Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
J Neuroinflammation ; 18(1): 256, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34740378

RESUMEN

BACKGROUND: Neurotoxic microglia and astrocytes begin to activate and participate in pathological processes after spinal cord injury (SCI), subsequently causing severe secondary damage and affecting tissue repair. We have previously reported that photobiomodulation (PBM) can promote functional recovery by reducing neuroinflammation after SCI, but little is known about the underlying mechanism. Therefore, we aimed to investigate whether PBM ameliorates neuroinflammation by modulating the activation of microglia and astrocytes after SCI. METHODS: Male Sprague-Dawley rats were randomly divided into three groups: a sham control group, an SCI + vehicle group and an SCI + PBM group. PBM was performed for two consecutive weeks after clip-compression SCI models were established. The activation of neurotoxic microglia and astrocytes, the level of tissue apoptosis, the number of motor neurons and the recovery of motor function were evaluated at different days post-injury (1, 3, 7, 14, and 28 days post-injury, dpi). Lipocalin 2 (Lcn2) and Janus kinase-2 (JAK2)-signal transducer and activator of transcription-3 (STAT3) signaling were regarded as potential targets by which PBM affected neurotoxic microglia and astrocytes. In in vitro experiments, primary microglia and astrocytes were irradiated with PBM and cotreated with cucurbitacin I (a JAK2-STAT3 pathway inhibitor), an adenovirus (shRNA-Lcn2) and recombinant Lcn2 protein. RESULTS: PBM promoted the recovery of motor function, inhibited the activation of neurotoxic microglia and astrocytes, alleviated neuroinflammation and tissue apoptosis, and increased the number of neurons retained after SCI. The upregulation of Lcn2 and the activation of the JAK2-STAT3 pathway after SCI were suppressed by PBM. In vitro experiments also showed that Lcn2 and JAK2-STAT3 were mutually promoted and that PBM interfered with this interaction, inhibiting the activation of microglia and astrocytes. CONCLUSION: Lcn2/JAK2-STAT3 crosstalk is involved in the activation of neurotoxic microglia and astrocytes after SCI, and this process can be suppressed by PBM.


Asunto(s)
Astrocitos/efectos de la radiación , Terapia por Luz de Baja Intensidad , Microglía/efectos de la radiación , Recuperación de la Función/efectos de la radiación , Traumatismos de la Médula Espinal/patología , Animales , Astrocitos/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/efectos de la radiación , Lipocalina 2/metabolismo , Lipocalina 2/efectos de la radiación , Masculino , Microglía/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/efectos de la radiación , Transducción de Señal/efectos de la radiación , Traumatismos de la Médula Espinal/metabolismo , Regulación hacia Arriba
2.
Int J Mol Sci ; 22(22)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34830365

RESUMEN

BACKGROUND: Cerebral ischemia, a common cerebrovascular disease, is one of the great threats to human health and new targets for stroke therapy are needed. The transcriptional activity in the cell is regulated by epigenetic processes such as DNA methylation/demethylation, acetylation/deacetylation, histone methylation, etc. Changes in DNA methylation after ischemia can have both neuroprotective and neurotoxic effects depending on the degree of ischemia damage, the time elapsed after injury, and the site of methylation. METHODS: In this study, we investigated the changes in the expression and intracellular localization of DNA methyltransferase DNMT1, histone methyltransferases SUV39H1, and G9a in penumbra neurons and astrocytes at 4 and 24 h after stroke in the rat cerebral cortex using photothrombotic stroke (PTS) model. Methods of immunofluorescence microscopy analysis, apoptosis analysis, and immunoblotting were used. Additionally, we have studied the effect of DNMT1 and G9a inhibitors on the volume of PTS-induced infarction and apoptosis of penumbra cells in the cortex of mice after PTS. RESULTS: This study has shown that the level of DNMT1 increased in the nuclear and cytoplasmic fractions of the penumbra tissue at 24 h after PTS. Inhibition of DNMT1 by 5-aza-2'-deoxycytidine protected cells of PTS-induced penumbra from apoptosis. An increase in the level of SUV39H1 in the penumbra was found at 24 h after PTS and G9a was overexpressed at 4 and 24 h after PTS. G9a inhibitors A-366 and BIX01294 protected penumbra cells from apoptosis and reduced the volume of PTS-induced cerebral infarction. CONCLUSION: Thus, the data obtained show that DNA methyltransferase DNMT1 and histone methyltransferase G9a can be potential protein targets in ischemic penumbra cells, and their inhibitors are potential neuroprotective agents capable of protecting penumbra cells from postischemic damage to the cerebral cortex.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , N-Metiltransferasa de Histona-Lisina/genética , Metiltransferasas/genética , Neuronas/metabolismo , Proteínas Represoras/genética , Accidente Cerebrovascular/genética , Animales , Astrocitos/metabolismo , Astrocitos/efectos de la radiación , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de la radiación , Metilación de ADN/efectos de la radiación , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Humanos , Luz , Ratones , Neuronas/patología , Neuronas/efectos de la radiación , Ratas , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/terapia
3.
Cells ; 10(7)2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34359834

RESUMEN

Astrocytes act as neural stem cells (NSCs) that have the potential to self-renew and differentiate into other neuronal cells. The protein expression of these astrocytes depends on the stage of differentiation, showing sequential expression of multiple proteins such as octamer-binding transcription factor 4 (Oct4), nestin, glial fibrillary acidic protein (GFAP), and aldehyde dehydrogenase 1 family member L1 (aldh1L1). Photobiomodulation (PBM) affects cell apoptosis, proliferation, migration, and adhesion. We hypothesized that astrocyte proliferation and differentiation would be modulated by PBM. We used an optimized astrocyte culture method and a 660-nanometer light-emitting diode (LED) to enhance the biological actions of many kinds of cells. We determined that the 660-nanometer LED promoted the biological actions of cultured astrocytes by increasing the reactive oxygen species levels. The overall viability of the cultured cells, which included various cells other than astrocytes, did not change after LED exposure; however, astrocyte-specific proliferation was observed by the increased co-expression of GFAP and bromodeoxyuridine (BrdU)/Ki67. Furthermore, the 660-nanometer LED provides evidence of differentiation, as shown by the decreased Oct4 and GFAP co-expression and increased nestin and aldh1L1 expression. These results demonstrate that a 660-nanometer LED can modify astrocyte proliferation, which suggests the efficacy of the therapeutic application of LED in various pathological states of the central nervous system.


Asunto(s)
Astrocitos/efectos de la radiación , Proliferación Celular/efectos de la radiación , Expresión Génica/efectos de la radiación , Neuronas/efectos de la radiación , Animales , Apoptosis/genética , Apoptosis/efectos de la radiación , Astrocitos/citología , Astrocitos/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Adhesión Celular/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Movimiento Celular/efectos de la radiación , Técnicas de Cocultivo , Embrión de Mamíferos , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Láseres de Semiconductores , Luz , Nestina/genética , Nestina/metabolismo , Neuronas/citología , Neuronas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
4.
J Radiat Res ; 62(5): 793-803, 2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34062561

RESUMEN

The objective of the study was to describe cellular and molecular markers of radioprotection by anisomycin, focusing on the changes in rat brain tissue. Two-month-old Wistar rats were exposed to a 60Co radiation source at a dose of 6 Gy, with or without radioprotection with anisomycin (150 mg/kg) administered subcutaneously 30 min before or 3 or 6 h after irradiation. Survivors were analyzed 30 days after treatment. Astroglial and microglial responses were investigated based on the expression of glial markers assessed with immunohistochemistry, and quantitative changes in brain biomolecules were investigated by Raman microspectroscopy. In addition, blood plasma levels of pro-inflammatory (interleukin 6 and tumor necrosis factor α) and anti-inflammatory (interleukin 10) cytokines were assessed. We found that application of anisomycin either before or after irradiation significantly decreased the expression of the microglial marker Iba-1. We also found an increased intensity of Raman spectral bands related to nucleic acids, as well as an increased level of cytokines when anisomycin was applied after irradiation. This suggests that the radioprotective effects of anisomycin are by decreasing Iba-1 expression and stabilizing genetic material by increasing the level of nucleic acids.


Asunto(s)
Anisomicina/uso terapéutico , Encéfalo/efectos de la radiación , Irradiación Craneana/efectos adversos , Rayos gamma/efectos adversos , Traumatismos Experimentales por Radiación/metabolismo , Protectores contra Radiación/uso terapéutico , Animales , Anisomicina/farmacología , Astrocitos/efectos de los fármacos , Astrocitos/efectos de la radiación , Encéfalo/efectos de los fármacos , Proteínas de Unión al Calcio/biosíntesis , Proteínas de Unión al Calcio/genética , Radioisótopos de Cobalto , Citocinas/sangre , Proteínas de Microfilamentos/biosíntesis , Proteínas de Microfilamentos/genética , Microglía/efectos de los fármacos , Microglía/efectos de la radiación , Ácidos Nucleicos/metabolismo , Premedicación , Traumatismos Experimentales por Radiación/etiología , Traumatismos Experimentales por Radiación/prevención & control , Protectores contra Radiación/farmacología , Ratas , Ratas Wistar
5.
Theranostics ; 11(3): 1269-1294, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391534

RESUMEN

Neonatal hypoxic-ischemic (HI) injury is a severe complication often leading to neonatal death and long-term neurobehavioral deficits in children. Currently, the only treatment option available for neonatal HI injury is therapeutic hypothermia. However, the necessary specialized equipment, possible adverse side effects, and limited effectiveness of this therapy creates an urgent need for the development of new HI treatment methods. Photobiomodulation (PBM) has been shown to be neuroprotective against multiple brain disorders in animal models, as well as limited human studies. However, the effects of PBM treatment on neonatal HI injury remain unclear. Methods: Two-minutes PBM (808 nm continuous wave laser, 8 mW/cm2 on neonatal brain) was applied three times weekly on the abdomen of pregnant rats from gestation day 1 (GD1) to GD21. After neonatal right common carotid artery ligation, cortex- and hippocampus-related behavioral deficits due to HI insult were measured using a battery of behavioral tests. The effects of HI insult and PBM pretreatment on infarct size; synaptic, dendritic, and white matter damage; neuronal degeneration; apoptosis; mitochondrial function; mitochondrial fragmentation; oxidative stress; and gliosis were then assessed. Results: Prenatal PBM treatment significantly improved the survival rate of neonatal rats and decreased infarct size after HI insult. Behavioral tests revealed that prenatal PBM treatment significantly alleviated cortex-related motor deficits and hippocampus-related memory and learning dysfunction. In addition, mitochondrial function and integrity were protected in HI animals treated with PBM. Additional studies revealed that prenatal PBM treatment significantly alleviated HI-induced neuroinflammation, oxidative stress, and myeloid cell/astrocyte activation. Conclusion: Prenatal PBM treatment exerts neuroprotective effects on neonatal HI rats. Underlying mechanisms for this neuroprotection may include preservation of mitochondrial function, reduction of inflammation, and decreased oxidative stress. Our findings support the possible use of PBM treatment in high-risk pregnancies to alleviate or prevent HI-induced brain injury in the perinatal period.


Asunto(s)
Hipoxia-Isquemia Encefálica/radioterapia , Hipoxia/radioterapia , Isquemia/radioterapia , Animales , Animales Recién Nacidos , Apoptosis/efectos de la radiación , Astrocitos/efectos de la radiación , Corteza Cerebral/efectos de la radiación , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Masculino , Mitocondrias/efectos de la radiación , Neuronas/efectos de la radiación , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de la radiación , Embarazo , Ratas , Ratas Sprague-Dawley
6.
Cancer Res ; 81(8): 2101-2115, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33483373

RESUMEN

The tumor microenvironment plays an essential role in supporting glioma stemness and radioresistance. Following radiotherapy, recurrent gliomas form in an irradiated microenvironment. Here we report that astrocytes, when pre-irradiated, increase stemness and survival of cocultured glioma cells. Tumor-naïve brains increased reactive astrocytes in response to radiation, and mice subjected to radiation prior to implantation of glioma cells developed more aggressive tumors. Extracellular matrix derived from irradiated astrocytes were found to be a major driver of this phenotype and astrocyte-derived transglutaminase 2 (TGM2) was identified as a promoter of glioma stemness and radioresistance. TGM2 levels increased after radiation in vivo and in recurrent human glioma, and TGM2 inhibitors abrogated glioma stemness and survival. These data suggest that irradiation of the brain results in the formation of a tumor-supportive microenvironment. Therapeutic targeting of radiation-induced, astrocyte-derived extracellular matrix proteins may enhance the efficacy of standard-of-care radiotherapy by reducing stemness in glioma. SIGNIFICANCE: These findings presented here indicate that radiotherapy can result in a tumor-supportive microenvironment, the targeting of which may be necessary to overcome tumor cell therapeutic resistance and recurrence. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/8/2101/F1.large.jpg.


Asunto(s)
Astrocitos/enzimología , Neoplasias Encefálicas/radioterapia , Encéfalo/efectos de la radiación , Proteínas de Unión al GTP/metabolismo , Glioblastoma/radioterapia , Células Madre Neoplásicas , Transglutaminasas/metabolismo , Microambiente Tumoral/efectos de la radiación , Animales , Astrocitos/efectos de la radiación , Encéfalo/citología , Encéfalo/fisiología , Neoplasias Encefálicas/patología , Supervivencia Celular/fisiología , Inhibidores Enzimáticos/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/efectos de la radiación , Femenino , Proteínas de Unión al GTP/antagonistas & inhibidores , Glioblastoma/patología , Glioma/patología , Glioma/radioterapia , Humanos , Masculino , Ratones , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/patología , Células Madre Neoplásicas/fisiología , Proteína Glutamina Gamma Glutamiltransferasa 2 , Tolerancia a Radiación , Transglutaminasas/antagonistas & inhibidores , Microambiente Tumoral/fisiología
7.
Neurosci Lett ; 742: 135536, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33259929

RESUMEN

Glial cells, both astrocytes and microglia, play important roles in the induction and maintenance of neuroinflammation resulting in neuropathic pain. Pulsed radiofrequency (PRF) is applied to various nerves for the treatment of pain, although the molecular mechanism underlying its effects is still unclear. We herein investigated the genomic effects of PRF on a mouse cultured astrocyte cell line. PRF was applied to the cultured astrocytes in 20-msec pulses of 480 kHz every 500 msec, delivered at the rate of 2 Hz, for 30 min. PRF increased the expression of 2,431 genes and decreased that of 209 genes. Among these genes, 435 genes were upregulated >10-fold and 89 genes >30-fold, while no genes showed a 10-fold decrease in expression. A gene ontology analysis using the list of >10-fold upregulated genes showed that PRF treatment activated immune responses. A pathway analysis using the Kyoto Encyclopedia of Gene and Genomes with the same list detected seven pathways related to neuropathic pain. These findings suggest that PRF improves neuropathic pain via neuroimmunomodulation.


Asunto(s)
Astrocitos/metabolismo , Astrocitos/efectos de la radiación , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de la radiación , Tratamiento de Radiofrecuencia Pulsada/métodos , Animales , Células Cultivadas , Expresión Génica , Ratones , Células RAW 264.7 , Transducción de Señal/fisiología , Transducción de Señal/efectos de la radiación
8.
Neurotoxicology ; 82: 158-166, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33347902

RESUMEN

This study assesses and compares the neurotoxic effects of proton and photon radiation on mitochondrial function and DNA repair capabilities of human astrocytes. Human astrocytes received either proton (0.5 Gy and 3 Gy), photon (0.5 Gy and 3 Gy), or sham-radiation treatment. The mRNA expression level of the DNA repair protein OGG1 was determined via RT-qPCR. The levels of 8-OHdG in the cell media were measured via ELISA. Real-time kinetic analysis of extracellular oxygen consumption rates was performed to assess mitochondrial function. Radiation-induced changes in mitochondrial mass and oxidative activity were assessed using fluorescent imaging with MitoTracker™ Green FM and MitoTracker™ Orange CM-H2TMRos dyes respectively. PCR was used to quantify the alteration in the mitochondrial DNA content, measured as the mitochondrial to nuclear DNA ratio. A significant increase in mitochondrial mass and levels of reactive oxygen species was observed after radiation treatment. Additionally, real-time PCR analysis indicated a significant depletion of mitochondrial DNA content in the irradiated cells when compared to the control. This was accompanied by a decreased gene expression of the DNA base-excision repair protein OGG1 and reduced clearance of 8-OHdG adducts from the genome. Photon radiation treatment was associated with a more detrimental cellular impact when compared to the same dose of proton radiation. These results are indicative of a radiation-induced dose-dependent decrease in mitochondrial function, an increase in senescence and astrogliosis, and impairment of the DNA repair capabilities in healthy glial cells. Photon irradiation was associated with a more significant disruption in mitochondrial function and base-excision repair mechanisms in vitro in comparison to proton treatment.


Asunto(s)
8-Hidroxi-2'-Desoxicoguanosina/metabolismo , Astrocitos/efectos de la radiación , Reparación del ADN/efectos de la radiación , Mitocondrias/efectos de la radiación , Fotones/efectos adversos , Protones/efectos adversos , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Células Cultivadas , Reparación del ADN/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/efectos de la radiación , Transcriptoma/efectos de los fármacos , Transcriptoma/efectos de la radiación
9.
Biochem Biophys Res Commun ; 533(4): 657-664, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33019977

RESUMEN

Chronic exposure to stressors can disrupt normal brain function and induce anxiety-like behavior and neurobiological alterations in the basolateral amygdala (BLA). Here, we showed that unpredictable chronic mild stress (UCMS) induced anxiety-like behavior, lowered glutamatergic neuronal activity and reactive astrocytes in the BLA. Using optogenetic tools, we found that activation of BLA glutamatergic neurons did not rescue anxiety-like behavior in stressed mice. In contrast, however, optogenetic activation of the BLA astrocytes relieved stress-induced anxiety, and, interestingly, chronic optogenetic manipulation fully restored the UCMS-induced behavioral and neurobiological dysfunctions, including anxiety-like behavior, lower c-Fos expression in the BLA, S100 overexpression in the BLA, and higher serum corticosterone concentration. Thus, our findings suggest that chronic manipulation of BLA astrocytes is a potential therapeutic intervention target for pathological anxiety.


Asunto(s)
Ansiedad/fisiopatología , Astrocitos/efectos de la radiación , Complejo Nuclear Basolateral/efectos de la radiación , Neuronas/fisiología , Optogenética/métodos , Estrés Psicológico/fisiopatología , Animales , Astrocitos/metabolismo , Complejo Nuclear Basolateral/citología , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/patología , Corticosterona/sangre , Ratones , Proteínas Proto-Oncogénicas c-fos/metabolismo , Proteínas S100/metabolismo
10.
Int J Mol Sci ; 21(21)2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-33126773

RESUMEN

Pulsed electromagnetic fields (PEMFs) are emerging as an innovative, non-invasive therapeutic option in different pathological conditions of the central nervous system, including cerebral ischemia. This study aimed to investigate the mechanism of action of PEMFs in an in vitro model of human astrocytes, which play a key role in the events that occur following ischemia. 1321N1 cells were exposed to PEMFs or hypoxic conditions and the release of relevant neurotrophic and angiogenic factors, such as VEGF, EPO, and TGF-ß1, was evaluated by means of ELISA or AlphaLISA assays. The involvement of the transcription factor HIF-1α was studied by using the specific inhibitor chetomin and its expression was measured by flow cytometry. PEMF exposure induced a time-dependent, HIF-1α-independent release of VEGF from 1321N1 cells. Astrocyte conditioned medium derived from PEMF-exposed astrocytes significantly reduced the oxygen-glucose deprivation-induced cell proliferation and viability decrease in the neuron-like cells SH-SY5Y. These findings contribute to our understanding of PEMFs action in neuropathological conditions and further corroborate their therapeutic potential in cerebral ischemia.


Asunto(s)
Astrocitos/citología , Campos Electromagnéticos , Glucosa/deficiencia , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neuroblastoma/prevención & control , Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Astrocitos/metabolismo , Astrocitos/efectos de la radiación , Hipoxia de la Célula , Supervivencia Celular , Células Cultivadas , Regulación de la Expresión Génica , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neuroblastoma/etiología , Neuroblastoma/metabolismo , Neuroblastoma/patología , Sustancias Protectoras , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular/genética
11.
Mol Neurobiol ; 57(11): 4530-4548, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32748371

RESUMEN

Aquaporin 9 (AQP9) is an aquaglyceroporin that can transport lactate. Accumulating evidence suggests that astrocyte-to-neuron lactate shuttle (ANLS) plays a critical role in energy metabolism in neurons, including retinal ganglion cells (RGCs). To test the hypothesis that AQP9, in concert with monocarboxylate transporters (MCTs), participates in ANLS to maintain function and survival of RGCs, Aqp9-null mice and wild-type (WT) littermates were subjected to optic nerve crush (ONC) with or without intravitreal injection of an MCT2 inhibitor. RGC density was similar between the Aqp9-null mice and WT mice without ONC, while ONC resulted in significantly more RGC density reduction in the Aqp9-null mice than in the WT mice at day 7. Positive scotopic threshold response (pSTR) amplitude values were similar between the two groups without ONC, but were significantly more reduced in the Aqp9-null mice than in the WT mice 7days after ONC. MCT2 inhibitor injection accelerated RGC death and pSTR amplitude reduction only in the WT mice with ONC. Immunolabeling revealed that both RGCs and astrocytes expressed AQP9, that ONC predominantly reduced astrocytic AQP9 expression, and that MCTs 1, 2, and 4 were co-localized with AQP9 at the ganglion cell layer. These retinal MCTs were also co-immunoprecipitated with AQP9 in the WT mice. ONC decreased the co-immunoprecipitation of MCTs 1 and 4, but did not impact co-immunoprecipitation of MCT2. Retinal glucose transporter 1 expression was increased in Aqp9-null mice. Aqp9 gene deletion reduced and increased the intraretinal L-lactate and D-glucose concentrations, respectively. Results suggest that AQP9 acts as the ANLS to maintain function and survival of RGCs.


Asunto(s)
Acuaporinas/genética , Astrocitos/metabolismo , Eliminación de Gen , Ácido Láctico/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , Nervio Óptico/patología , Células Ganglionares de la Retina/patología , Animales , Acuaporinas/metabolismo , Acuaporinas/efectos de la radiación , Astrocitos/efectos de la radiación , Transporte Biológico/efectos de la radiación , Muerte Celular , Supervivencia Celular/efectos de la radiación , Adaptación a la Oscuridad/efectos de la radiación , Electrorretinografía , Metabolismo Energético/efectos de la radiación , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 3/metabolismo , Luz , Ratones Endogámicos C57BL , Ratones Noqueados , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Compresión Nerviosa , Neuronas/efectos de la radiación , Visión Nocturna/efectos de la radiación , Nervio Óptico/fisiopatología , Nervio Óptico/efectos de la radiación , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/efectos de la radiación , Umbral Sensorial/efectos de la radiación
12.
FASEB J ; 34(5): 6539-6553, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32202681

RESUMEN

Astrocytes are non-neuronal cells that govern the homeostatic regulation of the brain through ions and water transport, and Ca2+ -mediated signaling. As they are tightly integrated into neural networks, label-free tools that can modulate cell function are needed to evaluate the role of astrocytes in brain physiology and dysfunction. Using live-cell fluorescence imaging, pharmacology, electrophysiology, and genetic manipulation, we show that pulsed infrared light can modulate astrocyte function through changes in intracellular Ca2+ and water dynamics, providing unique mechanistic insight into the effect of pulsed infrared laser light on astroglial cells. Water transport is activated and, IP3 R, TRPA1, TRPV4, and Aquaporin-4 are all involved in shaping the dynamics of infrared pulse-evoked intracellular calcium signal. These results demonstrate that astrocyte function can be modulated with infrared light. We expect that targeted control over calcium dynamics and water transport will help to study the crucial role of astrocytes in edema, ischemia, glioma progression, stroke, and epilepsy.


Asunto(s)
Astrocitos/metabolismo , Calcio/metabolismo , Rayos Infrarrojos , Agua/metabolismo , Animales , Acuaporina 4/genética , Acuaporina 4/metabolismo , Astrocitos/citología , Astrocitos/efectos de la radiación , Transporte Biológico , Células Cultivadas , Homeostasis , Ratas , Transducción de Señal , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
13.
Brain Behav ; 10(4): e01529, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32106359

RESUMEN

BACKGROUND AND PURPOSE: Radiation-induced brain injury (RBI) usually occurs six months to three years after irradiation, often shows cognitive dysfunction, epilepsy, and other neurological dysfunction. In severe cases, it can cause a wide range of cerebral edema, even herniation. It seriously threatens the survival of patients and their quality of life, and it becomes a key factor in limiting the radiation dose and lowering the therapeutic efficacy in recent years. Therefore, studying the pathogenesis of RBI and exploring new therapeutic targets are of great significance. METHODS: In our study, we observed the activation and secretory function in astrocytes as well as the intracellular signal transducer and activator of transcription 3 (STAT3) signal transduction pathway activation status after exposing different doses of X-ray irradiation by using MTT, Immunocytologic analysis, and Western blot analysis. Further, we used the same way to explore the role of vascular endothelial growth factor (VEGF) in signal transduction pathways playing in the activation of astrocytes after irradiating through the use of specificInhivascular endothelial growth factorbitors of STAT3. RESULTS: Ast can be directly activated, reactive hyperplasia and hypertrophy, the expression of the activation marker glial fibrillary acidic protein is increased, and the expression of vascular endothelial growth factor (VEGF) in the cells is increased, which may lead to RBI. After the addition of STAT3 pathway inhibitor, most of the Ast radiation activation was suppressed, and the expression of high-level expression of VEGF decreased after irradiation. CONCLUSION: Our findings demonstrated that X-ray irradiation directly induced the activation of astrocytes in a persistent manner and X-ray irradiation activated STAT3 signaling pathway. As the same time, we found that X-ray irradiation induced the activation of astrocytes and secretion cytokine. The STAT3 signaling pathway may participate in the pathogenesis of radiation-induced brain injury.


Asunto(s)
Astrocitos/efectos de la radiación , Radiación Ionizante , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de la radiación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/efectos de la radiación , Proteína Ácida Fibrilar de la Glía/metabolismo , Ratas , Ratas Sprague-Dawley
14.
Cell Mol Neurobiol ; 40(1): 141-152, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31446561

RESUMEN

Spinal cord injury (SCI) stimulates reactive astrogliosis and the infiltration of macrophages, which interact with each other at the injured area. We previously found Photobiomodulation (PBM) significantly decreases the number of M1 macrophages at the injured area of SCI. But the exact nature of the astrocyte response following PBM and relationship with the macrophage have not been explored in detail. In this study, a BALB/c mice model with standardized bilateral spinal cord compression and a macrophage-astrocyte co-culture model were applied to study effects of PBM on astrocytes. Results showed that PBM inhibit the expression of the astrocyte markers glial fibrillary acidic protein (GFAP) and the secretion of chondroitin sulfate proteoglycans (CSPG) in the para-epicenter area, decrease the number of M1 macrophage in vivo. The in vitro experiments indicated M1 macrophages promote the cell viability of astrocytes and the expression of CSPG. However, PBM significantly inhibited the expression of GFAP, decreased activation of astrocyte, and downregulated the expression of CSPG by regulating M1 macrophages. These results demonstrate that PBM may regulate the interaction between macrophages and astrocytes after spinal cord injury, which inhibited the formation of glial scar.


Asunto(s)
Astrocitos/efectos de la radiación , Polaridad Celular/efectos de la radiación , Terapia por Luz de Baja Intensidad , Macrófagos/efectos de la radiación , Animales , Astrocitos/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Medios de Cultivo Condicionados/farmacología , Femenino , Proteína Ácida Fibrilar de la Glía/metabolismo , Macrófagos/efectos de los fármacos , Ratones Endogámicos BALB C , Actividad Motora/efectos de los fármacos , Actividad Motora/efectos de la radiación , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Recuperación de la Función/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/radioterapia
15.
PLoS One ; 14(11): e0224846, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31710637

RESUMEN

Optogenetically engineered human neural progenitors (hNPs) are viewed as promising tools in regenerative neuroscience because they allow the testing of the ability of hNPs to integrate within nervous system of an appropriate host not only structurally, but also functionally based on the responses of their differentiated progenies to light. Here, we transduced H9 embryonic stem cell-derived hNPs with a lentivirus harboring human channelrhodopsin (hChR2) and differentiated them into a forebrain lineage. We extensively characterized the fate and optogenetic functionality of hChR2-hNPs in vitro with electrophysiology and immunocytochemistry. We also explored whether the in vivo phenotype of ChR2-hNPs conforms to in vitro observations by grafting them into the frontal neocortex of rodents and analyzing their survival and neuronal differentiation. Human ChR2-hNPs acquired neuronal phenotypes (TUJ1, MAP2, SMI-312, and synapsin 1 immunoreactivity) in vitro after an average of 70 days of coculturing with CD1 astrocytes and progressively displayed both inhibitory and excitatory neurotransmitter signatures by immunocytochemistry and whole-cell patch clamp recording. Three months after transplantation into motor cortex of naïve or injured mice, 60-70% of hChR2-hNPs at the transplantation site expressed TUJ1 and had neuronal cytologies, whereas 60% of cells also expressed ChR2. Transplant-derived neurons extended axons through major commissural and descending tracts and issued synaptophysin+ terminals in the claustrum, endopiriform area, and corresponding insular and piriform cortices. There was no apparent difference in engraftment, differentiation, or connectivity patterns between injured and sham subjects. Same trends were observed in a second rodent host, i.e. rat, where we employed longer survival times and found that the majority of grafted hChR2-hNPs differentiated into GABAergic neurons that established dense terminal fields and innervated mostly dendritic profiles in host cortical neurons. In physiological experiments, human ChR2+ neurons in culture generated spontaneous action potentials (APs) 100-170 days into differentiation and their firing activity was consistently driven by optical stimulation. Stimulation generated glutamatergic and GABAergic postsynaptic activity in neighboring ChR2- cells, evidence that hChR2-hNP-derived neurons had established functional synaptic connections with other neurons in culture. Light stimulation of hChR2-hNP transplants in vivo generated complicated results, in part because of the variable response of the transplants themselves. Our findings show that we can successfully derive hNPs with optogenetic properties that are fully transferrable to their differentiated neuronal progenies. We also show that these progenies have substantial neurotransmitter plasticity in vitro, whereas in vivo they mostly differentiate into inhibitory GABAergic neurons. Furthermore, neurons derived from hNPs have the capacity of establishing functional synapses with postsynaptic neurons in vitro, but this outcome is technically challenging to explore in vivo. We propose that optogenetically endowed hNPs hold great promise as tools to explore de novo circuit formation in the brain and, in the future, perhaps launch a new generation of neuromodulatory therapies.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Células-Madre Neurales/citología , Neuronas/citología , Optogenética , Animales , Astrocitos/citología , Astrocitos/efectos de la radiación , Axones/metabolismo , Axones/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Linaje de la Célula/efectos de la radiación , Supervivencia Celular/efectos de la radiación , Channelrhodopsins/metabolismo , Células Madre Embrionarias Humanas/efectos de la radiación , Humanos , Lentivirus/metabolismo , Luz , Ratones Desnudos , Corteza Motora/metabolismo , Células-Madre Neurales/efectos de la radiación , Plasticidad Neuronal/efectos de la radiación , Neuronas/efectos de la radiación , Neurotransmisores/metabolismo , Fenotipo , Estimulación Luminosa , Ratas Desnudas , Transmisión Sináptica/efectos de la radiación
16.
Sci Rep ; 9(1): 9588, 2019 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-31270437

RESUMEN

Better survival rates among pediatric brain tumor patients have resulted in an increased awareness of late side effects that commonly appear following cancer treatment. Radiation-induced changes in hippocampus and white matter are well described, but do not explain the full range of neurological late effects in childhood cancer survivors. The aim of this study was to investigate thalamus following cranial irradiation (CIR) to the developing brain. At postnatal day 14, male mice pups received a single dose of 8 Gy CIR. Cellular effects in thalamus were assessed using immunohistochemistry 4 months after CIR. Interestingly, the density of neurons decreased with 35% (p = 0.0431) and the density of astrocytes increased with 44% (p = 0.011). To investigate thalamic astrocytes, S100ß+ cells were isolated by fluorescence-activated cell sorting and genetically profiled using next-generation sequencing. The phenotypical characterization indicated a disrupted function, such as downregulated microtubules' function, higher metabolic activity, immature phenotype and degraded ECM. The current study provides novel insight into that thalamus, just like hippocampus and white matter, is severely affected by CIR. This knowledge is of importance to understand the late effects seen in pediatric brain tumor survivors and can be used to give them the best suitable care.


Asunto(s)
Irradiación Craneana , Radiación Ionizante , Tálamo/efectos de la radiación , Animales , Astrocitos/citología , Astrocitos/metabolismo , Astrocitos/efectos de la radiación , Matriz Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Tálamo/metabolismo , Tálamo/patología
17.
Neurochem Res ; 44(7): 1755-1763, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31093903

RESUMEN

Overexpression of extracellular signal-regulated kinase ½ (ERK ½) signaling pathway leads to overproduction of reactive oxygen species (ROS) which induces oxidative stress. Coenzyme Q10 (CoQ10) scavenges ROS and protects cells against oxidative stress. The present study was designed to examine whether the protection of Coenzyme Q10 against oxidative damage in astrocytes is through regulating ERK 1/2 pathway. Ultraviolet B (UVB) irradiation was chosen as a tool to induce oxidative stress. Murine astrocytes were treated with 10 µg/ml and 25 µg/ml of CoQ10 for 24 h prior to UVB and maintained during UVB and 24 h post-UVB. Cell viability was evaluated by counting viable cells and MTT conversion assay. ROS production was measured using fluorescent probes. Levels of p-ERK 1/2, ERK 1/2, p-PKA, PKA were detected using immunocytochemistry and/or Western blotting. The results showed that UVB irradiation decreased the number of viable cells. This damaging effect was associated with accumulation of ROS and elevations of p-ERK 1/2 and p-PKA. Treatment with CoQ10 at 25 µg/ml significantly increased the number of viable cells and prevented the UVB-induced increases of ROS, p-ERK 1/2, and p-PKA. It is concluded that suppression of the PKA-ERK 1/2 signaling pathway may be one of the important mechanisms by which CoQ10 protects astrocytes from UVB-induced oxidative damage.


Asunto(s)
Astrocitos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Estrés Oxidativo/efectos de la radiación , Protectores contra Radiación/farmacología , Transducción de Señal/efectos de los fármacos , Ubiquinona/análogos & derivados , Animales , Astrocitos/efectos de la radiación , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Succinato Deshidrogenasa/metabolismo , Ubiquinona/farmacología , Rayos Ultravioleta
18.
Neuroscience ; 408: 46-57, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30953670

RESUMEN

Amyloid beta peptide (Aß) is implicated in the development of pathological reactions associated with Alzheimer's disease (AD), such as oxidative stress, neuro-inflammation and death of brain cells. Current pharmacological approaches to treat AD are not able to control the deposition of Aß and suppression of Aß-induced cellular response. There is a growing body of evidence that exposure to radiofrequency electromagnetic field (RF-EMF) causes a decrease of beta-amyloid deposition in the brains and provides cognitive benefits to Alzheimer's Tg mice. Herein, we investigated the effects of mobile phone radiofrequency EMF of 918 MHz on reactive oxygen species (ROS) formation, mitochondrial membrane potential (MMP), activity of NADPH-oxidase, and phosphorylation of p38MAPK and ERK1/2 kinases in human and rat primary astrocytes in the presence of Aß42 and H2O2. Our data demonstrate that EMF is able to reduce Aß42- and H2O2-induced cellular ROS, abrogate Aß42-induced production of mitochondrial ROS and the co-localization between the cytosolic (p47-phox) and membrane (gp91-phox) subunits of NADPH oxidase, while increasing MMP, and inhibiting H2O2-induced phosphorylation of p38MAPK and ERK1/2 in primary astrocytes. Yet, EMF was not able to modulate alterations in the phosphorylation state of the MAPKs triggered by Aß42. Our findings provide an insight into the mechanisms of cellular and molecular responses of astrocytes on RF-EMF exposure and indicate the therapeutic potential of RF-EMF for the treatment of Alzheimer's disease.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Astrocitos/efectos de la radiación , Campos Electromagnéticos , Estrés Oxidativo/efectos de la radiación , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Teléfono Celular , Humanos , Peróxido de Hidrógeno/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de la radiación , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación
19.
Anticancer Res ; 39(2): 759-769, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30711955

RESUMEN

BACKGROUND/AIM: Strategies to enhance the therapeutic ratio of radiotherapy in glioblastoma are warranted. Our aim was to report a novel DNA methyltransferase inhibitor as a potential radiosensitizing agent in glioblastoma. MATERIALS AND METHODS: Four glioblastoma cell lines and one normal astrocyte cell line were incubated with a newly-synthetized phthalimido-alkanamide derivative, MA17, and its radiosensitizing effects were assessed. We performed a tumor growth delay assay in two glioblastoma lines: U87MG and U138MG. We evaluated DNA methyltransferase (DNMT) inhibition, apoptosis, autophagy, DNA damage repair, and FANCA expression. RESULTS: MA17 radiosensitized all glioblastoma cells (all p<0.05), but it did not affect normal astrocytes (p=0.193). MA17 significantly prolonged the mean tumor doubling time in vivo, in cells treated in addition with radiotherapy, compared to radiotherapy alone (p<0.05). DNMT activity was down-regulated, and apoptosis and autophagy were induced by MA17. Double-stranded DNA break foci were observed for prolonged periods in cells treated with MA17. FANCA expression was also inhibited. CONCLUSION: A novel phthalimido-alkanamide derivative demonstrated significant radiosensitization in glioblastoma cells in vitro and in vivo. Further investigation is needed to translate these results to the clinic.


Asunto(s)
Alcanos/farmacología , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Ftalimidas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Animales , Apoptosis , Astrocitos/efectos de los fármacos , Astrocitos/efectos de la radiación , Autofagia , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Reparación del ADN , Proteína del Grupo de Complementación A de la Anemia de Fanconi/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Ftalimidas/uso terapéutico , Tolerancia a Radiación/efectos de los fármacos
20.
ACS Appl Mater Interfaces ; 11(5): 4889-4899, 2019 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-30638362

RESUMEN

Blast-induced traumatic brain injury (bTBI) can result in cell/tissue damage and lead to clinical and neuropsychiatric symptoms. Shock waves from a blast propagate through the brain and initiate cascades of mechanical and physiological events that can adversely affect the brain function. Although studies using animal models and brain slices have shown macroscale changes in the brain tissue in response to blast, systematic elucidation of coupling mechanisms is currently lacking. One mechanism that has been postulated and demonstrated repeatedly is the blast-induced generation and subsequent collapse of micron-size bubbles (i.e., microcavitation). Using a custom-designed exposure system, we have previously reported that upon collapsing of microbubbles, astrocytes exhibited changes in the cell viability, cellular biomechanics, production of reactive oxygen species, and activation of apoptotic signaling pathways. In this paper, we have applied microfabrication techniques and seeded astrocytes in a spatially controlled manner to determine the extent of cell damage from the site of the collapse of microbubbles. Such a novel experimental design is proven to facilitate our effort to examine the altered cell viability and functionality by monitoring the transient calcium spiking activity in real-time. We now report that the effect of microcavitation depends on the distance from which cells are seeded, and the cell functionality assessed by calcium dynamics is significantly diminished in the cells located within ∼800 µm of the collapsing microbubbles. Both calcium influx across the cell membrane via N-type calcium channels and intracellular calcium store are altered in response to microcavitation. Finally, the FDA-approved poloxamer 188 (P188) was used to reconstitute the compromised cell membrane and restore the cell's reparative capability. This finding may lead to a feasible treatment for partially mitigating the tissue damage associated with bTBI.


Asunto(s)
Astrocitos , Traumatismos por Explosión/fisiopatología , Lesiones Traumáticas del Encéfalo/fisiopatología , Supervivencia Celular , Modelos Biológicos , Animales , Astrocitos/citología , Astrocitos/fisiología , Astrocitos/efectos de la radiación , Calcio/metabolismo , Señalización del Calcio/fisiología , Señalización del Calcio/efectos de la radiación , Línea Celular , Supervivencia Celular/fisiología , Supervivencia Celular/efectos de la radiación , Técnicas Citológicas , Ondas de Choque de Alta Energía , Ratones , Microburbujas , Tamaño de la Partícula , Poloxámero/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...