Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.161
Filtrar
1.
Int J Mol Sci ; 23(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35163053

RESUMEN

Astrocytes and microglia are the first cells to react to neurodegeneration, e.g., in Alzheimer's disease (AD); however, the data on changes in glial support during the most common (sporadic) type of the disease are sparse. Using senescence-accelerated OXYS rats, which simulate key characteristics of sporadic AD, and Wistar rats (parental normal strain, control), we investigated hippocampal neurogenesis and glial changes during AD-like pathology. Using immunohistochemistry, we showed that the early stage of the pathology is accompanied by a lower intensity of neurogenesis and decreased astrocyte density in the dentate gyrus. The progressive stage is concurrent with reactive astrogliosis and microglia activation, as confirmed by increased cell densities and by the acquisition of cell-specific gene expression profiles, according to transcriptome sequencing data. Besides, here, we continued to analyze the anti-AD effects of prolonged supplementation with mitochondria-targeted antioxidant SkQ1. The antioxidant did not affect neurogenesis, partly normalized the gene expression profile of astrocytes and microglia, and shifted the resting/activated microglia ratio toward a decrease in the activated-cell density. In summary, both astrocytes and microglia are more vulnerable to AD-associated neurodegeneration in the CA3 area than in other hippocampal areas; SkQ1 had an anti-inflammatory effect and is a promising modality for AD prevention and treatment.


Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Enfermedad de Alzheimer/patología , Giro Dentado/patología , Plastoquinona/análogos & derivados , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/genética , Animales , Astrocitos/química , Astrocitos/efectos de los fármacos , Astrocitos/patología , Giro Dentado/química , Giro Dentado/efectos de los fármacos , Suplementos Dietéticos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Plastoquinona/administración & dosificación , Plastoquinona/farmacología , Ratas , Ratas Wistar
2.
J Neurosci ; 42(4): 567-580, 2022 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-34872929

RESUMEN

Astrocytes are the most abundant glial cell in the brain and perform a wide range of tasks that support neuronal function and circuit activities. There is emerging evidence that astrocytes exhibit molecular and cellular heterogeneity; however, whether distinct subpopulations perform these diverse roles remains poorly defined. Here we show that the Lunatic Fringe-GFP (Lfng-GFP) bacteria artificial chromosome mouse line from both sexes specifically labels astrocyte populations within lamina III and IV of the dorsal spinal cord. Transcriptional profiling of Lfng-GFP+ astrocytes revealed unique molecular profiles, featuring an enriched expression of Notch- and Wnt- pathway components. Leveraging CRE-DOG viral tools, we ablated Lfng-GFP+ astrocytes, which decreased neuronal activity in lamina III and IV and impaired mechanosensation associated with light touch. Together, our findings identify Lfng-GFP+ astrocytes as a unique subpopulation that occupies a distinct anatomic location in the spinal cord and directly contributes to neuronal function and sensory responses.SIGNIFICANCE STATEMENT Astrocytes are the most abundant glial cell in the CNS, and their interactions with neurons are essential for brain function. However, understanding the functional diversity of astrocytes has been hindered because of the lack of reporters that mark subpopulations and genetic tools for accessing them. We discovered that the Lfng-GFP reporter mouse labels a laminae-specific subpopulation of astrocytes in the dorsal spinal cord and that ablation of these astrocytes reduces glutamatergic synapses. Further analysis revealed that these astrocytes have a role in maintaining sensory-processing circuity related to light touch.


Asunto(s)
Astrocitos/química , Astrocitos/fisiología , Glicosiltransferasas/análisis , Proteínas Fluorescentes Verdes/análisis , Percepción/fisiología , Animales , Femenino , Glicosiltransferasas/deficiencia , Glicosiltransferasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Médula Espinal/química , Médula Espinal/fisiología
3.
STAR Protoc ; 2(4): 101009, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34950888

RESUMEN

Characterizing the molecular signature of a cell subtype leads to a better understanding of cell diversity, as this molecular data can identify new cellular markers and offer insights about cell function. Here, we describe an efficient protocol to separate a subtype of astrocytes, the Olig2-AS, from other glial cells by using a double reporter mouse approach and to determine the transcriptome profile of the Olig2-AS from the postnatal spinal cord using RNA-sequencing analysis. For complete details on the use and execution of this protocol, please refer to Ohayon et al. (2021).


Asunto(s)
Astrocitos/citología , Citometría de Flujo/métodos , RNA-Seq/métodos , Transcriptoma/genética , Animales , Astrocitos/química , Astrocitos/metabolismo , Ratones , Ratones Transgénicos , Neuroglía/citología , Médula Espinal/citología
4.
ACS Chem Biol ; 16(12): 2798-2807, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34825823

RESUMEN

The overexpression of PED/PEA15, the phosphoprotein enriched in diabetes/phosphoprotein enriched in the astrocytes 15 protein (here referred simply to as PED), observed in some forms of type II diabetes, reduces the transport of insulin-stimulated glucose by binding to the phospholipase D1 (PLD1). The inhibition of the PED/PLD1 interaction was shown to restore basal glucose transport, indicating PED as a pharmacological target for the development of drugs capable of improving insulin sensitivity and glucose tolerance. We here report the identification and selection of PED ligands by means of NMR screening of a library of small organic molecules, NMR characterization of the PED/PLD1 interaction in lysates of cells expressing PLD1, and modulation of such interactions using BPH03, the best selected ligand. Overall, we complement the available literature data by providing detailed information on the structural determinants of the PED/PLD1 interaction in a cellular lysate environment and indicate BPH03 as a precious scaffold for the development of novel compounds that are able to modulate such interactions with possible therapeutic applications in type II diabetes.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Astrocitos/química , Diabetes Mellitus Tipo 2/metabolismo , Fragmentos de Péptidos/química , Fosfolipasa D/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Transporte Biológico , Microambiente Celular , Glucosa , Humanos , Resistencia a la Insulina , Ligandos , Simulación del Acoplamiento Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Conformación Proteica , Termodinámica
5.
Nature ; 599(7883): 102-107, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34616039

RESUMEN

Astrocytes regulate the response of the central nervous system to disease and injury and have been hypothesized to actively kill neurons in neurodegenerative disease1-6. Here we report an approach to isolate one component of the long-sought astrocyte-derived toxic factor5,6. Notably, instead of a protein, saturated lipids contained in APOE and APOJ lipoparticles mediate astrocyte-induced toxicity. Eliminating the formation of long-chain saturated lipids by astrocyte-specific knockout of the saturated lipid synthesis enzyme ELOVL1 mitigates astrocyte-mediated toxicity in vitro as well as in a model of acute axonal injury in vivo. These results suggest a mechanism by which astrocytes kill cells in the central nervous system.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Muerte Celular/efectos de los fármacos , Lípidos/química , Lípidos/toxicidad , Animales , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/toxicidad , Elongasas de Ácidos Grasos/deficiencia , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Femenino , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Noqueados , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neurotoxinas/química , Neurotoxinas/toxicidad
7.
Fluids Barriers CNS ; 18(1): 43, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34544422

RESUMEN

BACKGROUND: The pathways that control protein transport across the blood-brain barrier (BBB) remain poorly characterized. Despite great advances in recapitulating the human BBB in vitro, current models are not suitable for systematic analysis of the molecular mechanisms of antibody transport. The gaps in our mechanistic understanding of antibody transcytosis hinder new therapeutic delivery strategy development. METHODS: We applied a novel bioengineering approach to generate human BBB organoids by the self-assembly of astrocytes, pericytes and brain endothelial cells with unprecedented throughput and reproducibility using micro patterned hydrogels. We designed a semi-automated and scalable imaging assay to measure receptor-mediated transcytosis of antibodies. Finally, we developed a workflow to use CRISPR/Cas9 gene editing in BBB organoid arrays to knock out regulators of endocytosis specifically in brain endothelial cells in order to dissect the molecular mechanisms of receptor-mediated transcytosis. RESULTS: BBB organoid arrays allowed the simultaneous growth of more than 3000 homogenous organoids per individual experiment in a highly reproducible manner. BBB organoid arrays showed low permeability to macromolecules and prevented transport of human non-targeting antibodies. In contrast, a monovalent antibody targeting the human transferrin receptor underwent dose- and time-dependent transcytosis in organoids. Using CRISPR/Cas9 gene editing in BBB organoid arrays, we showed that clathrin, but not caveolin, is required for transferrin receptor-dependent transcytosis. CONCLUSIONS: Human BBB organoid arrays are a robust high-throughput platform that can be used to discover new mechanisms of receptor-mediated antibody transcytosis. The implementation of this platform during early stages of drug discovery can accelerate the development of new brain delivery technologies.


Asunto(s)
Anticuerpos/metabolismo , Bioingeniería/métodos , Barrera Hematoencefálica/metabolismo , Organoides/metabolismo , Receptores de Transferrina/metabolismo , Transcitosis/fisiología , Animales , Anticuerpos/análisis , Astrocitos/química , Astrocitos/metabolismo , Barrera Hematoencefálica/química , Barrera Hematoencefálica/citología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/química , Células Endoteliales/metabolismo , Humanos , Organoides/química , Organoides/citología , Pericitos/química , Pericitos/metabolismo , Receptores de Transferrina/análisis
8.
Mitochondrion ; 59: 105-112, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33933660

RESUMEN

Brain-enriched microRNA-338 (miR-338) is known to play a central role in brain mitochondrial function, however the role of miR-338 in stroke injury remains unknown. This study investigated the role of miR-338 in injury from transient focal cerebral ischemia in mice, and in cell survival and mitochondrial function after in vitro ischemia in astrocyte and neuronal cultures. Pre-treatment of mice with intracerebroventricular injection of miR-338 antagomir 24 h prior to 1 h of middle cerebral artery occlusion (MCAO) significantly reduced infarct size and improved neurological score at both 24 h and 7d after injury. Levels of the miR-338 target cytochrome-c oxidase subunit 4I1 (COX4I1), which plays an essential role in maintaining brain mitochondrial ATP production, were increased in miR-338 antagomir-treated mice. Mouse primary astrocyte cell cultures subjected to glucose deprivation exhibited increased cell survival when pre-treated with miR-338 inhibitor, and greater cell death with miR-338 mimic. Decreased miR-338 levels were associated with increased ATP production, augmented cytochrome c oxidative (CcO) activity and preservation of COX4I1. In vitro protection with miR-338 inhibitor was blocked by concurrent knockdown of COX4I1 with small interfering RNA. Parallel studies in mouse neuronal N2a cultures resulted in preserved ATP content and CcO activity with miR-338 inhibition, indicating a shared miR-338-dependent response to ischemic stress between brain cell types. These results suggest that miR-338 inhibition and/or COX4I1-targeted therapies may be novel clinical strategies to protect against stroke injury via preservation of mitochondrial function in multiple cell types.


Asunto(s)
Astrocitos/citología , Isquemia Encefálica/genética , Complejo IV de Transporte de Electrones/genética , MicroARNs/genética , Mitocondrias/metabolismo , Neuronas/citología , Animales , Astrocitos/química , Isquemia Encefálica/etiología , Isquemia Encefálica/metabolismo , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/química , Cultivo Primario de Células
9.
Mol Cell Endocrinol ; 528: 111230, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33675864

RESUMEN

Despite advances in treatment of lethal prostate cancer, the incidence of prostate cancer brain metastases is increasing. In this sense, we analyzed the molecular profile, as well as the functional consequences involved in the reciprocal interactions between prostate tumor cells and human astrocytes. We observed that the DU145 cells, but not the LNCaP cells or the RWPE-1 cells, exhibited more pronounced, malignant and invasive phenotypes along their interactions with astrocytes. Moreover, global gene expression analysis revealed several genes that were differently expressed in our co-culture models with the overexpression of GLIPR1 and SPARC potentially representing a molecular signature associated with the invasion of central nervous system by prostate malignant cells. Further, these results were corroborated by immunohistochemistry and in silico analysis. Thus, we conjecture that the data here presented may increase the knowledge about the molecular mechanisms associated with the invasion of CNS by prostate malignant cells.


Asunto(s)
Neoplasias Encefálicas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Osteonectina/genética , Osteonectina/metabolismo , Neoplasias de la Próstata/genética , Células A549 , Animales , Astrocitos/química , Astrocitos/citología , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Regulación hacia Arriba
10.
Neurochem Res ; 46(3): 595-610, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33398638

RESUMEN

Astrocytes are major producers of the extracellular matrix (ECM), which is involved in the plasticity of the developing brain. In utero alcohol exposure alters neuronal plasticity. Glycosaminoglycans (GAGs) are a family of polysaccharides present in the extracellular space; chondroitin sulfate (CS)- and heparan sulfate (HS)-GAGs are covalently bound to core proteins to form proteoglycans (PGs). Hyaluronic acid (HA)-GAGs are not bound to core proteins. In this study we investigated the contribution of astrocytes to CS-, HS-, and HA-GAG production by comparing the makeup of these GAGs in cortical astrocyte cultures and the neonatal rat cortex. We also explored alterations induced by ethanol in GAG and core protein levels in astrocytes. Finally, we investigated the relative expression in astrocytes of CS-PGs of the lectican family of proteins, major components of the brain ECM, in vivo using translating ribosome affinity purification (TRAP) (in Aldh1l1-EGFP-Rpl10a mice. Cortical astrocytes produce low levels of HA and show low expression of genes involved in HA biosynthesis compared to the whole developing cortex. Astrocytes have high levels of chondroitin-0-sulfate (C0S)-GAGs (possibly because of a higher sulfatase enzyme expression) and HS-GAGs. Ethanol upregulates C4S-GAGs as well as brain-specific lecticans neurocan and brevican, which are highly enriched in astrocytes of the developing cortex in vivo. These results begin to elucidate the role of astrocytes in the biosynthesis of CS- HS- and HA-GAGs, and suggest that ethanol-induced alterations of neuronal development may be in part mediated by increased astrocyte GAG levels and neurocan and brevican expression.


Asunto(s)
Astrocitos/metabolismo , Corteza Cerebral/metabolismo , Disacáridos/metabolismo , Etanol/farmacología , Glicosaminoglicanos/metabolismo , Animales , Animales Recién Nacidos , Astrocitos/química , Astrocitos/efectos de los fármacos , Brevicano/metabolismo , Corteza Cerebral/química , Corteza Cerebral/efectos de los fármacos , Sulfatos de Condroitina/análisis , Sulfatos de Condroitina/metabolismo , Disacáridos/análisis , Femenino , Glicosaminoglicanos/análisis , Heparitina Sulfato/análisis , Heparitina Sulfato/metabolismo , Ácido Hialurónico/análisis , Ácido Hialurónico/metabolismo , Neurocano/metabolismo , Embarazo , Ratas Sprague-Dawley
11.
J Comp Neurol ; 529(4): 802-810, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32639590

RESUMEN

Astrocytes, a highly heterogeneous population of glial cells, serve as essential regulators of brain development and homeostasis. The heterogeneity of astrocyte populations underlies the diversity in their functions. In addition to the typical mammalian astrocyte architecture, the cerebral cortex of humans exhibits a radial distribution of interlaminar astrocytes in the supragranular layers. These primate-specific interlaminar astrocytes are located in the superficial layer and project long processes traversing multiple layers of the cerebral cortex. However, due to the lack of accessible experimental models, their functional properties and their role in regulating neuronal circuits remain unclear. Here we modeled human interlaminar astrocytes in humanized glial chimeric mice by engrafting astrocytes differentiated from human-induced pluripotent stem cells into the mouse cortex. This model provides a novel platform for understanding neuron-glial interaction and its alterations in neurological diseases.


Asunto(s)
Astrocitos/química , Astrocitos/fisiología , Corteza Cerebral/química , Corteza Cerebral/fisiología , Células Madre Pluripotentes Inducidas/química , Células Madre Pluripotentes Inducidas/fisiología , Adolescente , Animales , Células Cultivadas , Corteza Cerebral/citología , Femenino , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Transgénicos
12.
J Cereb Blood Flow Metab ; 41(3): 617-629, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32423333

RESUMEN

PET hypoxia imaging can assess tissue viability in acute ischemic stroke (AIS). [18F]FMISO is an established tracer but requires substantial accumulation time, limiting its use in hyperacute AIS. [64Cu]CuATSM requires less accumulation time and has shown promise as a hypoxia tracer. We compared these tracers in a M2-occlusion model (M2CAO) with preserved collateral blood flow. Rats underwent M2CAO and [18F]FMISO (n = 12) or [64Cu]CuATSM (n = 6) examinations. [64Cu]CuATSM animals were also examined with MRI. Pimonidazole was used as a surrogate for [18F]FMISO in an immunofluorescence analysis employed to profile levels of hypoxia in neurons (NeuN) and astrocytes (GFAP). There was increased [18F]FMISO uptake in the M2CAO cortex. No increase in [64Cu]CuATSM activity was found. The pimonidazole intensity of neurons and astrocytes was increased in hypoxic regions. The pimonidazole intensity ratio was higher in neurons than in astrocytes. In the majority of animals, immunofluorescence revealed a loss of astrocytes within the core of regions with increased pimonidazole uptake. We conclude that [18F]FMISO is superior to [64Cu]CuATSM in detecting hypoxia in AIS, consistent with an earlier study. [18F]FMISO may provide efficient diagnostic imaging beyond the hyperacute phase. Results do not provide encouragement for the use of [64Cu]CuATSM in experimental AIS.


Asunto(s)
Isquemia Encefálica/patología , Misonidazol/análogos & derivados , Compuestos Organometálicos/química , Radiofármacos/química , Tiosemicarbazonas/química , Animales , Astrocitos/química , Astrocitos/metabolismo , Autorradiografía , Encéfalo/diagnóstico por imagen , Isquemia Encefálica/metabolismo , Corteza Cerebelosa/química , Corteza Cerebelosa/diagnóstico por imagen , Corteza Cerebelosa/patología , Complejos de Coordinación , Radioisótopos de Cobre/química , Modelos Animales de Enfermedad , Radioisótopos de Flúor/química , Hipoxia , Masculino , Misonidazol/síntesis química , Misonidazol/química , Neuronas/química , Neuronas/metabolismo , Compuestos Organometálicos/síntesis química , Tomografía de Emisión de Positrones , Radiofármacos/síntesis química , Ratas , Ratas Sprague-Dawley , Tiosemicarbazonas/síntesis química
13.
ACS Appl Mater Interfaces ; 13(8): 9306-9315, 2021 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-33030015

RESUMEN

The most prevalent primary brain tumors are gliomas, which start in the glial cells. Although there have been significant technological advances in surgery and radio-chemotherapy, the prognosis and survival of patients with malignant gliomas remain poor. For routine diagnosis of glioma, computed tomography and magnetic resonance imaging primarily depend on anatomical changes and fail to detect the cellular changes that occur early in the development of malignant gliomas. Therefore, it is urgent to find effective molecular diagnostic tools to detect early stages of malignant gliomas. Currently, cell-based Systematic Evolution of Ligands by EXponential enrichment (cell-SELEX) technology is one effective tool to obtain DNA or RNA aptamers capable of differentiating the molecular signatures among different types of cell lines. Using cell-SELEX, we generated and characterized an aptamer, termed S6-1b, that can distinguish the molecular differences between glioma cell line SHG44 and human astrocytes. Under the conditions of 4 and 37 °C, respectively, the dissociation constants of aptamer-cell interaction were both measured in the low nanomolar range. The aptamer S6-1b also exhibited excellent selectivity, making it suitable for use in a complex biological environment. Furthermore, the aptamer can effectively target glioma cells for in vivo fluorescence imaging of tumors. The target type of aptamer S6-1b was identified as a cell membrane protein. Our work indicates that aptamer S6-1b has diagnostic and therapeutic potential to specifically deliver imaging or therapeutic agents to malignant gliomas.


Asunto(s)
Aptámeros de Nucleótidos/química , ADN/química , Glioma/diagnóstico , Animales , Astrocitos/química , Línea Celular Tumoral , Femenino , Fluoresceínas/química , Colorantes Fluorescentes/química , Glioma/diagnóstico por imagen , Humanos , Proteínas de la Membrana/química , Ratones Endogámicos BALB C , Técnica SELEX de Producción de Aptámeros
14.
Curr Protoc Neurosci ; 94(1): e110, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33285041

RESUMEN

Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca2+ ) oscillations by incorporating light-sensitive cation channels like Channelrhodopsin-2 (ChR2) offers a promising avenue in influencing the long-term progression of these disorders. However, using adult animals for Ca2+ imaging poses major challenges, including accelerated deterioration of in situ slice health and age- related changes. Additionally, optogenetic preparations necessitate usage of a red-shifted Ca2+ indicator like Rhod-2 AM to avoid overlapping light issues between ChR2 and the Ca2+ indicator during simultaneous optogenetic stimulation and imaging. In this article, we provide an experimental setting that uses live adult murine brain slices (2-5 months) from a knock-in model expressing Channelrhodopsin-2 (ChR2(C128S)) in cortical astrocytes, loaded with Rhod-2 AM to elicit robust Ca2+ response to light stimulation. We have developed and standardized a protocol for brain extraction, sectioning, Rhod-2 AM loading, maintenance of slice health, and Ca2+ imaging during light stimulation. This has been successfully applied to optogenetically control adult cortical astrocytes, which exhibit synchronous patterns of Ca2+ activity upon light stimulation, drastically different from resting spontaneous activity. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Experimental preparation, setup, slice preparation and Rhod-2 AM staining Basic Protocol 2: Image acquisition and analysis.


Asunto(s)
Astrocitos/fisiología , Señalización del Calcio/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiología , Optogenética/métodos , Imagen de Lapso de Tiempo/métodos , Factores de Edad , Animales , Astrocitos/química , Corteza Cerebral/química , Ratones , Técnicas de Cultivo de Órganos/métodos
15.
Nature ; 588(7837): 296-302, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177716

RESUMEN

Perisynaptic astrocytic processes are an integral part of central nervous system synapses1,2; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes. Furthermore, we show that astrocytic NRCAM interacts transcellularly with neuronal NRCAM coupled to gephyrin at inhibitory postsynapses. Depletion of astrocytic NRCAM reduces numbers of inhibitory synapses without altering glutamatergic synaptic density. Moreover, loss of astrocytic NRCAM markedly decreases inhibitory synaptic function, with minor effects on excitation. Thus, our results present a proteomic framework for how astrocytes interface with neurons and reveal how astrocytes control GABAergic synapse formation and function.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Proteómica , Sinapsis/química , Sinapsis/metabolismo , Animales , Astrocitos/citología , Moléculas de Adhesión Celular Neuronal/metabolismo , Forma de la Célula , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Prueba de Complementación Genética , Células HEK293 , Humanos , Masculino , Ratones , Inhibición Neural , Neuronas/citología , Ácido gamma-Aminobutírico/metabolismo
16.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114694

RESUMEN

Different cell isolation techniques exist for transcriptomic and proteotype profiling of brain cells. Here, we provide a systematic investigation of the influence of different cell isolation protocols on transcriptional and proteotype profiles in mouse brain tissue by taking into account single-cell transcriptomics of brain cells, proteotypes of microglia and astrocytes, and flow cytometric analysis of microglia. We show that standard enzymatic digestion of brain tissue at 37 °C induces profound and consistent alterations in the transcriptome and proteotype of neuronal and glial cells, as compared to an optimized mechanical dissociation protocol at 4 °C. These findings emphasize the risk of introducing technical biases and biological artifacts when implementing enzymatic digestion-based isolation methods for brain cell analyses.


Asunto(s)
Astrocitos/química , Neoplasias Encefálicas/metabolismo , Enzimas/metabolismo , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Glioma/metabolismo , Microglía/química , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Separación Celular/métodos , Cromatografía Liquida , Glioma/genética , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Proteómica/métodos , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Espectrometría de Masas en Tándem
17.
Anal Chem ; 92(19): 13281-13289, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32880432

RESUMEN

Cell-type-specific metabolic profiling in tissue with heterogeneous composition has been of great interest across all mass spectrometry imaging (MSI) technologies. We report here a powerful new chemical imaging capability in desorption electrospray ionization (DESI) MSI, which enables cell-type-specific and in situ metabolic profiling in complex tissue samples. We accomplish this by combining DESI-MSI with immunofluorescence staining using specific cell-type markers. We take advantage of the variable frequency of each distinct cell type in the lateral septal nucleus (LSN) region of mouse forebrain. This allows computational deconvolution of the cell-type-specific metabolic profile in neurons and astrocytes by convex optimization-a machine learning method. Based on our approach, we observed 107 metabolites that show different distributions and intensities between astrocytes and neurons. We subsequently identified 23 metabolites using high-resolution mass spectrometry (MS) and tandem MS, which include small metabolites such as adenosine and N-acetylaspartate previously associated with astrocytes and neurons, respectively, as well as accumulation of several phospholipid species in neurons which have not been studied before. Overall, this method overcomes the relatively low spatial resolution of DESI-MSI and provides a new platform for in situ metabolic investigation at the cell-type level in complex tissue samples with heterogeneous cell-type composition.


Asunto(s)
Astrocitos/metabolismo , Técnica del Anticuerpo Fluorescente , Prosencéfalo/metabolismo , Animales , Astrocitos/química , Astrocitos/citología , Aprendizaje Automático , Ratones , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Prosencéfalo/química , Prosencéfalo/citología , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Coloración y Etiquetado
18.
Sci Rep ; 10(1): 11007, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620908

RESUMEN

Brain-on-a-chip systems are designed to simulate brain activity using traditional in vitro cell culture on an engineered platform. It is a noninvasive tool to screen new drugs, evaluate toxicants, and elucidate disease mechanisms. However, successful recapitulation of brain function on these systems is dependent on the complexity of the cell culture. In this study, we increased cellular complexity of traditional (simple) neuronal cultures by co-culturing with astrocytes and oligodendrocyte precursor cells (complex culture). We evaluated and compared neuronal activity (e.g., network formation and maturation), cellular composition in long-term culture, and the transcriptome of the two cultures. Compared to simple cultures, neurons from complex co-cultures exhibited earlier synapse and network development and maturation, which was supported by localized synaptophysin expression, up-regulation of genes involved in mature neuronal processes, and synchronized neural network activity. Also, mature oligodendrocytes and reactive astrocytes were only detected in complex cultures upon transcriptomic analysis of age-matched cultures. Functionally, the GABA antagonist bicuculline had a greater influence on bursting activity in complex versus simple cultures. Collectively, the cellular complexity of brain-on-a-chip systems intrinsically develops cell type-specific phenotypes relevant to the brain while accelerating the maturation of neuronal networks, important features underdeveloped in traditional cultures.


Asunto(s)
Astrocitos/citología , Técnicas de Cocultivo/métodos , Perfilación de la Expresión Génica/métodos , Oligodendroglía/citología , Animales , Astrocitos/química , Células Cultivadas , Redes Reguladoras de Genes , Dispositivos Laboratorio en un Chip , Neurogénesis , Oligodendroglía/química , Ratas , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Sinaptofisina/genética
19.
J Endocrinol ; 247(1): 39-52, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32698146

RESUMEN

The important role of astrocytes in the central control of energy balance and glucose homeostasis has recently been recognized. Changes in thermoregulation can lead to metabolic dysregulation, but the role of astrocytes in this process is not yet clear. Therefore, we generated mice congenitally lacking insulin receptors (Ir) in astrocytes (IrKOGFAP mice) to investigate the involvement of astrocyte insulin signaling. IrKOGFAP mice displayed significantly lower energy expenditure and a strikingly lower basal and fasting body temperature. When exposed to cold, however, they were able to mount a thermogenic response. IrKOGFAP mice displayed sex differences in metabolic function and thermogenesis that may contribute to the development of obesity and type II diabetes as early as 2 months of age. While brown adipose tissue exhibited higher adipocyte size in both sexes, more apoptosis was seen in IrKOGFAP males. Less innervation and lower BAR3 expression levels were also observed in IrKOGFAP brown adipose tissue. These effects have not been reported in models of astrocyte Ir deletion in adulthood. In contrast, body weight and glucose regulatory defects phenocopied such models. These findings identify a novel role for astrocyte insulin signaling in the development of normal body temperature control and sympathetic activation of BAT. Targeting insulin signaling in astrocytes has the potential to serve as a novel target for increasing energy expenditure.


Asunto(s)
Astrocitos/fisiología , Regulación de la Temperatura Corporal/fisiología , Insulina/metabolismo , Receptor de Insulina/fisiología , Termogénesis/fisiología , Adipocitos/fisiología , Tejido Adiposo Pardo/fisiología , Animales , Astrocitos/química , Diabetes Mellitus Tipo 2 , Metabolismo Energético/fisiología , Femenino , Proteína Ácida Fibrilar de la Glía/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad , Receptor de Insulina/deficiencia , Receptor de Insulina/genética , Factores Sexuales , Transducción de Señal/fisiología
20.
Biophys Chem ; 261: 106377, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32302866

RESUMEN

The cellular response to fluctuations in blood glucose levels consists of integrative regulation of cell glucose uptake and glucose utilization in the cytosol, resulting in altered levels of glucose in the cytosol. Cytosolic glucose is difficult to be measured in the intact tissue, however recently methods have become available that allow measurements of glucose in single living cells with fluorescence resonance energy transfer (FRET) based protein sensors. By studying the dynamics of cytosolic glucose levels in different experimental settings, we can gain insights into the properties of plasma membrane permeability to glucose and glucose utilization in the cytosol, and how these processes are modulated by different environmental conditions, agents and enzymes. In this review, we compare the cytosolic regulation of glucose in adipocytes and astrocytes - two important regulators of energy balance and glucose homeostasis in whole body and brain, respectively, with particular emphasis on the data obtained with FRET based protein sensors as well as other biochemical and molecular approaches.


Asunto(s)
Adipocitos/química , Astrocitos/química , Citosol/química , Transferencia Resonante de Energía de Fluorescencia , Glucosa/análisis , Nanopartículas/química , Adipocitos/metabolismo , Astrocitos/metabolismo , Células Cultivadas , Citosol/metabolismo , Glucosa/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...