Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.176
Filtrar
1.
Cells ; 13(9)2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38727321

RESUMEN

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by deficiency of the survival motor neuron (SMN) protein. Although SMA is a genetic disease, environmental factors contribute to disease progression. Common pathogen components such as lipopolysaccharides (LPS) are considered significant contributors to inflammation and have been associated with muscle atrophy, which is considered a hallmark of SMA. In this study, we used the SMNΔ7 experimental mouse model of SMA to scrutinize the effect of systemic LPS administration, a strong pro-inflammatory stimulus, on disease outcome. Systemic LPS administration promoted a reduction in SMN expression levels in CNS, peripheral lymphoid organs, and skeletal muscles. Moreover, peripheral tissues were more vulnerable to LPS-induced damage compared to CNS tissues. Furthermore, systemic LPS administration resulted in a profound increase in microglia and astrocytes with reactive phenotypes in the CNS of SMNΔ7 mice. In conclusion, we hereby show for the first time that systemic LPS administration, although it may not precipitate alterations in terms of deficits of motor functions in a mouse model of SMA, it may, however, lead to a reduction in the SMN protein expression levels in the skeletal muscles and the CNS, thus promoting synapse damage and glial cells' reactive phenotype.


Asunto(s)
Modelos Animales de Enfermedad , Lipopolisacáridos , Atrofia Muscular Espinal , Animales , Lipopolisacáridos/farmacología , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/metabolismo , Ratones , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ratones Endogámicos C57BL , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/patología , Inflamación/patología
2.
Sci Rep ; 14(1): 10442, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714739

RESUMEN

Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.


Asunto(s)
Exones , Atrofia Muscular Espinal , Proteoma , ARN Circular , Proteína 1 para la Supervivencia de la Neurona Motora , Proteína 2 para la Supervivencia de la Neurona Motora , Transcriptoma , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Proteoma/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Células HEK293 , Exones/genética , Regulación de la Expresión Génica
3.
Clin Lab ; 70(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38747911

RESUMEN

BACKGROUND: This study aims to evaluate the ability of laboratories to perform spinal muscular atrophy (SMA) genetic testing in newborns based on dried blood spot (DBS) samples, and to provide reference data and advance preparation for establishing the pilot external quality assessment (EQA) scheme for SMA genetic testing of newborns in China. METHODS: The pilot EQA scheme contents and evaluation principles of this project were designed by National Center for Clinical Laboratories (NCCL), National Health Commission. Two surveys were carried out in 2022, and 5 batches of blood spots were submitted to the participating laboratory each time. All participating laboratories conducted testing upon receiving samples, and test results were submitted to NCCL within the specified date. RESULTS: The return rates were 75.0% (21/28) and 95.2% (20/21) in the first and second surveys, respectively. The total return rate of the two examinations was 83.7% (41/49). Nineteen laboratories (19/21, 90.5%) had a full score passing on the first survey, while in the second survey twenty laboratories (20/20, 100%) scored full. CONCLUSIONS: This pilot EQA survey provides a preliminary understanding of the capability of SMA genetic testing for newborns across laboratories in China. A few laboratories had technical or operational problems in testing. It is, therefore, of importance to strengthen laboratory management and to improve testing capacity for the establishment of a national EQA scheme for newborn SMA genetic testing.


Asunto(s)
Pruebas Genéticas , Atrofia Muscular Espinal , Tamizaje Neonatal , Humanos , Recién Nacido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Proyectos Piloto , Pruebas Genéticas/normas , Pruebas Genéticas/métodos , Tamizaje Neonatal/normas , Tamizaje Neonatal/métodos , China , Pruebas con Sangre Seca/normas , Pruebas con Sangre Seca/métodos , Garantía de la Calidad de Atención de Salud , Laboratorios Clínicos/normas , Proteína 1 para la Supervivencia de la Neurona Motora/genética
4.
Pediatr Int ; 66(1): e15769, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742693

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by degeneration of lower motor neurons, resulting in progressive muscle weakness and atrophy. However, little is known regarding the cardiac function of children with SMA. METHODS: We recruited SMA patients younger than 18 years of age from January 1, 2022, to April 1, 2022, in the First Affiliated Hospital of Sun Yat-sen University. All patients underwent a comprehensive cardiac evaluation before treatment, including history taking, physical examination, blood tests of cardiac biomarkers, assessment of echocardiography and electrocardiogram. Age/gender-matched healthy volunteers were recruited as controls. RESULTS: A total of 36 SMA patients (26 with SMA type 2 and 10 with SMA type 3) and 40 controls were enrolled in the study. No patient was clinically diagnosed with heart failure. Blood tests showed elevated values of creatine kinase isoenzyme M and isoenzyme B (CK-MB) mass and high-sensitivity cardiac troponin T (hs-cTnT) in spinal muscular atrophy (SMA) patients. Regarding echocardiographic parameters, SMA children were detected with lower global left and right ventricular longitudinal strain, abnormal diastolic filling velocities of trans-mitral and trans-tricuspid flow. The results revealed no clinical heart dysfunction in SMA patients, but subclinical ventricular dysfunction was seen in SMA children including the diastolic function and myocardial performance. Some patients presented with elevated heart rate and abnormal echogenicity of aortic valve or wall. Among these SMA patients, seven patients (19.4%) had scoliosis. The Cobb's angles showed a significant negative correlation with LVEDd/BSA, but no correlation with other parameters, suggesting that mild scoliosis did not lead to significant cardiac dysfunction. CONCLUSIONS: Our findings warrant increased attention to the cardiac status and highlight the need to investigate cardiac interventions in SMA children.


Asunto(s)
Ecocardiografía , Humanos , Masculino , Femenino , Estudios de Casos y Controles , Niño , Preescolar , Adolescente , Electrocardiografía , Lactante , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/sangre , Biomarcadores/sangre , Atrofias Musculares Espinales de la Infancia/diagnóstico , Atrofias Musculares Espinales de la Infancia/fisiopatología , Atrofias Musculares Espinales de la Infancia/sangre , Atrofias Musculares Espinales de la Infancia/complicaciones , Pruebas de Función Cardíaca/métodos
5.
Nat Commun ; 15(1): 3839, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714659

RESUMEN

Pre-mRNA splicing, a key process in gene expression, can be therapeutically modulated using various drug modalities, including antisense oligonucleotides (ASOs). However, determining promising targets is hampered by the challenge of systematically mapping splicing-regulatory elements (SREs) in their native sequence context. Here, we use the catalytically inactive CRISPR-RfxCas13d RNA-targeting system (dCas13d/gRNA) as a programmable platform to bind SREs and modulate splicing by competing against endogenous splicing factors. SpliceRUSH, a high-throughput screening method, was developed to map SREs in any gene of interest using a lentivirus gRNA library that tiles the genetic region, including distal intronic sequences. When applied to SMN2, a therapeutic target for spinal muscular atrophy, SpliceRUSH robustly identifies not only known SREs but also a previously unknown distal intronic SRE, which can be targeted to alter exon 7 splicing using either dCas13d/gRNA or ASOs. This technology enables a deeper understanding of splicing regulation with applications for RNA-based drug discovery.


Asunto(s)
Sistemas CRISPR-Cas , Exones , Intrones , Empalme del ARN , ARN Guía de Sistemas CRISPR-Cas , Proteína 2 para la Supervivencia de la Neurona Motora , Humanos , Empalme del ARN/genética , Proteína 2 para la Supervivencia de la Neurona Motora/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Intrones/genética , Exones/genética , Células HEK293 , Oligonucleótidos Antisentido/genética , Atrofia Muscular Espinal/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Precursores del ARN/genética , Precursores del ARN/metabolismo
6.
Int J Mol Sci ; 25(9)2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38732027

RESUMEN

Antisense oligonucleotides (ASOs) are short oligodeoxynucleotides designed to bind to specific regions of target mRNA. ASOs can modulate pre-mRNA splicing, increase levels of functional proteins, and decrease levels of toxic proteins. ASOs are being developed for the treatment of motor neuron diseases (MNDs), including spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and spinal and bulbar muscular atrophy (SBMA). The biggest success has been the ASO known as nusinersen, the first effective therapy for SMA, able to improve symptoms and slow disease progression. Another success is tofersen, an ASO designed to treat ALS patients with SOD1 gene mutations. Both ASOs have been approved by the FDA and EMA. On the other hand, ASO treatment in ALS patients with the C9orf72 gene mutation did not show any improvement in disease progression. The aim of this review is to provide an up-to-date overview of ASO research in MNDs, from preclinical studies to clinical trials and, where available, regulatory approval. We highlight the successes and failures, underline the strengths and limitations of the current ASO research, and suggest possible approaches that could lead to more effective treatments.


Asunto(s)
Enfermedad de la Neurona Motora , Oligonucleótidos Antisentido , Humanos , Oligonucleótidos Antisentido/uso terapéutico , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/terapia , Animales , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia
7.
Acta Myol ; 43(1): 1-7, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38586164

RESUMEN

Hereditary proximal 5q Spinal Muscular Atrophy (SMA) is a severe neuromuscular disorder with onset mainly in infancy or childhood. The underlying pathogenic mechanism is the loss of alpha motor neurons in the anterior horns of spine, due to deficiency of the survival motor neuron (SMN) protein as a consequence of the deletion of the SMN1 gene. Clinically, SMA is characterized by progressive loss of muscle strength and motor function ranging from the extremely severe, the neonatal onset type 1, to the mild type 4 arising in the adult life. All the clinical variants share the same molecular defect, the difference being driven mainly by the copy number of SMN2 gene, a centromeric gene nearly identical to SMN1 with a unique C to T transition in Exon 7 that results in exclusion of Exon 7 during post-transcriptional processing. In all the types of SMA the clinical picture is characterized by hypotonia, weakness and areflexia. Clinical severity can vary a lot between the four main recognized types of SMA. As for the most of patients affected by different neuromuscular disorders, also in SMA fatigability is a major complaint as it is frequently reported in common daily activities and negatively impacts on the overall quality of life. The increasing awareness of fatigability as an important dimension of impairment in Neuromuscular Disorders and particularly in SMA, is making it both a relevant subject of study and identifies it as a fundamental therapeutic target. In this review, we aimed to overview the current literature articles concerning this problem, in order to highlight what is known and what deserves further research.


Asunto(s)
Atrofia Muscular Espinal , Enfermedades Neuromusculares , Adulto , Niño , Humanos , Recién Nacido , Exones , Fatiga , Atrofia Muscular Espinal/genética , Enfermedades Neuromusculares/genética , Calidad de Vida , Factores de Transcripción/genética
8.
Ann Clin Transl Neurol ; 11(5): 1090-1096, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600653

RESUMEN

OBJECTIVES: Mandatory newborn screening (NBS) for spinal muscular atrophy (SMA) was implemented for the first time in Italy at the end of 2021, allowing the identification and treatment of patients at an asymptomatic stage. METHODS: DNA samples extracted from dried blood spot (DBS) from newborns in Apulia region were analysed for SMA screening by using a real-time PCR-based assay. Infants harbouring homozygous deletion of SMN1 exon 7 confirmed by diagnostic molecular tests underwent clinical and neurophysiological assessment and received a timely treatment. RESULTS: Over the first 20 months since regional NBS introduction, four out of 42,492 (0.009%) screened children were found to carry a homozygous deletion in the exon 7 of SMN1 gene, with an annual incidence of 1:10,623. No false negatives were present. Median age at diagnosis was 7 days and median age at treatment was 20.5 days. Three of them had two copies of SMN2 and received gene therapy, while the one with three SMN2 copies was treated with nusinersen. All but one were asymptomatic at birth, showed no clinical signs of disease after a maximum follow-up of 16 months and reached motor milestones appropriate with their age. The minimum interval between diagnosis and the treatment initiation was 9 days. INTERPRETATION: The timely administration of disease-modifying therapies prevented presymptomatic subjects to develop disease symptoms. Mandatory NBS for SMA should be implemented on a national scale.


Asunto(s)
Atrofia Muscular Espinal , Tamizaje Neonatal , Proteína 1 para la Supervivencia de la Neurona Motora , Humanos , Italia , Recién Nacido , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Femenino , Masculino , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Oligonucleótidos/administración & dosificación , Oligonucleótidos/farmacología , Lactante
9.
Curr Opin Pediatr ; 36(3): 296-303, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38655811

RESUMEN

PURPOSE OF REVIEW: Genetic therapies made a significant impact to the clinical course of patients with spinal muscular atrophy and Duchenne muscular dystrophy. Clinicians and therapists who care for these patients want to know the changes in respiratory sequelae and implications for clinical care for treated patients. RECENT FINDINGS: Different genetic therapy approaches have been developed to replace the deficient protein product in spinal muscular atrophy and Duchenne muscular dystrophy. The natural history of these conditions needed to be understood in order to design clinical trials. Respiratory parameters were not the primary outcome measures for the clinical trials. The impact of these therapies is described in subsequent clinical trial reports or real-world data. SUMMARY: Genetic therapies are able to stabilize or improve the respiratory sequelae in patients with spinal muscular atrophy and Duchenne muscular dystrophy. Standardized reporting of these outcomes is needed to help inform the future revisions of clinical standards of care and practice guidelines.


Asunto(s)
Terapia Genética , Distrofia Muscular de Duchenne , Humanos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/complicaciones , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/genética , Niño , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/complicaciones , Resultado del Tratamiento
10.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612621

RESUMEN

The objective of this study is to evaluate biomarkers for neurodegenerative disorders in adult SMA patients and their potential for monitoring the response to nusinersen. Biomarkers for neurodegenerative disorders were assessed in plasma and CSF samples obtained from a total of 30 healthy older adult controls and 31 patients with adult SMA type 2 and 3. The samples were collected before and during nusinersen treatment at various time points, approximately at 2, 6, 10, and 22 months. Using ELISA technology, the levels of total tau, pNF-H, NF-L, sAPPß, Aß40, Aß42, and YKL-40 were evaluated in CSF samples. Additionally, plasma samples were used to measure NF-L and total tau levels using SIMOA technology. SMA patients showed improvements in clinical outcomes after nusinersen treatment, which were statistically significant only in walkers, in RULM (p = 0.04) and HFMSE (p = 0.05) at 24 months. A reduction in sAPPß levels was found after nusinersen treatment, but these levels did not correlate with clinical outcomes. Other neurodegeneration biomarkers (NF-L, pNF-H, total tau, YKL-40, Aß40, and Aß42) were not found consistently changed with nusinersen treatment. The slow progression rate and mild treatment response of adult SMA types 2 and 3 may not lead to detectable changes in common markers of axonal degradation, inflammation, or neurodegeneration, since it does not involve large pools of damaged neurons as observed in pediatric forms. However, changes in biomarkers associated with the APP processing pathway might be linked to treatment administration. Further studies are warranted to better understand these findings.


Asunto(s)
Atrofia Muscular Espinal , Oligonucleótidos , Atrofias Musculares Espinales de la Infancia , Humanos , Niño , Anciano , Proteína 1 Similar a Quitinasa-3 , Biomarcadores
11.
BMC Anesthesiol ; 24(1): 148, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637753

RESUMEN

BACKGROUND: Anesthesia for spinal muscular atrophy (SMA) patients undergoing spinal deformity surgery is challenging. We report an unusual case of an SMA girl who developed severe intraoperative hypoxemia and hypotension during posterior spinal fusion related with surgical positioning. CASE PRESENTATION: A 13-yr-old girl diagnosed with SMA type 2, severe kyphoscoliosis and thoracic deformity was scheduled for elective posterior spinal fusion. She developed severe hypoxemia and profound hypotension intraoperatively in the prone position with surgical table tilted 45° to the right. Though transesophageal echocardiography (TEE) could not be performed due to limited mouth opening, her preoperative computed tomography revealed a severely distorted thoracic cavity with much reduced volume of the right side. A reasonable explanation was when the surgeons performed surgical procedure with the tilted surgical table, the pressure was directly put on the shortest diameter of the significantly deformed thoracic cavity, causing severe compression of the pulmonary artery, resulting in both hypoxemia and hypotension. The patient stabilized when the surgical table was tilted back and successfully went through the surgery in the leveled prone position. CONCLUSIONS: Spinal fusion surgery is beneficial for SMA patients in preventing scoliosis progression and improving ventilation. However, severe scoliosis and thoracic deformities put them at risk of both hemodynamic and respiratory instability during surgical positioning. When advanced monitoring like TEE is not practical intraoperatively, preoperative imaging may help with differential diagnosis, and guide the surgical positioning to minimize mechanical compression of the thoracic cavity, thereby helping the patient complete the surgery safely.


Asunto(s)
Hipotensión , Atrofia Muscular Espinal , Escoliosis , Fusión Vertebral , Femenino , Humanos , Hipotensión/etiología , Hipoxia/complicaciones , Atrofia Muscular Espinal/complicaciones , Estudios Retrospectivos , Escoliosis/cirugía , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Resultado del Tratamiento , Adolescente
12.
Mol Genet Genomic Med ; 12(4): e2425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38562051

RESUMEN

BACKGROUND: To explore the clinical application value of pre-conception expanded carrier screening (PECS) in the Chinese Han ethnicity population of childbearing age. METHODS: The results of genetic testing of infertile parents who underwent PECS in the Reproductive Medicine Center of the Second Affiliated Hospital of Zhengzhou University, China, from September 2019 to December 2021, were retrospectively analyzed. The carrier rate of single gene disease, the detection rate of high-risk parents, and the clinical outcome of high-risk parents were statistically analyzed. RESULTS: A total of 1372 Chinese Han ethnicity patients underwent PECS, among which 458 patients underwent the extended 108-gene test, their overall carrier rate was 31.7%, and the detection rate of high-risk parents was 0.3%. The highest carrier rates were SLC22A (2.4%), ATP7B (2.4%), MMACHC (2.2%), PAH (1.8%), GALC (1.8%), MLC1 (1.3%), UNC13D (1.1%), CAPN3 (1.1%), and PKHD1 (1.1%). There were 488 women with fragile X syndrome-FMR1 gene detection, and 6 patients (1.2%) had FMR1 gene mutation. A total of 426 patients were screened for spinal muscular atrophy-SMN1, and the carrier rate was 3.5%, and the detection rate of parents' co-carrier was 0.5%. CONCLUSION: Monogenic recessive hereditary diseases had a high carrier rate in the population. Pre-pregnancy screening could provide good prenatal and postnatal care guidance for patients and preimplantation genetic testing for monogenic/single gene disorders (PGT-M) and prenatal diagnosis could provide more precise reproductive choices for high-risk parents.


Asunto(s)
Pruebas Genéticas , Atrofia Muscular Espinal , Embarazo , Humanos , Femenino , Estudios Retrospectivos , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Mutación , Atrofia Muscular Espinal/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Oxidorreductasas/genética , Proteínas de la Membrana/genética
13.
Stem Cell Res Ther ; 15(1): 94, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561840

RESUMEN

BACKGROUND: Spinal Muscular Atrophy (SMA) is an autosomal-recessive neuromuscular disease affecting children. It is caused by the mutation or deletion of the survival motor neuron 1 (SMN1) gene resulting in lower motor neuron (MN) degeneration followed by motor impairment, progressive skeletal muscle paralysis and respiratory failure. In addition to the already existing therapies, a possible combinatorial strategy could be represented by the use of adipose-derived mesenchymal stem cells (ASCs) that can be obtained easily and in large amounts from adipose tissue. Their efficacy seems to be correlated to their paracrine activity and the production of soluble factors released through extracellular vesicles (EVs). EVs are important mediators of intercellular communication with a diameter between 30 and 100 nm. Their use in other neurodegenerative disorders showed a neuroprotective effect thanks to the release of their content, especially proteins, miRNAs and mRNAs. METHODS: In this study, we evaluated the effect of EVs isolated from ASCs (ASC-EVs) in the SMNΔ7 mice, a severe SMA model. With this purpose, we performed two administrations of ASC-EVs (0.5 µg) in SMA pups via intracerebroventricular injections at post-natal day 3 (P3) and P6. We then assessed the treatment efficacy by behavioural test from P2 to P10 and histological analyses at P10. RESULTS: The results showed positive effects of ASC-EVs on the disease progression, with improved motor performance and a significant delay in spinal MN degeneration of treated animals. ASC-EVs could also reduce the apoptotic activation (cleaved Caspase-3) and modulate the neuroinflammation with an observed decreased glial activation in lumbar spinal cord, while at peripheral level ASC-EVs could only partially limit the muscular atrophy and fiber denervation. CONCLUSIONS: Our results could encourage the use of ASC-EVs as a therapeutic combinatorial treatment for SMA, bypassing the controversial use of stem cells.


Asunto(s)
Vesículas Extracelulares , Atrofia Muscular Espinal , Humanos , Niño , Ratones , Animales , Modelos Animales de Enfermedad , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/terapia , Atrofia Muscular Espinal/patología , Neuronas Motoras , Células Madre/metabolismo , Vesículas Extracelulares/metabolismo
15.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(4): 420-424, 2024 Apr 15.
Artículo en Chino | MEDLINE | ID: mdl-38660908

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder. With the emergence of disease-modifying therapies, the prognosis of SMA has significantly improved, drawing increased attention to the importance of home rehabilitation and nursing management. Long-term, standardized home rehabilitation and nursing can delay the progression of SMA, enhance the psychological well-being, and improve the quality of life of both patients and caregivers. This article provides an overview of the goals of home rehabilitation, basic functional training methods, respiratory management, and nutritional management for SMA patients, as well as psychological health issues, emphasizing the significance of obtaining appropriate home rehabilitation and support during the care process.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/rehabilitación , Atrofia Muscular Espinal/terapia , Servicios de Atención de Salud a Domicilio , Calidad de Vida
16.
BMC Biol ; 22(1): 94, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664795

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is a devastating neuromuscular disease caused by hypomorphic loss of function in the survival motor neuron (SMN) protein. SMA presents across a broad spectrum of disease severity. Unfortunately, genetic models of intermediate SMA have been difficult to generate in vertebrates and are thus unable to address key aspects of disease etiology. To address these issues, we developed a Drosophila model system that recapitulates the full range of SMA severity, allowing studies of pre-onset biology as well as late-stage disease processes. RESULTS: Here, we carried out transcriptomic and proteomic profiling of mild and intermediate Drosophila models of SMA to elucidate molecules and pathways that contribute to the disease. Using this approach, we elaborated a role for the SMN complex in the regulation of innate immune signaling. We find that mutation or tissue-specific depletion of SMN induces hyperactivation of the immune deficiency (IMD) and Toll pathways, leading to overexpression of antimicrobial peptides (AMPs) and ectopic formation of melanotic masses in the absence of an external challenge. Furthermore, the knockdown of downstream targets of these signaling pathways reduced melanotic mass formation caused by SMN loss. Importantly, we identify SMN as a negative regulator of a ubiquitylation complex that includes Traf6, Bendless, and Diap2 and plays a pivotal role in several signaling networks. CONCLUSIONS: In alignment with recent research on other neurodegenerative diseases, these findings suggest that hyperactivation of innate immunity contributes to SMA pathology. This work not only provides compelling evidence that hyperactive innate immune signaling is a primary effect of SMN depletion, but it also suggests that the SMN complex plays a regulatory role in this process in vivo. In summary, immune dysfunction in SMA is a consequence of reduced SMN levels and is driven by cellular and molecular mechanisms that are conserved between insects and mammals.


Asunto(s)
Modelos Animales de Enfermedad , Inmunidad Innata , Atrofia Muscular Espinal , Transducción de Señal , Animales , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/inmunología , Drosophila melanogaster/inmunología , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
17.
Neuromuscul Disord ; 38: 44-50, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565000

RESUMEN

Progressive bulbar involvement is frequent in spinal muscular atrophy, with prevalence and severity of deficits associated with type. The report provides an overview of the presentations made at the workshop grouped into 4 sessions: the first section was dedicated to videofluoroscopy with a revision of the existing protocols and discussion on which one should be used in routine clinical practice and in research settings. The second session was dedicated to interprofessional routine assessments of bulbar function, with a review of the recent clinical tools specifically developed for SMA. The third section was focused on the assessments performed by speech and language therapists/pathologists in the new SMA phenotypes. The last section focused on how the new therapies have changed the approach in rehabilitation for bulbar dysfunction. Finally, we present the consensus that was achieved on these aspects and possible action points from these.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/terapia , Ciudad de Roma
18.
Med ; 5(5): 469-478.e3, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38531362

RESUMEN

BACKGROUND: Spinal muscular atrophy is a progressive neuromuscular disorder and among the most frequent genetic causes of infant mortality. While recent advancements in gene therapy provide the potential to ameliorate the disease severity, there is currently no modality in clinical use to visualize dynamic pathophysiological changes in disease progression and regression after therapy. METHODS: In this prospective diagnostic clinical study, ten pediatric patients with spinal muscular atrophy and ten age- and sex-matched controls have been examined with three-dimensional optoacoustic imaging and clinical standard examinations to compare the spectral profile of muscle tissue and correlate it with motor function (ClinicalTrials.gov: NCT04115475). FINDINGS: We observed a reduced optoacoustic signal in muscle tissue of pediatric patients with spinal muscular atrophy. The reduction in signal intensity correlated with disease severity as assessed by grayscale ultrasound and standard motor function tests. In a cohort of patients who received disease-modifying therapy prior to the study, the optoacoustic signal intensity was similar to healthy controls. CONCLUSIONS: This translational study provides early evidence that three-dimensional optoacoustic imaging could have clinical implications in monitoring disease activity in spinal muscular atrophy. By visualizing and quantifying molecular changes in muscle tissue, disease progression and effects of gene therapy can be assessed in real time. FUNDING: The project was funded by ELAN Fonds (P055) at the University Hospital of the Friedrich-Alexander-Universität (FAU) Erlangen-Nurnberg to A.P.R.


Asunto(s)
Imagenología Tridimensional , Atrofia Muscular Espinal , Técnicas Fotoacústicas , Humanos , Femenino , Masculino , Estudios Prospectivos , Preescolar , Imagenología Tridimensional/métodos , Técnicas Fotoacústicas/métodos , Niño , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/diagnóstico por imagen , Atrofia Muscular Espinal/terapia , Lactante , Progresión de la Enfermedad , Estudios de Casos y Controles , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Adolescente , Atrofias Musculares Espinales de la Infancia/diagnóstico por imagen , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/terapia , Atrofias Musculares Espinales de la Infancia/fisiopatología , Atrofias Musculares Espinales de la Infancia/diagnóstico
19.
J Mol Diagn ; 26(5): 364-373, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490302

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder primarily caused by the deletion or mutation of the survival motor neuron 1 (SMN1) gene. This study assesses the diagnostic potential of long-read sequencing (LRS) in three patients with SMA. For Patient 1, who has a heterozygous SMN1 deletion, LRS unveiled a missense mutation in SMN1 exon 5. In Patient 2, an Alu/Alu-mediated rearrangement covering the SMN1 promoter and exon 1 was identified through a blend of multiplex ligation-dependent probe amplification, LRS, and PCR across the breakpoint. The third patient, born to a consanguineous family, bore four copies of hybrid SMN genes. LRS determined the genomic structures, indicating two distinct hybrids of SMN2 exon 7 and SMN1 exon 8. However, a discrepancy was found between the SMN1/SMN2 ratio interpretations by LRS (0:2) and multiplex ligation-dependent probe amplification (0:4), which suggested a limitation of LRS in SMA diagnosis. In conclusion, this newly adapted long PCR-based third-generation sequencing introduces an additional avenue for SMA diagnosis.


Asunto(s)
Atrofia Muscular Espinal , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Mutación , Neuronas Motoras , Exones/genética , Heterocigoto , Proteína 1 para la Supervivencia de la Neurona Motora/genética
20.
Sci Rep ; 14(1): 6634, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503830

RESUMEN

Troponin T concentration (TNT) is commonly considered a marker of myocardial damage. However, elevated concentrations have been demonstrated in numerous neuromuscular disorders, pointing to the skeletal muscle as a possible extracardiac origin. The aim of this study was to determine disease-related changes of TNT in 5q-associated spinal muscular atrophy (SMA) and to screen for its biomarker potential in SMA. We therefore included 48 pediatric and 45 adult SMA patients in this retrospective cross-sequential observational study. Fluid muscle integrity and cardiac markers were analyzed in the serum of treatment-naïve patients and subsequently under disease-modifying therapies. We found a TNT elevation in 61% of SMA patients but no elevation of the cardiospecific isoform Troponin I (TNI). TNT elevation was more pronounced in children and particularly infants with aggressive phenotypes. In adults, TNT correlated to muscle destruction and decreased under therapy only in the subgroup with elevated TNT at baseline. In conclusion, TNT was elevated in a relevant proportion of patients with SMA with emphasis in infants and more aggressive phenotypes. Normal TNI levels support a likely extracardiac origin. Although its stand-alone biomarker potential seems to be limited, exploring TNT in SMA underlines the investigation of skeletal muscle integrity markers.


Asunto(s)
Atrofia Muscular Espinal , Troponina T , Adulto , Humanos , Niño , Troponina T/genética , Estudios Retrospectivos , Troponina I , Atrofia Muscular Espinal/diagnóstico , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...