Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Sci Rep ; 14(1): 10188, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702492

RESUMEN

Global wild-capture fisheries are a large and diverse sector requiring various tools for fisheries-dependant data collection and effective Monitoring, Control and Surveillance (MCS). Here we present a novel protocol to collect eDNA from brine tanks onboard commercial longline vessels to reconstruct catch composition. We collected samples from nine vessels operating out of the Eastern Tuna Billfish Fishery, Australia, validating eDNA results with reliable catch data consisting of seven target and bycatch species. Environmental DNA was highly effective for detecting species retained on vessels without contamination or false positives. For four vessels, logbook data and eDNA were consistent with detections of all species. The remaining vessels detected all species except for rare catches of short-billed spearfish (Tetrapturus angustirostris). Similarities between rank abundance distributions of catch and eDNA reads were observed with logbook data mirrored when eDNA sequences were organised into rank order abundance. The method was effective at identifying highly abundant taxa retained in brine tanks- tuna (Thunnus spp.), swordfish (Xiphias gladius), marlin (Kajijia audax), and Atlantic Pomfret (Brama brama). Further research is required to validate how eDNA and other molecular monitoring tools can be scaled and applied to provide solutions for monitoring challenges in the fisheries sector.


Asunto(s)
ADN Ambiental , Explotaciones Pesqueras , Animales , ADN Ambiental/genética , ADN Ambiental/análisis , Australia , Atún/genética , Peces/genética , Navíos
2.
Sci Rep ; 14(1): 5454, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443405

RESUMEN

It is widely believed that a significant portion of the gut microbiota, which play crucial roles in overall health and disease, originates from the food we consume. Sashimi is a type of popular raw seafood cuisine. Its microbiome, however, remained to be thoroughly explored. The objective of this study is to explore the microbiome composition in sashimi at the time when it is served and ready to be eaten. Specifically, our tasks include investigating the diversity and characteristics of microbial profiles in sashimi with respect to the fish types. We utilized the Sanger-sequencing based DNA barcoding technology for fish species authentication and next-generation sequencing for sashimi microbiome profiling. We investigated the microbiome profiles of amberjack, cobia, salmon, tuna and tilapia sashimi, which were all identified using the MT-CO1 DNA sequences regardless of their menu offering names. Chao1 and Shannon indexes, as well as Bray-Curtis dissimilarity index were used to evaluate the alpha and beta diversities of sashimi microbiome. We successfully validated our previous observation that tilapia sashimi has a significantly higher proportions of Pseudomonas compared to other fish sashimi, using independent samples (P = 0.0010). Salmon sashimi exhibited a notably higher Chao1 index in its microbiome in contrast to other fish species (P = 0.0031), indicating a richer and more diverse microbial ecosystem. Non-Metric Multidimensional Scaling (NMDS) based on Bray-Curtis dissimilarity index revealed distinct clusters of microbiome profiles with respect to fish types. Microbiome similarity was notably observed between amberjack and tuna, as well as cobia and salmon. The relationship of microbiome similarity can be depicted as a tree which resembles partly the phylogenetic tree of host species, emphasizing the close relationship between host evolution and microbial composition. Moreover, salmon exhibited a pronounced relative abundance of the Photobacterium genus, significantly surpassing tuna (P = 0.0079), observed consistently across various restaurant sources. In conclusion, microbiome composition of Pseudomonas is significantly higher in tilapia sashimi than in other fish sashimi. Salmon sashimi has the highest diversity of microbiome among all fish sashimi that we analyzed. The level of Photobacterium is significantly higher in salmon than in tuna across all the restaurants we surveyed. These findings provide critical insights into the intricate relationship between the host evolution and the microbial composition. These discoveries deepen our understanding of sashimi microbiota, facilitating our decision in selecting raw seafood.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Filogenia , Microbiota/genética , Microbioma Gastrointestinal/genética , Salmón , Atún/genética , Alimentos Marinos , Photobacterium , Pseudomonas
3.
Biosensors (Basel) ; 14(2)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38392001

RESUMEN

Tuna is an excellent food product, relatively low in calories, that is recommended for a balanced diet. The continuously increasing demand, especially for bluefin-tuna-based food preparations, and its relatively high market price make adulteration by intentionally mixing with other lower-priced tunas more prospective. The development of rapid methods to detect tuna adulteration is a great challenge in food analytical science. We have thus developed a simple, fast, and low-cost molecular rapid test for the visual detection of tuna adulteration. It is the first sensor developed for tuna authenticity testing. The three species studied were Thunnus thynnus (BFT), Thunnus albacares, and Katsuwonus pelamis. DNA was isolated from fresh and heat-treated cooked fish samples followed by PCR. The PCR products were hybridized (10 min) to specific probes and applied to the rapid sensing device. The signal was observed visually in 10-15 min using gold nanoparticle reporters. The method was evaluated employing binary mixtures of PCR products from fresh tissues and mixtures of DNA isolates from heat-treated tissues (canned products) at adulteration percentages of 1-100%. The results showed that the method was reproducible and specific for each tuna species. As low as 1% of tuna adulteration was detected with the naked eye.


Asunto(s)
Nanopartículas del Metal , Atún , Animales , Atún/genética , Oro , Estudios Prospectivos , ADN
4.
Mol Biol Rep ; 51(1): 232, 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38281308

RESUMEN

BACKGROUND: The Yellowfin tuna (Thunnus albacares) is a large tuna exploited by major fisheries in tropical and subtropical waters of all oceans except the Mediterranean Sea. Genomic studies of population structure, adaptive variation or of the genetic basis of phenotypic traits are needed to inform fisheries management but are currently limited by the lack of a reference genome for this species. Here we report a draft genome assembly and a linkage map for use in genomic studies of T. albacares. METHODS AND RESULTS: Illumina and PacBio SMRT sequencing were used in combination to generate a hybrid assembly that comprises 743,073,847 base pairs contained in 2,661 scaffolds. The assembly has a N50 of 351,587 and complete and partial BUSCO scores of 86.47% and 3.63%, respectively. Double-digest restriction associated DNA (ddRAD) was used to genotype the 2 parents and 164 of their F1 offspring resulting from a controlled breeding cross, retaining 19,469 biallelic single nucleotide polymorphism (SNP) loci. The SNP loci were used to construct a linkage map that features 24 linkage groups that represent the 24 chromosomes of yellowfin tuna. The male and female maps span 1,243.8 cM and 1,222.9 cM, respectively. The map was used to anchor the assembly in 24 super-scaffolds that contain 79% of the yellowfin tuna genome. Gene prediction identified 46,992 putative genes 20,203 of which could be annotated via gene ontology. CONCLUSIONS: The draft reference will be valuable to interpret studies of genome wide variation in T. albacares and other Scombroid species.


Asunto(s)
Genómica , Atún , Animales , Masculino , Femenino , Atún/genética , Genotipo , Análisis de Secuencia de ADN , ADN
5.
Mol Ecol ; 33(1): e17188, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37921120

RESUMEN

The commercially important Atlantic bluefin tuna (Thunnus thynnus), a large migratory fish, has experienced notable recovery aided by accurate resource assessment and effective fisheries management efforts. Traditionally, this species has been perceived as consisting of eastern and western populations, spawning respectively in the Mediterranean Sea and the Gulf of Mexico, with mixing occurring throughout the Atlantic. However, recent studies have challenged this assumption by revealing weak genetic differentiation and identifying a previously unknown spawning ground in the Slope Sea used by Atlantic bluefin tuna of uncertain origin. To further understand the current and past population structure and connectivity of Atlantic bluefin tuna, we have assembled a unique dataset including thousands of genome-wide single-nucleotide polymorphisms (SNPs) from 500 larvae, young of the year and spawning adult samples covering the three spawning grounds and including individuals of other Thunnus species. Our analyses support two weakly differentiated but demographically connected ancestral populations that interbreed in the Slope Sea. Moreover, we also identified signatures of introgression from albacore (Thunnus alalunga) into the Atlantic bluefin tuna genome, exhibiting varied frequencies across spawning areas, indicating strong gene flow from the Mediterranean Sea towards the Slope Sea. We hypothesize that the observed genetic differentiation may be attributed to increased gene flow caused by a recent intensification of westward migration by the eastern population, which could have implications for the genetic diversity and conservation of western populations. Future conservation efforts should consider these findings to address potential genetic homogenization in the species.


Asunto(s)
Flujo Génico , Atún , Animales , Atún/genética , Mar Mediterráneo , Golfo de México , Océano Atlántico
6.
Sci Rep ; 13(1): 13867, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620512

RESUMEN

Tunas (genus Thunnus) are one of the most ecologically and commercially important fish worldwide. To establish a biological basis for reproduction in this globally essential species, we have recently studied crucial reproductive aspects of the Pacific bluefin tuna (T. orientalis; PBT), as a model of tuna species, based on our closed-cycle aquaculture technology. In this study, we clarified the global expression profile of the genes regulating gonadal sex differentiation in PBT, as this developmental process is vital to sexual reproduction. Based on the results of our comparative (RNA-sequencing) and temporal (qRT-PCR) transcriptome analyses using the updated genome dataset, we propose the molecular mechanisms of gonadal sex differentiation in PBT. In female gonads, foxl2 and cyp19a1a (coding aromatase) are expressed at the onset of sex differentiation. Active aromatase-mediated estrogen biosynthesis, which includes positive regulation of cyp19a1a expression by Foxl2, induces ovarian differentiation. By contrast, dmrt1 and gsdf are upregulated in differentiating male gonads lacking active estrogen synthesis. Dmrt1 and Gsdf would mainly promote testicular differentiation. Furthermore, androgen biosynthesis is upregulated in differentiating male gonad. Endogenous androgens may also be vital to testicular differentiation. This study provides the first comprehensive data clarifying the molecular basis for gonadal sex differentiation in tunas.


Asunto(s)
Aromatasa , Atún , Femenino , Masculino , Animales , Atún/genética , Aromatasa/genética , Transcriptoma , Diferenciación Sexual/genética , Gónadas , Estrógenos
7.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37549905

RESUMEN

This study proposes a strategy to manipulate the fatty acid (FA) content in slow-growing Korat chicken (KRC) meat using tuna oil (TO). To determine the optimal level and feeding period of TO supplementation, we conducted a study investigating the effects of dietary TO levels and feeding periods on meat quality, omega-3 polyunsaturated fatty acid (n-3 PUFA) composition, and gene expression related to FA metabolism in KRC breast meat. At 3 wk of age, 700 mixed-sex KRC were assigned to seven augmented factorial treatments with a completely randomized design, each consisting of four replicate pens containing 25 chickens per pen. The control group received a corn-soybean-based diet with 4.5% rice bran oil (RBO), while varying amounts of TO (1.5%, 3.0%, or 4.5%) replaced a portion of the RBO content in the experimental diets. The chickens were fed these diets for 3 and 6 wk, respectively, before being slaughtered at 9 wk. Our results indicated no significant interactions between TO levels and feeding periods on the growth performance or meat quality of KRC (P > 0.05). However, the liver fatty acid-binding protein gene (L-FABP, also known as FABP1), responsible for FA transport and accumulation, showed significantly higher expression in the chickens supplemented with 4.5% TO (P < 0.05). The chickens supplemented with 4.5% TO for a longer period (3 to 9 wk of age) exhibited the lowest levels of n-6 PUFA and n-6 to n-3 ratio, along with the highest levels of eicosapentaenoic acid, docosahexaenoic acid, and n-3 PUFA in the breast meat (P < 0.05). However, even a short period of supplementation with 4.5% TO (6 to 9 wk of age) was adequate to enrich slow-growing chicken meat with high levels of n-3 PUFA, as recommended previously. Our findings indicated that even a short period of tuna oil supplementation could lead to desirable levels of omega-3 enrichment in slow-growing chicken meat. This finding has practical implications for the poultry industry, providing insights into optimal supplementation strategies for achieving desired FA profiles without adversely affecting growth performance or meat quality.


This study investigated the effect of different levels and feeding periods of tuna oil (TO), a source of omega-3 polyunsaturated fatty acids (n-3 PUFA), was used to modify the fatty acid (FA) profile in slow-growing Korat chicken (KRC) meat. The interaction between TO supplementation levels and feeding periods did not influence growth performance or meat quality in KRC. However, higher level of TO supplementation led to increased expression of the liver fatty acid-binding protein gene, which is involved in FA transport and accumulation. The highest levels of eicosapentaenoic acid, docosahexaenoic acid, and n-3 PUFA were detected in the chickens that were fed 4.5% TO supplementation for a long period (3 to 9 wk of age). These chickens also had the lowest amounts of omega-6 polyunsaturated fatty acids (n-6 PUFA) and n-6 to n-3 ratio. Interestingly, even a short period of 4.5% TO supplementation (6 to 9 wk of age) in slow-growing chickens was sufficient to enrich the KRC meat with n-3 PUFA. These findings highlight the potential for improving the nutritional profile of chicken meat by regulating TO supplementation in the diet.


Asunto(s)
Pollos , Ácidos Grasos Omega-3 , Animales , Atún/genética , Atún/metabolismo , Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos , Suplementos Dietéticos , Dieta/veterinaria , Carne/análisis , Ácidos Docosahexaenoicos , Alimentación Animal/análisis
8.
Sci China Life Sci ; 66(11): 2629-2645, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37273070

RESUMEN

Although most fishes are ectothermic, some, including tuna and billfish, achieve endothermy through specialized heat producing tissues that are modified muscles. How these heat producing tissues evolved, and whether they share convergent molecular mechanisms, remain unresolved. Here, we generated a high-quality genome from the mackerel tuna (Euthynnus affinis) and investigated the heat producing tissues of this fish by single-nucleus and bulk RNA sequencing. Compared with other teleosts, tuna-specific genetic variation is strongly associated with muscle differentiation. Single-nucleus RNA-seq revealed a high proportion of specific slow skeletal muscle cell subtypes in the heat producing tissues of tuna. Marker genes of this cell subtype are associated with the relative sliding of actin and myosin, suggesting that tuna endothermy is mainly based on shivering thermogenesis. In contrast, cross-species transcriptome analysis indicated that endothermy in billfish relies mainly on non-shivering thermogenesis. Nevertheless, the heat producing tissues of the different species do share some tissue-specific genes, including vascular-related and mitochondrial genes. Overall, although tunas and billfishes differ in their thermogenic strategies, they share similar expression patterns in some respects, highlighting the complexity of convergent evolution.


Asunto(s)
Calor , Atún , Animales , Atún/genética , Termogénesis/genética , Peces/fisiología , Músculos
9.
J Fish Biol ; 102(6): 1425-1433, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36999397

RESUMEN

The genus Thunnus (family Scombridae) comprises eight species of tunas of which all but one are targeted by industrialized fisheries. Although intact individuals of these species can be distinguished by morphological characteristics, researchers and managers often rely on dressed, frozen, juvenile or larval fish samples, which often necessitates the identification of molecular species. Here the authors investigate short amplicon (SA) and unlabelled probe high-resolution melting analysis (UP-HRMA) as a low-cost, high-throughput molecular genotyping assay capable of distinguishing between albacore tuna (Thunnus alalunga), blackfin tuna (Thunnus atlanticus), bigeye tuna (Thunnus obesus), Atlantic bluefin tuna (Thunnus thynnus) and yellowfin tuna (Thunnus albacares) in the Gulf of Mexico. Although SA-HRMA of variable regions in the NADH dehydrogenase subunit 4 (ND4) and subunit 5 (ND5), and subunit 6 (ND6) of the mtDNA genome did yield some species-specific diagnostic melting curves (e.g., ND4 assay can reliably distinguish Atlantic bluefin tuna), genotype masking produced excessive variation in melting curves for reliable multi-species identification. To minimize the genotyping masking of SA-HRMA a 26 base pair long UP containing four SNPs was developed within a 133 bp segment of ND4. The UP-HRMA is able to reliably distinguish Gulf of Mexico species T. thynnus, T. obesus, T. albacares and T. atlanticus by UP melting temperature at 67, 62, 59 and 57°C, respectively. The developed UP-HRMA assay is a lower-cost, higher-throughput, alternative to previously published molecular assays for tuna identification that can be easily automated for large data sets, including ichthyological larval surveys, fisheries specimens lacking distinguishing morphological characteristics or detection of fraudulent trading of tuna species.


Asunto(s)
ADN Mitocondrial , Atún , Animales , Atún/genética , Golfo de México , Larva , ADN Mitocondrial/genética , Genotipo
10.
Sci Rep ; 12(1): 18606, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36329078

RESUMEN

Globally, tunas are among the most valuable fish stocks, but are also inherently difficult to monitor and assess. Samples of larvae of Western Atlantic bluefin tuna Thunnus thynnus (Linnaeus, 1758) from standardized annual surveys in the northern Gulf of Mexico provide a potential source of "offspring" for close-kin mark-recapture (CKMR) estimates of abundance. However, the spatial patchiness and highly skewed numbers of larvae per tow suggest sampled larvae may come from a small number of parents, compromising the precision of CKMR. We used high throughput genomic profiling to study sibship within and among larval tows from the 2016 standardized Gulf-wide survey compared to targeted sampling carried out in 2017. Full- and half-siblings were found within both years, with 12% of 156 samples in 2016 and 56% of 317 samples in 2017 having at least one sibling. There were also two pairs of cross cohort half-siblings. Targeted sampling increased the number of larvae collected per sampling event but resulted in a higher proportion of siblings. The combined effective sample size across both years was about 75% of the nominal size, indicating that Gulf of Mexico larval collections could be a suitable source of juveniles for CKMR in Western Atlantic bluefin tuna.


Asunto(s)
Atún , Animales , Atún/genética , Larva , Golfo de México , Océano Atlántico
11.
Parasite ; 29: 44, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36205525

RESUMEN

Although some parasitological efforts have focused on the frigate tuna Auxis thazard (Lacepède) (Scombriformes, Scombridae) in Brazil, its digenean fauna remains poorly known. Combining morphological and molecular methods, we investigated the diversity of digenean trematodes of A. thazard collected from the coastal waters off the state of Rio de Janeiro, Brazil in 2021. Six species belonging to four families were recorded: the bucephalid Rhipidocotyle cf. angusticolle Chandler, 1941, the didymozoid Didymocystis sp. 6 sensu Louvard et al. (2022), the fellodistomid Tergestia sp., and three hemiurids, Dinurus euthynni Yamaguti, 1934, Lecithochirium floridense (Manter, 1934), and L. synodi Manter, 1931. The current study brings the total number of digenean trematode species parasitising A. thazard in Brazil up to eight, with hemiuroid trematodes being most diverse. Auxis thazard is a new host record for L. floridense, L. synodi and potentially for R. angusticolle. The geographic distribution of several species found in our study appeared to be wider than previously known. Our study is the first to apply a DNA-based approach to digenean diversity in marine fishes in Brazil and we believe that both morphological descriptions and molecular sequence data provided in our study will aid future research assessing the diversity of digenean trematodes of A. thazard and other marine fishes in Brazil.


Title: Trématodes Digènes infectant l'auxide Auxis thazard (Scombriformes, Scombridae) au large de la côte de Rio de Janeiro, Brésil, avec des données moléculaires. Abstract: Bien que certains efforts parasitologiques aient porté sur l'auxide Auxis thazard (Lacepède) (Scombriformes : Scombridae) au Brésil, la faune de ses digènes reste mal connue. En combinant des méthodes morphologiques et moléculaires, nous avons étudié la diversité des trématodes digènes d'A. thazard collectés dans les eaux côtières au large de l'État de Rio de Janeiro, Brésil en 2021. Six espèces appartenant à quatre familles ont été répertoriées : le Bucephalidae Rhipidocotyle cf. angusticolle Chandler, 1941, le Didymozoidae Didymocystis sp. 6 sensu Louvard et al. (2022), le Fellodistomidae Tergestia sp., et trois Hemiuridae, Dinurus euthynni Yamaguti, 1934, Lecithochirium floridense (Manter, 1934) et L. synodi Manter, 1931. L'étude actuelle porte le nombre total d'espèces de trématodes digènes parasitant A. thazard au Brésil à huit, les Hemiuroidea étant les plus diversifiés. Auxis thazard est un nouveau signalement d'hôte pour L. floridense, L. synodi et potentiellement R. angusticolle. La répartition géographique de plusieurs espèces trouvées dans notre étude semble être plus large que ce que nous savions auparavant. Notre étude est la première à appliquer une approche basée sur l'ADN à la diversité des digènes chez les poissons marins au Brésil et nous pensons que les descriptions morphologiques et les données de séquence moléculaire fournies dans notre étude aideront les recherches futures évaluant la diversité des trématodes digènes d'A. thazard et d'autres poissons marins du Brésil.


Asunto(s)
Trematodos , Atún , Animales , Brasil , ADN , Peces , Trematodos/anatomía & histología , Trematodos/genética , Atún/genética
12.
PLoS One ; 17(10): e0276287, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36240154

RESUMEN

The blood fluke Cardicola forsteri (Trematoda: Aporocotylidae) is a pathogen of ranched bluefin tuna in Japan and Australia. Genomics of Cardicola spp. have thus far been limited to molecular phylogenetics of select gene sequences. In this study, sequencing of the C. forsteri genome was performed using Illumina short-read and Oxford Nanopore long-read technologies. The sequences were assembled de novo using a hybrid of short and long reads, which produced a high-quality contig-level assembly (N50 > 430 kb and L50 = 138). The assembly was also relatively complete and unfragmented, comprising 66% and 7.2% complete and fragmented metazoan Benchmarking Universal Single-Copy Orthologs (BUSCOs), respectively. A large portion (> 55%) of the genome was made up of intergenic repetitive elements, primarily long interspersed nuclear elements (LINEs), while protein-coding regions cover > 6%. Gene prediction identified 8,564 hypothetical polypeptides, > 77% of which are homologous to published sequences of other species. The identification of select putative proteins, including cathepsins, calpains, tetraspanins, and glycosyltransferases is discussed. This is the first genome assembly of any aporocotylid, a major step toward understanding of the biology of this family of fish blood flukes and their interactions within hosts.


Asunto(s)
Enfermedades de los Peces , Schistosomatidae , Animales , Catepsinas , Glicosiltransferasas , Schistosoma , Atún/genética
13.
PLoS One ; 17(10): e0275452, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36223376

RESUMEN

Tuna is one of the most widely consumed fish on the European market, being available in various consumable options. Among them, Thunnus albacares, also called yellowfin tuna, is a delicacy and is consumed by millions of people around the world. Due to its comparatively high cost and demand, it is more vulnerable to fraud, where low-cost tuna or other fish varieties might be replaced for economic gain. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed and validated for targeting the mitochondrial cytochrome b gene for fast and direct detection of Thunnus albacares, which is a valuable tuna species. The analytical specificity was confirmed using 18 target samples (Thunnus albacares) and 18 samples of non-target fish species. The analytical sensitivity of the LAMP assay was 540 fg DNA per reaction. In addition, a simple and direct swab method without time-consuming nucleic acid extraction procedures and the necessity for cost-intensive laboratory equipment was performed that allowed LAMP detection of Thunnus albacares samples within 13 minutes. Due to its high specificity and sensitivity, the LAMP assay can be used as a rapid and on-site screening method for identifying Thunnus albacares, potentially providing a valuable monitoring tool for food authenticity control by the authorities.


Asunto(s)
Citocromos b , Atún , Animales , Citocromos b/genética , ADN , Productos Pesqueros , Peces/genética , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Atún/genética
14.
FEMS Microbiol Ecol ; 98(10)2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36124730

RESUMEN

Like other seafood products, tuna is highly perishable and sensitive to microbial spoilage. Its consumption, whether fresh or canned, can lead to severe food poisoning due to the activity of specific microorganisms, including histamine-producing bacteria. Yet, many grey areas persist regarding their ecology, conditions of emergence, and proliferation in fish. In this study, we used 16S rRNA barcoding to investigate postmortem changes in the bacteriome of fresh and brine-frozen yellowfin tuna (Thunnus albacares), until late stages of decomposition (i.e. 120 h). The results revealed that despite standard refrigeration storage conditions (i.e. 4°C), a diverse and complex spoilage bacteriome developed in the gut and liver. The relative abundance of spoilage bacterial taxa increased rapidly in both organs, representing 82% of the bacterial communities in fresh yellowfin tuna, and less than 30% in brine-frozen tuna. Photobacterium was identified as one of the dominant bacterial genera, and its temporal dynamics were positively correlated with histamine concentration in both gut and liver samples, which ultimately exceeded the recommended sanitary threshold of 50 ppm in edible parts of tuna. The results from this study show that the sanitary risks associated with the consumption of this widely eaten fish are strongly influenced by postcapture storage conditions.


Asunto(s)
Microbiota , Atún , Animales , Bacterias/genética , Microbiología de Alimentos , Histamina/análisis , Microbiota/genética , ARN Ribosómico 16S/genética , Sales (Química) , Atún/genética , Atún/microbiología
15.
Molecules ; 27(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36080437

RESUMEN

Canned tuna is considered one of the most popular and most commonly consumed products in the seafood market, globally. However, in past decades, fish allergens have been detected as the main concern regarding food safety in these seafood products and are listed as the top eight food allergies. In the group of fish allergens, parvalbumin is the most common. As a thermally stable and calcium-binding protein, parvalbumin can be easily altered with changing the food matrices. This study investigated the effect of a can-filling medium (tomato sauce, spices, and brine solutions) on the parvalbumin levels in canned tuna. The effect of pH, calcium content, and the DNA quality of canned tuna was also investigated before the parvalbumin-specific encoded gene amplification. The presence of fish allergens was determined by melting curve analyses and confirmed by agarose gel electrophoresis. The obtained results showed that the presence of parvalbumin in commercially canned tuna was driven by can-filling mediums, thermal conductivity, calcium content, and the acidity of various ingredients in food matrices. The intra-specific differences revealed a variation in fish allergens that are caused by cryptic species. This study proved that allergens encoding gene analyses by agarose electrophoresis could be used as a reliable approach for other food-borne allergens in complex food matrices.


Asunto(s)
Hipersensibilidad a los Alimentos , Atún , Alérgenos/genética , Animales , Calcio , Peces/genética , Parvalbúminas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Atún/genética
16.
PLoS One ; 17(8): e0272713, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36040879

RESUMEN

Yellowfin tuna, Thunnus albacares, is an important global fishery and of particular importance in the Eastern Pacific Ocean (EPO). According to the 2019 Inter-American Tropical Tuna Commission (IATTC) assessment, yellowfin tuna within the EPO is a single stock, and is being managed as one stock. However, previous studies indicate site fidelity, or limited home ranges, of yellowfin tuna which suggests the potential for multiple yellowfin tuna stocks within the EPO, which was supported by a population genetic study using microsatellites. If numerous stocks are present, management at the wrong spatial scales could cause the loss of minor yellowfin tuna populations in the EPO. In this study we used double digestion RADseq to assess the genetic structure of yellowfin tuna in the EPO. A total of 164 yellowfin tuna from Cabo San Lucas, México, and the Galápagos Islands and Santa Elena, Ecuador, were analysed using 18,011 single nucleotide polymorphisms. Limited genetic differentiation (FST = 0.00058-0.00328) observed among the sampling locations (México, Ecuador, Peru, and within Ecuador) is consistent with presence of a single yellowfin tuna population within the EPO. Our findings are consistent with the IATTC assessment and provide further evidence of the need for transboundary cooperation for the successful management of this important fishery throughout the EPO.


Asunto(s)
Explotaciones Pesqueras , Atún , Animales , Flujo Genético , Repeticiones de Microsatélite/genética , Océano Pacífico , Atún/genética
17.
Front Cell Infect Microbiol ; 12: 945152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846765

RESUMEN

In the study, the parasite from the yellowfin tuna (Thunnus albacares) was separated, and morphological observation and molecular identification were carried out. Our results showed that the parasite was similar to Pennella sp. Its cephalothorax was covered by spherical to spherical non-branched nipples of almost the same size, which were very similar in shape and arrangement. A pair of slightly larger, the unbranched antenna was present on the outer margin of the small papillae-covered area. The gene sequence of COX1 with a length of 1,558 bp in the mitochondria of the parasite was 100% similar to Pennella sp. (MZ934363). The mitochondrial genome had a total length of 14,620 bp. It consisted of 36 genes (12 protein-coding, 22 transfer RNAs and 2 ribosomal RNAs) and a dummy control region, but the mitochondrial genome had no ATP8 gene. Morphological observation showed that Pennella sp. was dark red, with a convex cephalothorax, with a total length of 8.42 cm, parasitic on the dorsal side of yellowfin tuna. Pennella sp. included the cephalothorax, neck, trunk, abdomen and egg belt. This study was the first report on the mitochondrial genome of Pennella sp. The results provide basic data for further identifying the parasites of Pennella genus.


Asunto(s)
Genoma Mitocondrial , Parásitos , Animales , Parásitos/genética , Atún/genética , Atún/parasitología
18.
Sci Rep ; 12(1): 9830, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35701584

RESUMEN

The blackfin tuna, Thunnus atlanticus, is a small tropical tuna exploited by recreational and commercial fisheries in various parts of its range. Information on stock structure is needed to develop management plans for this species but is currently lacking. In this work, 470 blackfin tuna from nine geographic populations were assayed at 13 homologous microsatellite markers to provide a first assessment of stock structure across the species range. The overall divergence among locality samples was very low (overall FST = 0.0004) indicating high connectivity of blackfin tuna across their range. No clear grouping of localities in differentiated units was inferred but structuring followed a weak isolation by distance pattern (r = 0.16, P = 0.032). Pairwise exact tests and spatial analysis of molecular variance suggested divergence of the sample collected offshore Baía Formosa (Brazil) possibly reflecting reproductive isolation of Brazilian populations from those in the Caribbean region and further north. Further study of the status of Brazilian populations and the transition between this region and the Caribbean is warranted. Cryptic subdivision within the Northern Hemisphere part of the range is possible and should be evaluated using increased marker density and a more comprehensive geographic coverage.


Asunto(s)
Repeticiones de Microsatélite , Atún , Animales , Océano Atlántico , Brasil , Explotaciones Pesqueras , Repeticiones de Microsatélite/genética , Atún/genética
19.
Food Chem ; 382: 132365, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35152029

RESUMEN

One major drawback to the traditional loop-mediated isothermal amplification (LAMP) detection methods is the increased likelihood of detecting false-positive signals derived from non-specific amplification. Molecular beacon (MB) is increasingly being used in many applications and the MB-LAMP assay has proved itself as a target-specific method. The present work selected skipjack tuna as a case study, and developed a novel MB-LAMP assay for rapid species authentication. Specifically, the optimal MB structure includes 13 nucleobases in the loop region (binding specifically to loop primer LF) and 5 nucleobases in the stem region. For the established MB-LAMP assay, in the presence of the amplicons, the MB probe LFP-1 hybridizes to its target and forms a double helix. The change in conformation separates the quencher from the fluorophore, thereby resulting in the fluorescence release. The novel MB-LAMP assay has proved its specificity and can detect as little as 0.5 pg of skipjack tuna DNA.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Atún , Animales , ADN , Técnicas de Diagnóstico Molecular , Atún/genética
20.
Curr Issues Mol Biol ; 43(3): 2098-2110, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34940119

RESUMEN

Mass spawning in fish culture often brings about a marked variance in family size, which can cause a reduction in effective population sizes in seed production for stock enhancement. This study reports an example of combined pedigree information and gene expression phenotypes to understand differential family survival mechanisms in early stages of Pacific bluefin tuna, Thunnus orientalis, in a mass culture tank. Initially, parentage was determined using the partial mitochondrial DNA control region sequence and 11 microsatellite loci at 1, 10, 15, and 40 days post-hatch (DPH). A dramatic proportional change in the families was observed at around 15 DPH; therefore, transcriptome analysis was conducted for the 15 DPH larvae using a previously developed oligonucleotide microarray. This analysis successfully addressed the family-specific gene expression phenotypes with 5739 differentially expressed genes and highlighted the importance of expression levels of gastric-function-related genes at the developmental stage for subsequent survival. This strategy demonstrated herein can be broadly applicable to species of interest in aquaculture to comprehend the molecular mechanism of parental effects on offspring survival, which will contribute to the optimization of breeding technologies.


Asunto(s)
Peces/genética , Expresión Génica , Estudios de Asociación Genética , Linaje , Fenotipo , Animales , Acuicultura , Biología Computacional/métodos , Femenino , Perfilación de la Expresión Génica , Antecedentes Genéticos , Masculino , Tasa de Supervivencia , Atún/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...