéticas/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124087, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38452458

RESUMEN

Radix Astragali is a medicinal herb with various physiological activities. There were high similarities among Radix Astragali samples from different regions owing to similarities in their major chemical compositions. Raman spectroscopy is a non-invasive and non-des- tructive technique that can be used in in-situ analysis of herbal samples. Dispersive Raman scattering, excited at 1064 nm, produced minimal fluorescence background and facilitated easy detection of the weak Raman signal. By moving the portable Raman probe point-by- point from the centre of the Radix Astragali sample to the margin, the spectral fingerprints, composed of dozens of Raman spectra representing the entire Radix Astragali samples, were obtained. Principal component analysis and partial least squares discriminant analysis (PLS-DA) were applied to the Radix Astragali spectral data to compare classification results, leading to efficient discrimination between genuine and counterfeit products. Furthermore, based on the PLS-DA model using data fusion combined with different pre- processing methods, the samples from Shanxi Province were separated from those belonging to other habitats. The as-proposed combination method can effectively improve the recognition rate and accuracy of identification of herbal samples, which can be a valuable tool for the identification of genuine medicinal herbs with uneven qualities and various origins.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Análisis Discriminante , Análisis de los Mínimos Cuadrados , Medicamentos Herbarios Chinos/química
16.
Phytomedicine ; 125: 155239, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38308917

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is a demyelination disorder caused by an overactive immune response. Its pathological characteristics include CNS inflammation, white matter demyelination, glial cell proliferation, and so on. Huangqi-Guizhi-Wuwu Decoction (HGWD), which is recorded in the Synopsis of the Golden Chamber, is used clinically for the therapy of MS, but its mechanism is still elusive. PURPOSE: This study was aimed to investigate the impact of HGWD on the classical animal model for MS, experimental autoimmune encephalomyelitis (EAE), and explore the underlying action mechanism. RESULTS: HGWD ameliorated the pathogenesis of EAE mice, and improved their neurobehavior and pathological tissue damage. Network pharmacology predictions revealed the action mechanism of HGWD in EAE mice might be related to its effect on the immune system of mice. HGWD effectively suppressed the inflammatory infiltration in CNS, while also preventing the elevation of CD4+T cells of mice with EAE. HGWD could increase the ratio of Treg cells, up-regulate the secretion of IL-10 and Foxp3 mRNA expression, inhibit the ratio of Th1 and Th17 cells, down-regulate the IFN-γ and IL-17 protein expression, as well as the RORγT and T-bet gene expression in EAE mice. In addition, HGWD-containing serum modulated Th1/Th17/Treg cell differentiation in vitro. Moreover, HGWD inhibited the p-JAK1, p-JAK2, p-STAT1, p-STAT3 and p-STAT4 proteins and elevated the p-STAT5 protein in lymphoid tissues of EAE mice. CONCLUSION: HGWD improved the progress of EAE by regulating the proportion of CD4+T cell subtype differentiation, which might be exerted through JAK/STAT signaling pathway, providing a pharmacological basis for the clinical treatment of MS.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Ratones , Animales , Medicamentos Herbarios Chinos/uso terapéutico , Esclerosis Múltiple/tratamiento farmacológico , Linfocitos T Reguladores/metabolismo , Diferenciación Celular , Ratones Endogámicos C57BL , Células Th17
17.
Drug Des Devel Ther ; 18: 259-275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318502

RESUMEN

Background: Astragalus membranaceus (AM) shows promise as a therapeutic agent for osteoarthritis (OA), a debilitating condition with high disability rates. OA exacerbation is linked to chondrocyte ferroptosis, yet the precise pharmacological mechanisms of AM remain unclear. Methods: We validated AM's protective efficacy in an anterior cruciate ligament transection (ACLT) mouse model of OA. The Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database was utilized to identify AM's active components and their targets. FerrDb (a database for regulators and markers of ferroptosis and ferroptosis-disease associations) pinpointed ferroptosis-related targets, while GeneCards, Online Mendelian Inheritance in Man (OMIM), Pharmacogenomics Knowledgebase (PharmGKB), Therapeutic Target Database (TTD), and DrugBank sourced OA-related genes. Molecular docking analysis further validated these targets. Ultimately, the validation of the results was accomplished through in vitro experiments. Results: AM exhibited anabolic effects and suppressed catabolism in OA chondrocytes. Network pharmacology identified 19 common genes, and molecular docking suggested quercetin, an AM constituent, interacts with key proteins like HO-1 and NRF2 to inhibit chondrocyte ferroptosis. In vitro experiments confirmed AM's ability to modulate the NRF2/HO-1 pathway via quercetin, mitigating chondrocyte ferroptosis. Conclusion: This study elucidates how AM regulates chondrocyte ferroptosis, impacting OA progression, providing a theoretical basis and experimental support for AM's scientific application.


Asunto(s)
Medicamentos Herbarios Chinos , Ferroptosis , Osteoartritis , Humanos , Animales , Ratones , Astragalus propinquus , Simulación del Acoplamiento Molecular , Factor 2 Relacionado con NF-E2 , Farmacología en Red , Quercetina , Bases de Datos Genéticas , Osteoartritis/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología
18.
Int Wound J ; 21(2): e14769, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38351506

RESUMEN

Postoperative wound infections (PWIs) pose a significant challenge in colorectal cancer surgeries, leading to prolonged hospital stays and increased morbidity. This systematic review and meta-analysis evaluated the efficacy of the traditional Chinese medicine (TCM) combination of Jie Geng and Huang Qi in reducing PWIs following colorectal cancer surgeries. Adhering to PRISMA guidelines, we focused on seven randomized controlled trials (RCTs) involving 1256 patients, examining the incidence of PWIs within 30 days post-surgery, alongside secondary outcomes such as length of hospital stay and antibiotic use. The analysis revealed a significant reduction in PWI incidence in the TCM-treated group compared to controls, with a Risk Ratio of 0.21 (95% CI: 0.14 to 0.30, p < 0.01), a notable decrease in hospital stay (Mean Difference: 1.2 days, 95% CI: 0.15 to 1.28 days, p < 0.01) and a significant reduction in antibiotic use (Risk Ratio: 0.24, 95% CI: 0.16 to 0.36, p < 0.01). These findings suggest that Jie Geng and Huang Qi in TCM could be an effective adjunct in postoperative care for colorectal cancer surgeries, underscoring the need for further high-quality RCTs to substantiate these results and explore the underlying mechanisms.


Asunto(s)
Astragalus propinquus , Neoplasias Colorrectales , Medicamentos Herbarios Chinos , Humanos , Medicina Tradicional China , Infección de la Herida Quirúrgica/prevención & control , Medicamentos Herbarios Chinos/uso terapéutico , Antibacterianos/uso terapéutico , Neoplasias Colorrectales/cirugía
19.
Carbohydr Res ; 536: 109053, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38310807

RESUMEN

The purity, content, and structure of the polysaccharides prepared from a specific medicinal plant are the fundamental basis to interpret the observed biological activities. An ultrafiltration-based method has been developed for rapid preparation of total and fractional polysaccharides from Radix Astragali in high yield and purity. This method involves extraction of plant material by hot water, treatment with Sevag reagent, and ultrafiltration using molecular weight cutoff concentrators. The prepared polysaccharides were assessed by 1H NMR spectroscopy, providing general purity, fingerprinting, and structural information. This method may be used to efficiently screen polysaccharides in plants.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Protones , Espectroscopía de Resonancia Magnética , Polisacáridos
20.
Medicine (Baltimore) ; 103(8): e37277, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394541

RESUMEN

BACKGROUND: Huangqi (Radix Astragali) is a natural medicine with a wide range of uses. The research related to Huangqi is getting hotter and the number of publications is gradually increasing. This study aims to explore the current status and emerging trends of Huangqi-related research. METHOD: Huangqi-related literature was systemically obtained from the Web of Science database. The CiteSpace, VOSviewer, and, R package "Bibliometrix" tools were used to analyze the number of publications, countries, research institutions, journals, authors, keywords, references, and trends. RESULTS: A total of 2255 papers were retrieved for analysis. These papers were written by 11,247 authors from 1927 institutions in 71 countries, published in 570 journals, and cited 73,534 references from 11,553 journals. From 1999 to 2022, the number of publications gradually increased. China was the country with the highest number of publications. The most prolific institution was Shanghai University of Chinese Medicine. Evidence-Based Complementary and Alternative Medicine was the journal publishing the most Huangqi-related literature. Dr Karl Wah Keung Tsim was the authors with the most output publications. The Review, entitle "Review of the Botanical Characteristics, Phytochemistry, and Pharmacology of Astragalus membranaceous (Huangqi)," was the reference being cited most frequently. The major keywords were apoptosis, oxidative stress, and inflammation. Gut microbiota and epithelial-mesenchymal transitions were new research hotspots in recent years. CONCLUSION: This study used quantitative and visual analysis of Huangqi to provide insights into the research priorities, frontier research hotspots, and future research trends in this field.


Asunto(s)
Astragalus propinquus , Medicamentos Herbarios Chinos , Plantas Medicinales , Humanos , China , Medicamentos Herbarios Chinos/uso terapéutico , Bibliometría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...