Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107246, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556081

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular degenerative disease caused by a polyglutamine expansion in the androgen receptor (AR). This mutation causes AR to misfold and aggregate, contributing to toxicity in and degeneration of motor neurons and skeletal muscle. There is currently no effective treatment or cure for this disease. The role of an interdomain interaction between the amino- and carboxyl-termini of AR, termed the N/C interaction, has been previously identified as a component of androgen receptor-induced toxicity in cell and mouse models of SBMA. However, the mechanism by which this interaction contributes to disease pathology is unclear. This work seeks to investigate this mechanism by interrogating the role of AR homodimerization- a unique form of the N/C-interaction- in SBMA. We show that, although the AR N/C-interaction is reduced by polyglutamine-expansion, homodimers of 5α-dihydrotestosterone (DHT)-bound AR are increased. Additionally, blocking homodimerization results in decreased AR aggregation and toxicity in cell models. Blocking homodimerization results in the increased degradation of AR, which likely plays a role in the protective effects of this mutation. Overall, this work identifies a novel mechanism in SBMA pathology that may represent a novel target for the development of therapeutics for this disease.


Asunto(s)
Dihidrotestosterona , Péptidos , Multimerización de Proteína , Receptores Androgénicos , Animales , Humanos , Ratones , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/patología , Dihidrotestosterona/farmacología , Dihidrotestosterona/metabolismo , Péptidos/metabolismo , Péptidos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Ratas , Línea Celular
2.
JCI Insight ; 9(7)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38452174

RESUMEN

Prior studies showed that polyglutamine-expanded androgen receptor (AR) is aberrantly acetylated and that deacetylation of the mutant AR by overexpression of nicotinamide adenine dinucleotide-dependent (NAD+-dependent) sirtuin 1 is protective in cell models of spinal and bulbar muscular atrophy (SBMA). Based on these observations and reduced NAD+ in muscles of SBMA mouse models, we tested the therapeutic potential of NAD+ restoration in vivo by treating postsymptomatic transgenic SBMA mice with the NAD+ precursor nicotinamide riboside (NR). NR supplementation failed to alter disease progression and had no effect on increasing NAD+ or ATP content in muscle, despite producing a modest increase of NAD+ in the spinal cords of SBMA mice. Metabolomic and proteomic profiles of SBMA quadriceps muscles indicated alterations in several important energy-related pathways that use NAD+, in addition to the NAD+ salvage pathway, which is critical for NAD+ regeneration for use in cellular energy production. We also observed decreased mRNA levels of nicotinamide riboside kinase 2 (Nmrk2), which encodes a key kinase responsible for NR phosphorylation, allowing its use by the NAD+ salvage pathway. Together, these data suggest a model in which NAD+ levels are significantly decreased in muscles of an SBMA mouse model and intransigent to NR supplementation because of decreased levels of Nmrk2.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Ratones , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , NAD/metabolismo , Proteómica , Músculos/metabolismo , Ratones Transgénicos , Metabolismo Energético
3.
J Cachexia Sarcopenia Muscle ; 15(1): 159-172, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37937369

RESUMEN

BACKGROUND: Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by the expansion of trinucleotide cytosine-adenine-guanine (CAG) repeats, which encodes a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. Recent evidence suggests that, in addition to motor neuron degeneration, defective skeletal muscles are also the primary contributors to the pathogenesis in SBMA. While benefits of physical exercise have been suggested in SBMA, underlying mechanism remains elusive. METHODS: We investigated the effect of running exercise in a transgenic mouse model of SBMA carrying human AR with 97 expanded CAGs (AR97Q). We assigned AR97Q mice to exercise and sedentary control groups, and mice in the exercise group received 1-h forced running wheel (5 m/min) 5 days a week for 4 weeks during the early stage of the disease. Motor function (grip strength and rotarod performance) and survival of each group were analysed, and histopathological and biological features in skeletal muscles and motor neurons were evaluated. RESULTS: AR97Q mice in the exercise group showed improvement in motor function (~40% and ~50% increase in grip strength and rotarod performance, respectively, P < 0.05) and survival (median survival 23.6 vs. 16.7 weeks, P < 0.05) with amelioration of neuronal and muscular histopathology (~1.4-fold and ~2.8-fold increase in motor neuron and muscle fibre size, respectively, P < 0.001) compared to those in the sedentary group. Nuclear accumulation of polyQ-expanded AR in skeletal muscles and motor neurons was suppressed in the mice with exercise compared to the sedentary mice (~50% and ~30% reduction in 1C2-positive cells in skeletal muscles and motor neurons, respectively, P < 0.05). We found that the exercise activated 5'-adenosine monophosphate-activated protein kinase (AMPK) signalling and inhibited mammalian target of rapamycin pathway that regulates protein synthesis in skeletal muscles of SBMA mice. Pharmacological activation of AMPK inhibited protein synthesis and reduced polyQ-expanded AR proteins in C2C12 muscle cells. CONCLUSIONS: Our findings suggest the therapeutic potential of exercise-induced effect via AMPK activation in SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Péptidos , Humanos , Ratones , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Proteínas Quinasas Activadas por AMP , Ratones Transgénicos , Neuronas Motoras/metabolismo , Mamíferos
4.
Curr Opin Pharmacol ; 71: 102394, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37463556

RESUMEN

The clinical characteristics of SBMA, also known as Kennedy's disease (OMIM 313200), were initially documented by Dr. H Kawahara in the 18th century and a hundred years later by Dr. W. Kennedy. SBMA is a neuromuscular disease caused by expansions of a CAG microsatellite tandem repeat in exon 1 of the androgen receptor (AR) gene located on the X chromosome. These expansions result in the production of AR with an aberrantly expanded polyglutamine (polyQ) tract. In this review, we explore recent advancements in the significance of gene expression changes in skeletal muscle and discuss how pharmacological interventions targeting this aspect of disease pathogenesis can potentially be translated into therapies for SBMA patients.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Humanos , Atrofia Bulboespinal Ligada al X/tratamiento farmacológico , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Receptores Androgénicos/uso terapéutico , Músculo Esquelético/metabolismo , Atrofia Muscular
5.
Acta Neuropathol Commun ; 11(1): 90, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37269008

RESUMEN

X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease) is a rare neuromuscular disorder characterized by adult-onset proximal muscle weakness and lower motor neuron degeneration. SBMA was the first human disease found to be caused by a repeat expansion mutation, as affected patients possess an expanded tract of CAG repeats, encoding polyglutamine, in the androgen receptor (AR) gene. We previously developed a conditional BAC fxAR121 transgenic mouse model of SBMA and used it to define a primary role for skeletal muscle expression of polyglutamine-expanded AR in causing the motor neuron degeneration. Here we sought to extend our understanding of SBMA disease pathophysiology and cellular basis by detailed examination and directed experimentation with the BAC fxAR121 mice. First, we evaluated BAC fxAR121 mice for non-neurological disease phenotypes recently described in human SBMA patients, and documented prominent non-alcoholic fatty liver disease, cardiomegaly, and ventricular heart wall thinning in aged male BAC fxAR121 mice. Our discovery of significant hepatic and cardiac abnormalities in SBMA mice underscores the need to evaluate human SBMA patients for signs of liver and heart disease. To directly examine the contribution of motor neuron-expressed polyQ-AR protein to SBMA neurodegeneration, we crossed BAC fxAR121 mice with two different lines of transgenic mice expressing Cre recombinase in motor neurons, and after updating characterization of SBMA phenotypes in our current BAC fxAR121 colony, we found that excision of mutant AR from motor neurons did not rescue neuromuscular or systemic disease. These findings further validate a primary role for skeletal muscle as the driver of SBMA motor neuronopathy and indicate that therapies being developed to treat patients should be delivered peripherally.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Ratones , Humanos , Masculino , Animales , Anciano , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Neuronas Motoras/metabolismo , Ratones Transgénicos , Fenotipo , Degeneración Nerviosa/patología
6.
Acta Neuropathol Commun ; 10(1): 97, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35791011

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an X-linked, neuromuscular neurodegenerative disease for which there is no cure. The disease is characterized by a selective decrease in fast-muscle power (e.g., tongue pressure, grip strength) accompanied by a selective loss of fast-twitch muscle fibers. However, the relationship between neuromuscular junction (NMJ) pathology and fast-twitch motor unit vulnerability has yet to be explored. In this study, we used a cross-model comparison of two mouse models of SBMA to evaluate neuromuscular junction pathology, glycolytic-to-oxidative fiber-type switching, and cytoskeletal alterations in pre- and postsynaptic termini of tibialis anterior (TA), gastrocnemius, and soleus hindlimb muscles. We observed significantly increased NMJ and myofiber pathology in fast-twitch, glycolytic motor units of the TA and gastrocnemius compared to slow-twitch, oxidative motor units of the soleus, as seen by decreased pre- and post-synaptic membrane area, decreased pre- and post-synaptic membrane colocalization, increased acetylcholine receptor compactness, a decrease in endplate area and complexity, and deficits in neurofilament heavy chain. Our data also show evidence for metabolic dysregulation and myofiber atrophy that correlate with severity of NMJ pathology. We propose a model in which the dynamic communicative relationship between the motor neuron and muscle, along with the developmental subtype of the muscle, promotes motor unit subtype specific vulnerability, metabolic alterations, and NMJ pathology.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Enfermedades Neurodegenerativas , Animales , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Ratones , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Enfermedades Neurodegenerativas/patología , Unión Neuromuscular/metabolismo , Presión , Lengua/metabolismo
7.
Cell Death Dis ; 13(7): 601, 2022 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-35821212

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is an adult-onset hereditary neurodegenerative disease caused by the expansions of CAG repeats in the androgen receptor (AR) gene. Androgen-dependent nuclear accumulation of pathogenic AR protein causes degeneration of lower motor neurons, leading to progressive muscle weakness and atrophy. While the successful induction of SBMA-like pathology has been achieved in mouse models, mechanisms underlying motor neuron vulnerability remain unclear. In the present study, we performed a transcriptome-based screening for genes expressed exclusively in motor neurons and dysregulated in the spinal cord of SBMA mice. We found upregulation of Mid1 encoding a microtubule-associated RNA binding protein which facilitates the translation of CAG-expanded mRNAs. Based on the finding that lower motor neurons begin expressing Mid1 during embryonic stages, we developed an organotypic slice culture system of the spinal cord obtained from SBMA mouse fetuses to study the pathogenic role of Mid1 in SBMA motor neurons. Impairment of axonal regeneration arose in the spinal cord culture in SBMA mice in an androgen-dependent manner, but not in mice with non-CAG-expanded AR, and was either exacerbated or ameliorated by Mid1 overexpression or knockdown, respectively. Hence, an early Mid1 expression confers vulnerability to motor neurons, at least by inducing axonogenesis defects, in SBMA.


Asunto(s)
Andrógenos , Atrofia Bulboespinal Ligada al X , Enfermedades Neurodegenerativas , Ubiquitina-Proteína Ligasas , Andrógenos/metabolismo , Andrógenos/farmacología , Animales , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
8.
Int J Mol Sci ; 22(11)2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-34073630

RESUMEN

Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients' sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Bulboespinal Ligada al X , MicroARNs , Mutación Missense , Superóxido Dismutasa-1 , Superóxido Dismutasa , Sustitución de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Humanos , Ratones , Ratones Transgénicos , MicroARNs/genética , MicroARNs/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/genética , Superóxido Dismutasa-1/metabolismo
9.
Pflugers Arch ; 473(8): 1213-1227, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34021780

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X/etiología , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Animales , Proteínas de Artrópodos , Atrofia Bulboespinal Ligada al X/metabolismo , Línea Celular , Clenbuterol , Humanos , Ratones , Técnicas de Placa-Clamp , Venenos de Araña
10.
J Mol Neurosci ; 71(3): 662-674, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32856205

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by expansions of a polyglutamine (polyQ) tract in the androgen receptor (AR) gene. SBMA is associated with the progressive loss of lower motor neurons, together with muscle weakness and atrophy. PolyQ-AR is converted to a toxic species upon binding to its natural ligands, testosterone, and dihydrotestosterone (DHT). Our previous patch-clamp studies on a motor neuron-derived cell model of SBMA showed alterations in voltage-gated ion currents. Here, we identified and characterized chloride currents most likely belonging to the chloride channel-2 (ClC-2) subfamily, which showed significantly increased amplitudes in the SBMA cells. The treatment with the pituitary adenylyl cyclase-activating polypeptide (PACAP), a neuropeptide with a proven protective effect in a mouse model of SBMA, recovered chloride channel current alterations in SBMA cells. These observations suggest that the CIC-2 currents are affected in SBMA, an alteration that may contribute and potentially determine the pathophysiology of the disease.


Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Canales de Cloruro/metabolismo , Potenciales de Acción , Animales , Canales de Cloruro CLC-2 , Células Cultivadas , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/fisiología , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología
11.
J Neurol Neurosurg Psychiatry ; 91(10): 1085-1091, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32934110

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a hereditary neuromuscular disorder caused by CAG trinucleotide expansion in the gene encoding the androgen receptor (AR). In the central nervous system, lower motor neurons are selectively affected, whereas pathology of patients and animal models also indicates involvement of skeletal muscle including loss of fast-twitch type 2 fibres and increased slow-twitch type 1 fibres, together with a glycolytic-to-oxidative metabolic switch. Evaluation of muscle and fat using MRI, in addition to biochemical indices such as serum creatinine level, are promising biomarkers to track the disease progression. The serum level of creatinine starts to decrease before the onset of muscle weakness, followed by the emergence of hand tremor, a prodromal sign of the disease. Androgen-dependent nuclear accumulation of the polyglutamine-expanded AR is an essential step in the pathogenesis, providing therapeutic opportunities via hormonal manipulation and gene silencing with antisense oligonucleotides. Animal studies also suggest that hyperactivation of Src, alteration of autophagy and a mitochondrial deficit underlie the neuromuscular degeneration in SBMA and provide alternative therapeutic targets.


Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/terapia , Inhibidores de 5-alfa-Reductasa/uso terapéutico , Tejido Adiposo/diagnóstico por imagen , Agonistas Adrenérgicos beta/uso terapéutico , Autofagia , Biomarcadores , Atrofia Bulboespinal Ligada al X/diagnóstico por imagen , Atrofia Bulboespinal Ligada al X/fisiopatología , Clenbuterol/uso terapéutico , Creatinina/metabolismo , Dutasterida/uso terapéutico , Glucólisis , Humanos , Factor I del Crecimiento Similar a la Insulina/análogos & derivados , Leuprolida/uso terapéutico , Imagen por Resonancia Magnética , Mitocondrias/metabolismo , Fibras Musculares de Contracción Rápida/metabolismo , Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/metabolismo , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Oligonucleótidos Antisentido/uso terapéutico , Oxidación-Reducción , Tratamiento con ARN de Interferencia , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Expansión de Repetición de Trinucleótido
12.
Curr Opin Neurol ; 33(5): 629-634, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32773451

RESUMEN

PURPOSE OF REVIEW: The aim of this study was to illustrate the current understanding and avenues for developing treatment in spinal and bulbar muscular atrophy (SBMA), an inherited neuromuscular disorder caused by a CAG trinucleotide repeat expansion in the androgen receptor (AR) gene. RECENT FINDINGS: Important advances have been made in characterizing the molecular mechanism of the disease, including the disruption of protein homeostasis, intracellular trafficking and signalling pathways. Biomarkers such as MRI quantification of muscle volume and fat fraction have been used to track disease progression, and will be useful in future clinical studies. Therapies tested and under development have been based on diverse strategies, including targeting mutant AR gene expression, stability and activity, and pathways that mitigate disease toxicity. SUMMARY: We provide an overview of the recent advances in understanding the SBMA disease mechanism and highlight efforts to translate these insights into well tolerated and effective therapy.


Asunto(s)
Atrofia Bulboespinal Ligada al X/genética , Receptores Androgénicos/genética , Expansión de Repetición de Trinucleótido , Biomarcadores , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/terapia , Progresión de la Enfermedad , Humanos
13.
Acta Neuropathol ; 140(1): 63-80, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32306066

RESUMEN

Polyglutamine (polyQ) tract expansion leads to proteotoxic misfolding and drives a family of nine diseases. We study spinal and bulbar muscular atrophy (SBMA), a progressive degenerative disorder of the neuromuscular system caused by the polyQ androgen receptor (AR). Using a knock-in mouse model of SBMA, AR113Q mice, we show that E3 ubiquitin ligases which are a hallmark of the canonical muscle atrophy machinery are not induced in AR113Q muscle. Similarly, we find no evidence to suggest dysfunction of signaling pathways that trigger muscle hypertrophy or impairment of the muscle stem cell niche. Instead, we find that skeletal muscle atrophy is characterized by diminished function of the transcriptional regulator Myocyte Enhancer Factor 2 (MEF2), a regulator of myofiber homeostasis. Decreased expression of MEF2 target genes is age- and glutamine tract length-dependent, occurs due to polyQ AR proteotoxicity, and is associated with sequestration of MEF2 into intranuclear inclusions in muscle. Skeletal muscle from R6/2 mice, a model of Huntington disease which develops progressive atrophy, also sequesters MEF2 into inclusions and displays age-dependent loss of MEF2 target genes. Similarly, SBMA patient muscle shows loss of MEF2 target gene expression, and restoring MEF2 activity in AR113Q muscle rescues fiber size and MEF2-regulated gene expression. This work establishes MEF2 impairment as a novel mechanism of skeletal muscle atrophy downstream of toxic polyglutamine proteins and as a therapeutic target for muscle atrophy in these disorders.


Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Factores de Transcripción MEF2/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Animales , Humanos , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Péptidos
15.
Sci Rep ; 9(1): 119, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644418

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansion in the androgen receptor (AR). Prior studies have highlighted the importance of AR nuclear localization in SBMA pathogenesis; therefore, in this study, we sought to determine the role of AR nuclear export in the pathological manifestations of SBMA. We demonstrate here that the nuclear export of polyQ-expanded AR is impaired, even prior to the formation of intranuclear inclusions of aggregated AR. Additionally, we find that promoting AR export with an exogenous nuclear export signal substantially reduces its aggregation and blocks hormone-induced toxicity. Moreover, we show that these protective effects are conferred by destabilization of the mutant protein due to an increase in proteasomal degradation of the cytoplasmic AR. Despite a growing body of evidence that global disruption of nucleo/cytoplasmic transport occurs in ALS and HD, our data suggest that no such global disruption occurs in models of SBMA; rather, AR-specific mechanisms, including reduced phosphorylation at Serine 650, are likely responsible for the impaired nuclear export of polyQ-expanded AR.


Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Núcleo Celular/metabolismo , Péptidos/metabolismo , Receptores Androgénicos/metabolismo , Transporte Activo de Núcleo Celular , Animales , Células HEK293 , Humanos , Ratones , Células 3T3 NIH , Células PC12 , Ratas
16.
Neuroscientist ; 25(5): 512-520, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30614396

RESUMEN

Polyglutamine (polyQ) diseases are a group of hereditary neurodegenerative disorders caused by expansion of unstable polyQ repeats in their associated disease proteins. To date, the pathogenesis of each disease remains poorly understood, and there are no effective treatments. Growing evidence has indicated that, in addition to neurodegeneration, polyQ-expanded proteins can cause a wide array of abnormalities in peripheral tissues. Indeed, polyQ-expanded proteins are ubiquitously expressed throughout the body and can affect the function of both the central nervous system (CNS) and peripheral tissues. The peripheral effects of polyQ disease proteins include muscle wasting and reduced muscle strength in patients or animal models of spinal and bulbar muscular atrophy (SBMA), Huntington's disease (HD), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxia type 17 (SCA17). Since skeletal muscle pathology can reflect disease progression and is more accessible for treatment than neurodegeneration in the CNS, understanding how polyQ disease proteins affect skeletal muscle will help elucidate disease mechanisms and the development of new therapeutics. In this review, we focus on important findings in terms of skeletal muscle pathology in polyQ diseases and also discuss the potential mechanisms underlying the major peripheral effects of polyQ disease proteins, as well as their therapeutic implications.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Péptidos/metabolismo , Animales , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Humanos , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/metabolismo , Enfermedad de Huntington/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Epilepsias Mioclónicas Progresivas/metabolismo , Epilepsias Mioclónicas Progresivas/patología , Péptidos/genética , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/patología
17.
Autophagy ; 15(4): 631-651, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30335591

RESUMEN

Macroautophagy/autophagy, a defense mechanism against aberrant stresses, in neurons counteracts aggregate-prone misfolded protein toxicity. Autophagy induction might be beneficial in neurodegenerative diseases (NDs). The natural compound trehalose promotes autophagy via TFEB (transcription factor EB), ameliorating disease phenotype in multiple ND models, but its mechanism is still obscure. We demonstrated that trehalose regulates autophagy by inducing rapid and transient lysosomal enlargement and membrane permeabilization (LMP). This effect correlated with the calcium-dependent phosphatase PPP3/calcineurin activation, TFEB dephosphorylation and nuclear translocation. Trehalose upregulated genes for the TFEB target and regulator Ppargc1a, lysosomal hydrolases and membrane proteins (Ctsb, Gla, Lamp2a, Mcoln1, Tpp1) and several autophagy-related components (Becn1, Atg10, Atg12, Sqstm1/p62, Map1lc3b, Hspb8 and Bag3) mostly in a PPP3- and TFEB-dependent manner. TFEB silencing counteracted the trehalose pro-degradative activity on misfolded protein causative of motoneuron diseases. Similar effects were exerted by trehalase-resistant trehalose analogs, melibiose and lactulose. Thus, limited lysosomal damage might induce autophagy, perhaps as a compensatory mechanism, a process that is beneficial to counteract neurodegeneration. Abbreviations: ALS: amyotrophic lateral sclerosis; AR: androgen receptor; ATG: autophagy related; AV: autophagic vacuole; BAG3: BCL2-associated athanogene 3; BECN1: beclin 1, autophagy related; CASA: chaperone-assisted selective autophagy; CTSB: cathepsin b; DAPI: 4',6-diamidino-2-phenylindole; DMEM: Dulbecco's modified Eagle's medium; EGFP: enhanced green fluorescent protein; fALS, familial amyotrophic lateral sclerosis; FRA: filter retardation assay; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GLA: galactosidase, alpha; HD: Huntington disease; hIPSCs: human induced pluripotent stem cells; HSPA8: heat shock protein A8; HSPB8: heat shock protein B8; IF: immunofluorescence analysis; LAMP1: lysosomal-associated membrane protein 1; LAMP2A: lysosomal-associated membrane protein 2A; LGALS3: lectin, galactose binding, soluble 3; LLOMe: L-leucyl-L-leucine methyl ester; LMP: lysosomal membrane permeabilization; Lys: lysosomes; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; MCOLN1: mucolipin 1; mRNA: messenger RNA; MTOR: mechanistic target of rapamycin kinase; NDs: neurodegenerative diseases; NSC34: neuroblastoma x spinal cord 34; PBS: phosphate-buffered saline; PD: Parkinson disease; polyQ: polyglutamine; PPARGC1A: peroxisome proliferative activated receptor, gamma, coactivator 1 alpha; PPP3CB: protein phosphatase 3, catalytic subunit, beta isoform; RT-qPCR: real-time quantitative polymerase chain reaction; SBMA: spinal and bulbar muscular atrophy; SCAs: spinocerebellar ataxias; siRNA: small interfering RNA; SLC2A8: solute carrier family 2, (facilitated glucose transporter), member 8; smNPCs: small molecules neural progenitors cells; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STED: stimulated emission depletion; STUB1: STIP1 homology and U-box containing protein 1; TARDBP/TDP-43: TAR DNA binding protein; TFEB: transcription factor EB; TPP1: tripeptidyl peptidase I; TREH: trehalase (brush-border membrane glycoprotein); WB: western blotting; ZKSCAN3: zinc finger with KRAB and SCAN domains 3.


Asunto(s)
Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Calcineurina/metabolismo , Lisosomas/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Trehalosa/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/enzimología , Autofagosomas/metabolismo , Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/química , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Atrofia Bulboespinal Ligada al X/tratamiento farmacológico , Atrofia Bulboespinal Ligada al X/metabolismo , Calcineurina/genética , Calcio/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Regulación hacia Abajo/genética , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Células Madre Pluripotentes Inducidas/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/enzimología , Lisosomas/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Proteínas Asociadas a Microtúbulos/metabolismo , Neuronas Motoras/enzimología , Neuronas Motoras/ultraestructura , Neuroprotección/efectos de los fármacos , Neuroprotección/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Trehalosa/análogos & derivados , Tripeptidil Peptidasa 1 , Respuesta de Proteína Desplegada/genética
18.
Neurobiol Dis ; 124: 1-13, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30391288

RESUMEN

Spinal and bulbar muscular atrophy (SBMA) is a neurodegenerative disease caused by the expansion of polyglutamine region in the androgen receptor. To gain insights into mechanisms of SBMA, four wild-type and five SBMA iPSC lines were differentiated to spinal motor neurons (sMNs) with high efficiency. SBMA sMNs showed neurite defects, reduced sMN survival and decreased protein synthesis levels. Microarray analysis revealed a dysregulation in various neuronal-related signalling pathways in SBMA sMNs. Strikingly, FAM135B a novel gene of unknown function, was found drastically downregulated in SBMA sMNs. Knockdown of FAM135B in wild-type sMNs reduced their survival and contributed to neurite defects, similar to SBMA sMNs, suggesting a functional role of FAM135B in SBMA. The degenerative phenotypes and dysregulated genes revealed could be potential therapeutic targets for SBMA.


Asunto(s)
Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Neuritas/metabolismo , Neuritas/patología , Atrofia Bulboespinal Ligada al X/genética , Diferenciación Celular , Perfilación de la Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Péptidos y Proteínas de Señalización Intracelular/genética , Fenotipo , Transducción de Señal
19.
Adv Exp Med Biol ; 1049: 103-133, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29427100

RESUMEN

Spinal and Bulbar Muscular Atrophy (SBMA) is an inherited neuromuscular disorder caused by a CAG-polyglutamine (polyQ) repeat expansion in the androgen receptor (AR) gene. Unlike other polyQ diseases, where the function of the native causative protein is unknown, the biology of AR is well understood, and this knowledge has informed our understanding of how native AR function interfaces with polyQ-AR dysfunction. Furthermore, ligand-dependent activation of AR has been linked to SBMA disease pathogenesis, and has led to a thorough study of androgen-mediated effects on polyQ-AR stability, degradation, and post-translational modifications, as well as their roles in the disease process. Transcriptional dysregulation, proteostasis dysfunction, and mitochondrial abnormalities are central to polyQ-AR neurotoxicity, most likely via a 'change-of-function' mechanism. Intriguingly, recent work has demonstrated a principal role for skeletal muscle in SBMA disease pathogenesis, indicating that polyQ-AR toxicity initiates in skeletal muscle and results in secondary motor neuron demise. The existence of robust animal models for SBMA has permitted a variety of preclinical trials, driven by recent discoveries of altered cellular processes, and some of this preclinical work has led to human clinical trials. In this chapter, we review SBMA clinical features and disease biology, discuss our current understanding of the cellular and molecular basis of SBMA pathogenesis, and highlight ongoing efforts toward therapy development.


Asunto(s)
Atrofia Bulboespinal Ligada al X , Mitocondrias , Neuronas Motoras , Músculo Esquelético , Péptidos , Deficiencias en la Proteostasis , Expansión de Repetición de Trinucleótido , Animales , Atrofia Bulboespinal Ligada al X/genética , Atrofia Bulboespinal Ligada al X/metabolismo , Atrofia Bulboespinal Ligada al X/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Péptidos/genética , Péptidos/metabolismo , Deficiencias en la Proteostasis/genética , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Ratas , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Transcripción Genética/genética
20.
Sci Rep ; 6: 27703, 2016 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-27312068

RESUMEN

Polyglutamine expansion in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA), an X-linked neuromuscular disease that is fully manifest only in males. It has been suggested that proteins with expanded polyglutamine tracts impair ubiquitin-dependent proteolysis due to their propensity to aggregate, but recent studies indicate that the overall activity of the ubiquitin-proteasome system is preserved in SBMA models. Here we report that AR selectively interferes with the function of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which, together with its substrate adaptor Cdh1, is critical for cell cycle arrest and neuronal architecture. We show that both wild-type and mutant AR physically interact with the APC/C(Cdh1) complex in a ligand-dependent fashion without being targeted for proteasomal degradation. Inhibition of APC/C(Cdh1) by mutant but not wild-type AR in PC12 cells results in enhanced neurite outgrowth which is typically followed by rapid neurite retraction and mitotic entry. Our data indicate a role of AR in neuronal differentiation through regulation of APC/C(Cdh1) and suggest abnormal cell cycle reactivation as a pathogenic mechanism in SBMA.


Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Atrofia Bulboespinal Ligada al X/genética , Cadherinas/metabolismo , Receptores Androgénicos/metabolismo , Animales , Antígenos CD , Atrofia Bulboespinal Ligada al X/metabolismo , Proteínas Portadoras , Ciclo Celular , Mutación , Neuritas/metabolismo , Células PC12 , Proteolisis , Ratas , Receptores Androgénicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...