Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Eur J Med Chem ; 262: 115885, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37871407

RESUMEN

The opportunistic apicomplexan parasite Toxoplasma gondii is the etiologic agent for toxoplasmosis, which can infect a widespread range of hosts, particularly humans and warm-blooded animals. The present chemotherapy to treat or prevent toxoplasmosis is deficient and is based on diverse drugs such as atovaquone, trimethoprim, spiramycine, which are effective in acute toxoplasmosis. Therefore, a safe chemotherapy is required for toxoplasmosis considering that its responsible agent, T. gondii, provokes severe illness and death in pregnant women and immunodeficient patients. A certain disadvantage of the available treatments is the lack of effectiveness against the tissue cyst of the parasite. A safe chemotherapy to combat toxoplasmosis should be based on the metabolic differences between the parasite and the mammalian host. This article covers different relevant molecular targets to combat this disease including the isoprenoid pathway (farnesyl diphosphate synthase, squalene synthase), dihydrofolate reductase, calcium-dependent protein kinases, histone deacetylase, mitochondrial electron transport chain, etc.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Humanos , Femenino , Embarazo , Toxoplasmosis/tratamiento farmacológico , Atovacuona/metabolismo , Atovacuona/farmacología , Atovacuona/uso terapéutico , Trimetoprim/farmacología , Mamíferos
3.
Anal Chem ; 95(2): 668-676, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36548400

RESUMEN

It is estimated that more than 2 billion people are chronically infected with the intracellular protozoan parasite Toxoplasma gondii (T. gondii). Despite this, there is currently no vaccine to prevent infection in humans, and there is no recognized curative treatment to clear tissue cysts. A major hurdle for identifying effective drug candidates against chronic-stage cysts has been the low throughput of existing in vitro assays for testing the survival of bradyzoites. We have developed a luciferase-based platform for specifically determining bradyzoite survival within in vitro cysts in a 96-well plate format. We engineered a cystogenic type II T. gondii PruΔku80Δhxgpr strain for stage-specific expression of firefly luciferase in the cytosol of bradyzoites and nanoluciferase for secretion into the lumen of the cyst (DuaLuc strain). Using this DuaLuc strain, we found that the ratio of firefly luciferase to nanoluciferase decreased upon treatment with atovaquone or LHVS, two compounds that are known to compromise bradyzoite viability. The 96-well format allowed us to test several additional compounds and generate dose-response curves for calculation of EC50 values indicating relative effectiveness of a compound. Accordingly, this DuaLuc system should be suitable for screening libraries of diverse compounds and defining the potency of hits or other compounds with a putative antibradyzoite activity.


Asunto(s)
Toxoplasma , Humanos , Luciferasas de Luciérnaga/genética , Luciferasas de Luciérnaga/metabolismo , Atovacuona/metabolismo , Atovacuona/farmacología , Luciferasas/genética , Luciferasas/metabolismo
4.
Adv Sci (Weinh) ; 9(12): e2101267, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35243806

RESUMEN

Atovaquone, an FDA-approved drug for malaria, is known to inhibit mitochondrial electron transport. A recently synthesized mitochondria-targeted atovaquone increased mitochondrial accumulation and antitumor activity in vitro. Using an in situ vaccination approach, local injection of mitochondria-targeted atovaquone into primary tumors triggered potent T cell immune responses locally and in distant tumor sites. Mitochondria-targeted atovaquone treatment led to significant reductions of both granulocytic myeloid-derived suppressor cells and regulatory T cells in the tumor microenvironment. Mitochondria-targeted atovaquone treatment blocks the expression of genes involved in oxidative phosphorylation and glycolysis in granulocytic-myeloid-derived suppressor cells and regulatory T cells, which may lead to death of granulocytic-myeloid-derived suppressor cells and regulatory T cells. Mitochondria-targeted atovaquone inhibits expression of genes for mitochondrial complex components, oxidative phosphorylation, and glycolysis in both granulocytic-myeloid-derived suppressor cells and regulatory T cells. The resulting decreases in intratumoral granulocytic-myeloid-derived suppressor cells and regulatory T cells could facilitate the observed increase in tumor-infiltrating CD4+ T cells. Mitochondria-targeted atovaquone also improves the anti-tumor activity of PD-1 blockade immunotherapy. The results implicate granulocytic-myeloid-derived suppressor cells and regulatory T cells as novel targets of mitochondria-targeted atovaquone that facilitate its antitumor efficacy.


Asunto(s)
Neoplasias , Atovacuona/metabolismo , Atovacuona/farmacología , Atovacuona/uso terapéutico , Humanos , Mitocondrias/metabolismo , Fosforilación Oxidativa , Microambiente Tumoral , Vacunación
5.
Pathol Res Pract ; 224: 153529, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34174549

RESUMEN

The poor outcomes in ovarian cancer necessitate new treatments. Strategies to interfere with oxidative phosphorylation have been recently highlighted for the treatment of ovarian tumors. Atovaquone, an approved antimicrobial drug, has demonstrated anti-cancer potential and ability in disrupting mitochondrial function. Here, we investigated the efficacy of atovaquone as single drug and its combination with cisplatin in ovarian cancer. We show that atovaquone at clinically achievable concentrations is active against ovarian cancer bulky and stem-cell like cells via inhibiting growth and colony formation, and inducing caspase-dependent apoptosis. In contrast, atovaquone either does not or inhibits normal cells in a less extent than in ovarian cancer cells. Mechanism studies using multiple independent approaches demonstrate that atovaquone acts on ovarian cancer cells via decreasing mitochondrial complex III which results in mitochondrial respiration inhibition, energy reduction and oxidative stress. In line with in vitro findings, atovaquone alone at non-toxic dose is effective in inhibiting ovarian cancer growth in vivo, and its combination with cisplatin is synergistic. Our study suggests that atovaquone is a promising candidate to the treatment of ovarian cancer. Our work also supports the notion that mitochondrial respiration is a therapeutic target in ovarian cancer.


Asunto(s)
Atovacuona/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Atovacuona/metabolismo , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Carcinoma Epitelial de Ovario/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Ováricas/metabolismo , Respiración/efectos de los fármacos
6.
Sci Rep ; 10(1): 17872, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33087770

RESUMEN

The FDA-approved prophylactic antimalarial drug atovaquone (ATO) recently was repurposed as an antitumor drug. Studies show that ATO exerts a profound antiproliferative effect in several cancer cells, including breast, ovarian, and glioma. Analogous to the mechanism of action proposed in parasites, ATO inhibits mitochondrial complex III and cell respiration. To enhance the chemotherapeutic efficacy and oxidative phosphorylation inhibition, we developed a mitochondria-targeted triphenylphosphonium-conjugated ATO with varying alkyl side chains (Mito4-ATO, Mito10-ATO, Mito12-ATO, and Mito16-ATO). Results show, for the first time, that triphenylphosphonium-conjugated ATO potently enhanced the antiproliferative effect of ATO in cancer cells and, depending upon the alkyl chain length, the molecular target of inhibition changes from mitochondrial complex III to complex I. Mito4-ATO and Mito10-ATO inhibit both pyruvate/malate-dependent complex I and duroquinol-dependent complex III-induced oxygen consumption whereas Mito12-ATO and Mito16-ATO inhibit only complex I-induced oxygen consumption. Mitochondrial target shifting may have immunoregulatory implications.


Asunto(s)
Atovacuona/farmacología , Proliferación Celular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Antimaláricos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Arsenicales/farmacología , Atovacuona/química , Atovacuona/metabolismo , Línea Celular Tumoral , Respiración de la Célula/efectos de los fármacos , Complejo I de Transporte de Electrón/efectos de los fármacos , Complejo III de Transporte de Electrones/efectos de los fármacos , Humanos , Ratones , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Compuestos Organofosforados/química , Fosforilación Oxidativa , Óxidos/farmacología , Consumo de Oxígeno/efectos de los fármacos
7.
Cell Chem Biol ; 27(2): 158-171.e3, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31813848

RESUMEN

We report detailed susceptibility profiling of asexual blood stages of the malaria parasite Plasmodium falciparum to clinical and experimental antimalarials, combined with metabolomic fingerprinting. Results revealed a variety of stage-specific and metabolic profiles that differentiated the modes of action of clinical antimalarials including chloroquine, piperaquine, lumefantrine, and mefloquine, and identified late trophozoite-specific peak activity and stage-specific biphasic dose-responses for the mitochondrial inhibitors DSM265 and atovaquone. We also identified experimental antimalarials hitting previously unexplored druggable pathways as reflected by their unique stage specificity and/or metabolic profiles. These included several ring-active compounds, ones affecting hemoglobin catabolism through distinct pathways, and mitochondrial inhibitors with lower propensities for resistance than either DSM265 or atovaquone. This approach, also applicable to other microbes that undergo multiple differentiation steps, provides an effective tool to prioritize compounds for further development within the context of combination therapies.


Asunto(s)
Antimaláricos/farmacología , Metaboloma/efectos de los fármacos , Metabolómica , Plasmodium falciparum/efectos de los fármacos , Antimaláricos/química , Antimaláricos/metabolismo , Atovacuona/química , Atovacuona/metabolismo , Atovacuona/farmacología , Diseño de Fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Malaria Falciparum/patología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Quinolinas/química , Quinolinas/metabolismo , Quinolinas/farmacología
8.
J Virol ; 93(11)2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30894466

RESUMEN

Arthropod-borne viruses represent a significant public health threat worldwide, yet there are few antiviral therapies or prophylaxes targeting these pathogens. In particular, the development of novel antivirals for high-risk populations such as pregnant women is essential to prevent devastating disease such as that which was experienced with the recent outbreak of Zika virus (ZIKV) in the Americas. One potential avenue to identify new and pregnancy-acceptable antiviral compounds is to repurpose well-known and widely used FDA-approved drugs. In this study, we addressed the antiviral role of atovaquone, an FDA Pregnancy Category C drug and pyrimidine biosynthesis inhibitor used for the prevention and treatment of parasitic infections. We found that atovaquone was able to inhibit ZIKV and chikungunya virus virion production in human cells and that this antiviral effect occurred early during infection at the initial steps of viral RNA replication. Moreover, we were able to complement viral replication and virion production with the addition of exogenous pyrimidine nucleosides, indicating that atovaquone functions through the inhibition of the pyrimidine biosynthesis pathway to inhibit viral replication. Finally, using an ex vivo human placental tissue model, we found that atovaquone could limit ZIKV infection in a dose-dependent manner, providing evidence that atovaquone may function as an antiviral in humans. Taken together, these studies suggest that atovaquone could be a broad-spectrum antiviral drug and a potential attractive candidate for the prophylaxis or treatment of arbovirus infection in vulnerable populations, such as pregnant women and children.IMPORTANCE The ability to protect vulnerable populations such as pregnant women and children from Zika virus and other arbovirus infections is essential to preventing the devastating complications induced by these viruses. One class of antiviral therapies may lie in known pregnancy-acceptable drugs that have the potential to mitigate arbovirus infections and disease, yet this has not been explored in detail. In this study, we show that the common antiparasitic drug atovaquone inhibits arbovirus replication through intracellular nucleotide depletion and can impair ZIKV infection in an ex vivo human placental explant model. Our study provides a novel function for atovaquone and highlights that the rediscovery of pregnancy-acceptable drugs with potential antiviral effects can be the key to better addressing the immediate need for treating viral infections and preventing potential birth complications and future disease.


Asunto(s)
Arbovirus/efectos de los fármacos , Atovacuona/farmacología , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Arbovirus/metabolismo , Atovacuona/metabolismo , Línea Celular , Fiebre Chikungunya/virología , Virus Chikungunya/genética , Chlorocebus aethiops , Citoplasma/metabolismo , Femenino , Células HEK293 , Humanos , Placenta , Embarazo , Nucleótidos de Pirimidina/antagonistas & inhibidores , Pirimidinas/biosíntesis , Células Vero , Proteínas no Estructurales Virales/metabolismo , Virión/metabolismo , Internalización del Virus/efectos de los fármacos , Virus Zika/genética , Infección por el Virus Zika/virología
9.
J Pharmacol Exp Ther ; 366(1): 37-45, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29653960

RESUMEN

Atovaquone, an antiprotozoal and antipneumocystic agent, is predominantly cleared by biliary excretion of unchanged parent drug. Atovaquone is ≥10,000-fold concentrated in human bile relative to unbound plasma. Even after correcting for apparent nonspecific binding and incomplete solubility in bile, atovaquone is still concentrated ≥100-fold in bile, consistent with active biliary excretion. Mechanisms of atovaquone hepatobiliary disposition were studied using a multiexperimental in vitro and in vivo approach. Atovaquone uptake was not elevated in HEK293 cells singly overexpressing OATP1B1, OATP1B3, OATP2B1, OCT1, NTCP, or OAT2. Hepatocyte uptake of atovaquone was not impaired by OATP and OCT inhibitor cocktail (rifamycin and imipramine). Atovaquone liver-to-blood ratio at distributional equilibrium was not reduced in Oatp1a/1b and Oct1/2 knockout mice. Atovaquone exhibited efflux ratios of approximately unity in P-gp and BCRP overexpressing MDCK cell monolayers and did not display enhanced uptake in MRP2 vesicles. Biliary and canalicular clearance were not decreased in P-gp, Bcrp, Mrp2, and Bsep knockout rats. In the present study, we rule out the involvement of major known basolateral uptake and bile canalicular efflux transporters in the hepatic uptake and biliary excretion of atovaquone. This is the first known example of a drug cleared by biliary excretion in humans, with extensive biliary concentration, which is not transported by the mechanisms investigated herein.


Asunto(s)
Atovacuona/farmacocinética , Sistema Biliar/metabolismo , Hígado/metabolismo , Animales , Atovacuona/química , Atovacuona/metabolismo , Transporte Biológico , Células HEK293 , Humanos , Masculino , Proteínas de Transporte de Membrana/metabolismo , Ratas , Ratas Sprague-Dawley , Solubilidad , Distribución Tisular
10.
Nat Microbiol ; 1(7): 16079, 2016 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-27572973

RESUMEN

Human babesiosis caused by Babesia microti is an emerging tick-borne zoonosis of increasing importance due to its rising incidence and expanding geographic range(1). Infection with this organism, an intraerythrocytic parasite of the phylum Apicomplexa, causes a febrile syndrome similar to malaria(2). Relapsing disease is common among immunocompromised and asplenic individuals(3,4) and drug resistance has recently been reported(5). To investigate the origin and genetic diversity of this parasite, we sequenced the complete genomes of 42 B. microti samples from around the world, including deep coverage of clinical infections at endemic sites in the continental USA. Samples from the continental USA segregate into a Northeast lineage and a Midwest lineage, with subsequent divergence of subpopulations along geographic lines. We identify parasite variants that associate with relapsing disease, including amino acid substitutions in the atovaquone-binding regions of cytochrome b (cytb) and the azithromycin-binding region of ribosomal protein subunit L4 (rpl4). Our results shed light on the origin, diversity and evolution of B. microti, suggest possible mechanisms for clinical relapse, and create the foundation for further research on this emerging pathogen.


Asunto(s)
Babesia microti/genética , Babesiosis/parasitología , Variación Genética , Genoma de Protozoos , Sustitución de Aminoácidos , Animales , Atovacuona/metabolismo , Azitromicina/metabolismo , Babesiosis/epidemiología , Citocromos b/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Unión Proteica , Recurrencia , Proteínas Ribosómicas/metabolismo , Estados Unidos/epidemiología , Zoonosis
11.
Eur J Drug Metab Pharmacokinet ; 41(5): 645-50, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26253156

RESUMEN

BACKGROUND AND OBJECTIVES: Atovaquone is a hydroxynaphthoquinone with selective action in the mitochondrial respiratory chain of malaria parasite. It is employed for both the treatment and prevention of malaria, in a combination with proguanil. The aim of this study was to elucidate the in vitro metabolites from atovaquone and to evaluate their cytotoxic activities. METHODS: The biotransformation of atovaquone was performed using Mucor rouxii NRRL 1894, Cunninghamella echinulata var. elegans ATCC 8688a and C. elegans ATCC 10028b, which have been reported as microbial models of mammalian drug metabolism. Experiments were also carried out with two probiotic strains from the human intestinal tract: Bifidobacterium sp. and Lactobacillus acidophilus. The phase I metabolite was isolated, its chemical structure was elucidated and its toxicity was evaluated using the neoplastic cell line SKBR-3 derived from human breast cancer and normal human fibroblast cell line GM07492-A. Cell cytotoxicity assays were also carried out with atovaquone. RESULT: Only the fungi were able to convert atovaquone to metabolite trans-3-[4'-(4″-chlorophenyl)cyclohexyl)-1,2-dioxo-dihydro-1H-indene-3-carboxylic acid. The metabolite displayed 50 % inhibitory concentration (IC50) values of 110.20 ± 2.2 and 108.80 ± 1.5 µmol/L against breast cancer cell line SKBR-3 and fibroblasts cell line GM07492-A, respectively. The IC50 values of atovaquone were 282.30 ± 1.8 and 340.50 ± 1.4 µmol/L against breast cancer and normal fibroblasts cell lines, respectively. CONCLUSIONS: The produced metabolite was more toxic than atovaquone and was not selective to normal or cancer cell lines. The present study is the first to report the production of atovaquone metabolite.


Asunto(s)
Atovacuona/metabolismo , Fase I de la Desintoxicación Metabólica/fisiología , Animales , Antimaláricos/metabolismo , Antimaláricos/farmacología , Atovacuona/farmacología , Neoplasias de la Mama/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Femenino , Fibroblastos/metabolismo , Hongos/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Malaria Falciparum/tratamiento farmacológico , Proguanil/metabolismo , Proguanil/farmacología
12.
Parasitol Int ; 64(3): 295-300, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25264100

RESUMEN

Atovaquone, a coenzyme Q analogue has been indicated to specifically target the cytochrome bc1 complex of the mitochondrial respiratory chain in the malarial parasite and other protozoan. Various mutations in the quinone binding site of the cytochrome b gene of Plasmodium spp. such as M133I, L144S, L271V, K272R, Y268C, Y268S, Y268N, and V284F are suggesting to associate with resistance to atovaquone. There is no direct evidence of relation between the mutations and resistance to atovaquone in Plasmodium parasite that has been available. Technical difficulties in isolating active assayable mitochondria in the malarial parasite hinder us to obtain direct biochemical evidence to support the relation between the mutations and drug resistance. The establishment of a mitochondrial isolation method for the malaria parasite has allowed us to test the degree of resistance of Plasmodium berghei isolates to atovaquone directly. We have tested the activity of dihydroorotate (DHO)-cytochrome c reductase in various P. berghei atovaquone resistant clones in the presence of a wide concentration range of atovaquone. Our results show the IC(50) of P. berghei atovaquone resistant clones is much higher (1.5 up to 40 nM) in comparison to the atovaquone sensitive clones (0.132-0.465 nM). The highest IC(50) was revealed in clones carrying Y268C and Y268N mutations (which play an important role in atovaquone resistance in Plasmodium falciparum), with an approximately 100-fold increase. The findings indicate the importance of the mutation in the quinone binding site of the cytochrome b gene and that provide a direct evidence for the atovaquone inhibitory mechanism in the cytochrome bc1 complex of the parasite.


Asunto(s)
Antimaláricos/farmacología , Atovacuona/farmacología , Citocromos b/metabolismo , Complejo III de Transporte de Electrones/química , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Antimaláricos/metabolismo , Atovacuona/metabolismo , Sitios de Unión , Simulación por Computador , Citocromos b/química , Citocromos b/genética , Resistencia a Medicamentos/genética , Complejo III de Transporte de Electrones/genética , Genes Mitocondriales , Modelos Moleculares , Mutación , Oxidorreductasas/metabolismo , Pruebas de Sensibilidad Parasitaria , Plasmodium falciparum/genética , Alineación de Secuencia
13.
Nat Commun ; 5: 4029, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24893593

RESUMEN

Atovaquone, a substituted hydroxynaphthoquinone, is a potent antimalarial drug that acts by inhibiting the parasite's mitochondrial cytochrome bc1 complex (cyt bc1). Mutations in cyt bc1 confer atovaquone resistance. Here we describe the X-ray structure of mitochondrial cyt bc1 from Saccharomyces cerevisiae with atovaquone bound in the catalytic Qo site, at 3.0-Å resolution. A polarized H-bond to His181 of the Rieske protein in cyt bc1 traps the ionized hydroxyl group of the drug. Side chains of highly conserved cytochrome b residues establish multiple non-polar interactions with the napththoquinone group, whereas less-conserved residues are in contact with atovaquone's cyclohexyl-chlorophenyl tail. Our structural analysis reveals the molecular basis of atovaquone's broad target spectrum, species-specific efficacies and acquired resistances, and may aid drug development to control the spread of resistant parasites.


Asunto(s)
Antimaláricos/metabolismo , Atovacuona/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antimaláricos/farmacología , Atovacuona/farmacología , Sitios de Unión , Cristalografía por Rayos X , Membranas Mitocondriales , Simulación del Acoplamiento Molecular , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/efectos de los fármacos , Proteínas Protozoarias/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Análisis de Secuencia de Proteína , Análisis Espectral
14.
PLoS One ; 8(8): e71726, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23951230

RESUMEN

The bc 1 complex of the mitochondrial respiratory chain is essential for Plasmodium falciparum proliferation, the causative agent of human malaria. Therefore, this enzyme is an attractive target for antimalarials. However, biochemical investigations of the parasite enzyme needed for the study of new drugs are challenging. In order to facilitate the study of new compounds targeting the enzyme, we are modifying the inhibitor binding sites of the yeast Saccharomyces cerevisiae to generate a complex that mimics the P. falciparum enzyme. In this study we focused on its Qo pocket, the site of atovaquone binding which is a leading antimalarial drug used in treatment and causal prophylaxis. We constructed and studied a series of mutants with modified Qo sites where yeast residues have been replaced by P. falciparum equivalents, or, for comparison, by human equivalents. Mitochondria were prepared from the yeast Plasmodium-like and human-like Qo mutants. We measured the bc 1 complex sensitivity to atovaquone, azoxystrobin, a Qo site targeting fungicide active against P. falciparum and RCQ06, a quinolone-derivative inhibitor of P. falciparum bc 1 complex.The data obtained highlighted variations in the Qo site that could explain the differences in inhibitor sensitivity between yeast, plasmodial and human enzymes. We showed that the yeast Plasmodium-like Qo mutants could be useful and easy-to-use tools for the study of that class of antimalarials.


Asunto(s)
Antimaláricos/química , Atovacuona/química , Sitios de Unión , Proteínas del Complejo de Cadena de Transporte de Electrón/química , Plasmodium falciparum/enzimología , Secuencia de Aminoácidos , Antimaláricos/metabolismo , Antimaláricos/farmacología , Atovacuona/metabolismo , Atovacuona/farmacología , Sitios de Unión/genética , Resistencia a Medicamentos/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/antagonistas & inhibidores , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Mutación , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Unión Proteica , Alineación de Secuencia , Levaduras/efectos de los fármacos , Levaduras/enzimología
15.
Org Biomol Chem ; 8(21): 4905-14, 2010 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-20737064

RESUMEN

High-affinity human serum albumin (HSA) binding of the C3-substituted antimalarial 2-hydroxy-1,4-naphthoquinone derivative atovaquone (ATQ) has been demonstrated and studied by circular dichroism (CD), UV/VIS absorption, fluorescence spectroscopy and affinity chromatography methods. The analysis of induced CD data generated upon HSA binding of ATQ revealed two high-affinity binding sites (K(a) ≈ 2 × 10(6) M(-1)). CD interaction studies and displacement of specific fluorescent and radioactive marker ligands indicated the contribution of both principal drug binding sites of HSA to complexation of ATQ, and also suggested the possibility of simultaneous binding of ATQ and some other drugs (e.g. warfarin, phenylbutazone, diazepam). Comparison of UV/VIS spectra of ATQ measured in aqueous solutions indicated the prevalence of the anionic species formed by dissociation of the 2-hydroxyl group. HSA binding of related natural hydroxynaphthoquinones, lapachol and lawsone also induces similar CD spectra. The much weaker binding affinity of lawsone (K(a) ≈ 10(4) M(-1)) bearing no C3 substituent highlights the importance of hydrophobic interactions in the strong HSA binding of ATQ and lapachol. Since neither drug exhibited significant binding to serum α(1)-acid glycoprotein, HSA must be the principal plasma protein for the binding and transportation of 2-hydroxy-1,4-naphthoquinone-type compounds which are ionized at physiological pH values.


Asunto(s)
Antimaláricos/química , Antimaláricos/metabolismo , Atovacuona/análogos & derivados , Atovacuona/metabolismo , Albúmina Sérica/metabolismo , Cromatografía de Afinidad , Dicroismo Circular , Humanos , Modelos Moleculares , Unión Proteica , Albúmina Sérica/química , Espectrometría de Fluorescencia , Espectrofotometría
16.
Nature ; 455(7214): 757-63, 2008 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-18843361

RESUMEN

The human malaria parasite Plasmodium vivax is responsible for 25-40% of the approximately 515 million annual cases of malaria worldwide. Although seldom fatal, the parasite elicits severe and incapacitating clinical symptoms and often causes relapses months after a primary infection has cleared. Despite its importance as a major human pathogen, P. vivax is little studied because it cannot be propagated continuously in the laboratory except in non-human primates. We sequenced the genome of P. vivax to shed light on its distinctive biological features, and as a means to drive development of new drugs and vaccines. Here we describe the synteny and isochore structure of P. vivax chromosomes, and show that the parasite resembles other malaria parasites in gene content and metabolic potential, but possesses novel gene families and potential alternative invasion pathways not recognized previously. Completion of the P. vivax genome provides the scientific community with a valuable resource that can be used to advance investigation into this neglected species.


Asunto(s)
Genoma de Protozoos/genética , Genómica , Malaria Vivax/parasitología , Plasmodium vivax/genética , Secuencias de Aminoácidos , Animales , Artemisininas/metabolismo , Artemisininas/farmacología , Atovacuona/metabolismo , Atovacuona/farmacología , Núcleo Celular/genética , Cromosomas/genética , Secuencia Conservada/genética , Eritrocitos/parasitología , Evolución Molecular , Haplorrinos/parasitología , Humanos , Isocoras/genética , Ligandos , Malaria Vivax/metabolismo , Familia de Multigenes , Plasmodium vivax/efectos de los fármacos , Plasmodium vivax/patogenicidad , Plasmodium vivax/fisiología , Análisis de Secuencia de ADN , Especificidad de la Especie , Sintenía/genética
17.
Antimicrob Agents Chemother ; 52(6): 2253-5, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18362196

RESUMEN

Pafuramidine is a novel orally active antimalarial. To identify a combination partner, we measured the in vitro antimalarial activities of the active metabolite, DB75, with amodiaquine, artemisinin, atovaquone, azithromycin, chloroquine, clindamycin, mefloquine, piperaquine, pyronaridine, tafenoquine, and tetracycline. None of the drugs tested demonstrated antagonistic or synergistic activity in combination with pafuramidine.


Asunto(s)
Antimaláricos/metabolismo , Antimaláricos/farmacología , Benzamidinas/metabolismo , Benzamidinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Animales , Atovacuona/metabolismo , Atovacuona/farmacología , Cloroquina/metabolismo , Cloroquina/farmacología , Interacciones Farmacológicas , Pruebas de Sensibilidad Parasitaria
18.
Trends Parasitol ; 23(10): 494-501, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17826334

RESUMEN

Atovaquone is a substituted hydroxynaphthoquinone that is used therapeutically for treating Plasmodium falciparum malaria, Pneumocystis jirovecii pneumonia and Toxoplasma gondii toxoplasmosis. It is thought to act on these organisms by inhibiting parasite and fungal respiration by binding to the cytochrome bc1 complex. The recent, growing failure of atovaquone treatment and increased mortality of patients with malaria or Pneumocystis pneumonia has been linked to the appearance of mutations in the cytochrome b gene. To better understand the molecular basis of drug resistance, we have developed the yeast and bovine bc1 complexes as surrogates to model the molecular interaction of atovaquone with human and resistant pathogen enzymes.


Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Atovacuona/química , Atovacuona/farmacología , Complejo III de Transporte de Electrones/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Plasmodium falciparum/enzimología , Pneumocystis carinii/enzimología , Toxoplasma/enzimología , Secuencia de Aminoácidos , Animales , Antiinfecciosos/metabolismo , Atovacuona/metabolismo , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/metabolismo , Humanos , Malaria Falciparum/parasitología , Modelos Moleculares , Datos de Secuencia Molecular , Plasmodium falciparum/genética , Pneumocystis carinii/genética , Neumonía por Pneumocystis/microbiología , Alineación de Secuencia , Toxoplasmosis/parasitología , Levaduras/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...