Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Dan Med J ; 67(9)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32800069

RESUMEN

INTRODUCTION: 5q spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by insufficient survival motor neuron protein. Untreated SMA involves death or permanent respiratory support (type 1), inability to walk (type 2) or ability to walk (type 3). The incidence of SMA is 1 in 7,500 live births, equivalant to eight children being born with SMA in Denmark annually. METHODS: We undertook a systematic review of the efficacy of nusinersen as SMA treatment. We included randomised controlled trials and cohort studies. Our primary endpoints were survival without permanent respiratory support and change in motor function. RESULTS: We identified 658 articles and included 13 of these (two randomised controlled trials and 11 cohort studies). Nusinersen increased survival without permanent respiratory support in SMA type 1 and increased motor function development in types 1-3. Nusinersen treatment before symptom onset in children with presymptomatic SMA produced near-normal motor development. So far, nusinersen has only minor safety concerns mostly related to the lumbar puncture. CONCLUSIONS: Nusinersen increased survival without permanent ventilatory support in children with SMA type 1. Improvements in SMA type 2 and 3 were less evident. Better outcomes were seen in young children with a short disease duration, particularly in children receiving nusinersen before symptom onset. Newborn SMA screening may facilitate presymptomatic treatment with splice modification (nusinersen, risdiplam) or gene implantation therapy (AVXS-101, zolgensma).


Asunto(s)
Atrofia Muscular Espinal/terapia , Oligonucleótidos/uso terapéutico , Atrofias Musculares Espinales de la Infancia/terapia , Estudios de Cohortes , Dinamarca/epidemiología , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Actividad Motora/efectos de los fármacos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Respiración Artificial/estadística & datos numéricos , Atrofias Musculares Espinales de la Infancia/genética , Atrofias Musculares Espinales de la Infancia/mortalidad , Resultado del Tratamiento
2.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397312

RESUMEN

Although the genetic architecture of amyotrophic lateral sclerosis (ALS) is incompletely understood, recent findings suggest a complex model of inheritance in ALS, which is consistent with a multistep pathogenetic process. Therefore, the aim of our work is to further explore the architecture of ALS using targeted next generation sequencing (NGS) analysis, enriched in motor neuron diseases (MND)-associated genes which are also implicated in axonal hereditary motor neuropathy (HMN), in order to investigate if disease expression, including the progression rate, could be influenced by the combination of multiple rare gene variants. We analyzed 29 genes in an Italian cohort of 83 patients with both familial and sporadic ALS. Overall, we detected 43 rare variants in 17 different genes and found that 43.4% of the ALS patients harbored a variant in at least one of the investigated genes. Of note, 27.9% of the variants were identified in other MND- and HMN-associated genes. Moreover, multiple gene variants were identified in 17% of the patients. The burden of rare variants is associated with reduced survival and with the time to reach King stage 4, i.e., the time to reach the need for percutaneous endoscopic gastrostomy (PEG) positioning or non-invasive mechanical ventilation (NIMV) initiation, independently of known negative prognostic factors. Our data contribute to a better understanding of the molecular basis of ALS supporting the hypothesis that rare variant burden could play a role in the multistep model of disease and could exert a negative prognostic effect. Moreover, we further extend the genetic landscape of ALS to other MND-associated genes traditionally implicated in degenerative diseases of peripheral axons, such as HMN and CMT2.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/mortalidad , Enfermedad de la Neurona Motora/genética , Atrofia Muscular Espinal/genética , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Italia , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Enfermedad de la Neurona Motora/mortalidad , Atrofia Muscular Espinal/mortalidad , Polimorfismo de Nucleótido Simple , Pronóstico
3.
Neurology ; 94(15): e1634-e1644, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32217777

RESUMEN

OBJECTIVE: To investigate probabilities of survival and its surrogate, that is, mechanical ventilation, in patients with spinal muscular atrophy (SMA). METHODS: We studied survival in a population-based cohort on clinical prevalence of genetically confirmed, treatment-naive patients with SMA, stratified for best acquired motor milestone (i.e., none: type 1a/b; head control in supine position or rolling: type 1c; sitting independently: type 2a; standing: type 2b; walking: type 3a/b; adult onset: type 4). We also assessed the need for mechanical ventilation as a surrogate endpoint for survival. RESULTS: We included 307 patients with a total follow-up of 7,141 person-years. Median survival was 9 days in SMA type 1a, 7.7 months in type 1b, and 17.0 years in type 1c. Patients with type 2a had endpoint-free survival probabilities of 74.2% and 61.5% at ages 40 and 60 years, respectively. Endpoint-free survival of SMA types 2b, 3, and 4 was relatively normal, at least within the first 60 years of life. Patients with SMA types 1c and 2a required mechanical ventilation more frequently and from younger ages compared to patients with milder SMA types. In our cohort, patients ventilated up to 12 h/d progressed not gradually, but abruptly, to ≥16 h/d. CONCLUSIONS: Shortened endpoint-free survival is an important characteristic of SMA types 1 and 2a, but not types 2b, 3, and 4. For SMA types 1c and 2a, the age at which initiation of mechanical ventilation is necessary may be a more suitable endpoint than the arbitrarily set 16 h/d.


Asunto(s)
Factores de Edad , Atrofia Muscular Espinal/mortalidad , Respiración Artificial/mortalidad , Atrofias Musculares Espinales de la Infancia/mortalidad , Adulto , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Caminata/fisiología
4.
J Cachexia Sarcopenia Muscle ; 11(3): 768-782, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32031328

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is caused by genetic defects in the survival motor neuron 1 (SMN1) gene that lead to SMN deficiency. Different SMN-restoring therapies substantially prolong survival and function in transgenic mice of SMA. However, these therapies do not entirely prevent muscle atrophy and restore function completely. To further improve the outcome, we explored the potential of a combinatorial therapy by modulating SMN production and muscle-enhancing approach as a novel therapeutic strategy for SMA. METHODS: The experiments were performed in a mouse model of severe SMA. A previously reported 25-mer morpholino antisense oligomer PMO25 was used to restore SMN expression. The adeno-associated virus-mediated expression of myostatin propeptide was used to block the myostatin pathway. Newborn SMA mice were treated with a single subcutaneous injection of 40 µg/g (therapeutic dose) or 10 µg/g (low-dose) PMO25 on its own or together with systemic delivery of a single dose of adeno-associated virus-mediated expression of myostatin propeptide. The multiple effects of myostatin inhibition on survival, skeletal muscle phenotype, motor function, neuromuscular junction maturation, and proprioceptive afferences were evaluated. RESULTS: We show that myostatin inhibition acts synergistically with SMN-restoring antisense therapy in SMA mice treated with the higher therapeutic dose PMO25 (40 µg/g), by increasing not only body weight (21% increase in male mice at Day 40), muscle mass (38% increase), and fibre size (35% increase in tibialis anterior muscle in 3 month female SMA mice), but also motor function and physical performance as measured in hanging wire test (two-fold increase in time score) and treadmill exercise test (two-fold increase in running distance). In SMA mice treated with low-dose PMO25 (10 µg/g), the early application of myostatin inhibition prolongs survival (40% increase), improves neuromuscular junction maturation (50% increase) and innervation (30% increase), and increases both the size of sensory neurons in dorsal root ganglia (60% increase) and the preservation of proprioceptive synapses in the spinal cord (30% increase). CONCLUSIONS: These data suggest that myostatin inhibition, in addition to the well-known effect on muscle mass, can also positively influence the sensory neural circuits that may enhance motor neurons function. While the availability of the antisense drug Spinraza for SMA and other SMN-enhancing therapies has provided unprecedented improvement in SMA patients, there are still unmet needs in these patients. Our study provides further rationale for considering myostatin inhibitors as a therapeutic intervention in SMA patients, in combination with SMN-restoring drugs.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Miostatina/antagonistas & inhibidores , Oligonucleótidos Antisentido/uso terapéutico , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Transgénicos , Atrofia Muscular Espinal/mortalidad , Oligonucleótidos Antisentido/farmacología , Análisis de Supervivencia , Resultado del Tratamiento
5.
Mol Ther ; 27(12): 2123-2133, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31543414

RESUMEN

Symptoms of spinal muscular atrophy (SMA) disease typically begin in the late prenatal or the early postnatal period of life. The intrauterine (IU) correction of gene expression, fetal gene therapy, could offer effective gene therapy approach for early onset diseases. Hence, the overall goal of this study was to investigate the efficacy of human survival motor neuron (hSMN) gene expression after IU delivery in SMA mouse embryos. First, we found that IU-intracerebroventricular (i.c.v.) injection of adeno-associated virus serotype-9 (AAV9)-EGFP led to extensive expression of EGFP protein in different parts of the CNS with a great number of transduced neural stem cells. Then, to implement the fetal gene therapy, mouse fetuses received a single i.c.v. injection of a single-stranded (ss) or self-complementary (sc) AAV9-SMN vector that led to a lifespan of 93 (median of 63) or 171 (median 105) days for SMA mice. The muscle pathology and number of the motor neurons also improved in both study groups, with slightly better results coming from scAAV treatment. Consequently, fetal gene therapy may provide an alternative therapeutic approach for treating inherited diseases such as SMA that lead to prenatal death or lifelong irreversible damage.


Asunto(s)
Dependovirus/genética , Feto/metabolismo , Terapia Genética , Vectores Genéticos/administración & dosificación , Atrofia Muscular Espinal/terapia , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Animales , Modelos Animales de Enfermedad , Femenino , Feto/patología , Vectores Genéticos/genética , Masculino , Ratones , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Fenotipo , Médula Espinal/metabolismo , Médula Espinal/patología
6.
Biochem Biophys Res Commun ; 514(2): 530-537, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31060774

RESUMEN

We report that expression of the α-COP protein rescues disease phenotype in a severe mouse model of Spinal Muscular Atrophy (SMA). Lentiviral particles expressing α-COP were injected directly into the testes of genetically pure mouse strain of interest resulting in infection of the spermatagonial stem cells. α-COP was stably expressed in brain, skeletal muscle, and spinal cord without altering SMN protein levels. SMA mice transgenic for α-COP live significantly longer than their non-transgenic littermates, and showed increased body mass and normal muscle morphology at postnatal day 15. We previously reported that binding between SMN and α-COP is required for restoration of neurite outgrowth in cells lacking SMN, and we report similar finding here. Lentiviral-mediated transgenic expression of SMN where the dilysine domain in exon 2b was mutated was not able to rescue the SMA phenotype despite robust expression of the mutant SMN protein in brain, muscle and spinal cord. These results demonstrate that α-COP is a validated modifier of SMA disease phenotype in a mammalian, vertebrate model and is a potential target for development of future SMN-independent therapeutic interventions.


Asunto(s)
Proteína Coatómero/genética , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/genética , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Secuencia de Aminoácidos , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteína Coatómero/metabolismo , Modelos Animales de Enfermedad , Exones , Femenino , Regulación de la Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Lentivirus/genética , Lentivirus/metabolismo , Masculino , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Músculo Esquelético/patología , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Atrofia Muscular Espinal/terapia , Mutación , Fenotipo , Unión Proteica , Transducción de Señal , Médula Espinal/patología , Análisis de Supervivencia , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
7.
Sci Rep ; 9(1): 1633, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733501

RESUMEN

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder that causes progressive muscle weakness and is the leading genetic cause of infant mortality worldwide. SMA is caused by the loss of survival motor neuron 1 (SMN1). In humans, a nearly identical copy gene is present, called SMN2. Although SMN2 maintains the same coding sequence, this gene cannot compensate for the loss of SMN1 because of a single silent nucleotide difference in SMN2 exon 7. SMN2 primarily produces an alternatively spliced isoform lacking exon 7, which is critical for protein function. SMN2 is an important disease modifier that makes for an excellent target for therapeutic intervention because all SMA patients retain SMN2. Therefore, compounds and small molecules that can increase SMN2 exon 7 inclusion, transcription and SMN protein stability have great potential for SMA therapeutics. Previously, we performed a high throughput screen and established a class of compounds that increase SMN protein in various cellular contexts. In this study, a novel compound was identified that increased SMN protein levels in vivo and ameliorated the disease phenotype in severe and intermediate mouse models of SMA.


Asunto(s)
Atrofia Muscular Espinal/tratamiento farmacológico , Atrofia Muscular Espinal/etiología , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Inyecciones Intraperitoneales , Ratones Noqueados , Atrofia Muscular Espinal/mortalidad , Unión Neuromuscular/efectos de los fármacos , Índice de Severidad de la Enfermedad , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética
8.
J Manag Care Spec Pharm ; 24(12-a Suppl): S3-S16, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30582825

RESUMEN

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disease that, in most cases, involves homozygous deletion of the SMN1 gene. This causes a deficiency in survival motor neuron (SMN) protein, which plays a critical role in motor neuron development. SMA has a range of phenotype expression resulting in variable age of symptom onset, maximum motor strength achieved, and survival. Without intervention, infants with a more severe form of the disease (type 1 SMA) die before 2 years of age. Although it is rare, SMA is the most common fatal inherited disease of infancy, and until recently, treatment was primarily supportive. In 2016, a new agent, nusinersen, was approved by the FDA. Other treatments are in development, including a gene therapy, AVXS-101. These treatments are not only improving the lives of patients with SMA and their families, they are changing the disease phenotype. They have the greatest benefit when given early in the disease course. OBJECTIVES: To discuss current knowledge about SMA, provide clinical evidence for available and emerging treatment options, and present approaches for adding new therapies to hospital/health system formularies to ensure timely access to newly approved therapies for SMA. SUMMARY: Advances in clinical care have significantly extended the lives of individuals with SMA, and research into the genetic mechanisms leading to disease have revealed strategies for intervention that target the underlying cause of SMA. Nusinersen is now on the market, and other treatment options, such as AVXS-101, may soon be approved. This article provides an overview of SMA and the genetic mechanisms leading to SMN deficiency, then describes how new and emerging treatments work to overcome this deficiency and prevent associated nerve damage and disability. In addition, we discuss steps for incorporating AVXS-101 into hospital/health system formularies, along with barriers and concerns that may delay access, based in part on lessons learned with nusinersen.


Asunto(s)
Terapia Genética/métodos , Atrofia Muscular Espinal/terapia , Oligonucleótidos/uso terapéutico , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Ensayos Clínicos como Asunto , Dependovirus/genética , Aprobación de Drogas , Exones/efectos de los fármacos , Exones/genética , Eliminación de Gen , Terapia Genética/economía , Terapia Genética/legislación & jurisprudencia , Terapia Genética/tendencias , Vectores Genéticos/genética , Vectores Genéticos/uso terapéutico , Necesidades y Demandas de Servicios de Salud/tendencias , Humanos , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidad , Oligonucleótidos/economía , Oligonucleótidos/farmacología , Sarcómeros/efectos de los fármacos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Estados Unidos , United States Food and Drug Administration
9.
Neurology ; 90(18): e1578-e1587, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29602913

RESUMEN

OBJECTIVE: To investigate somatosensory cortex excitability and its relationship to survival prognosis in patients with amyotrophic lateral sclerosis (ALS). METHODS: A total of 145 patients with sporadic ALS and 73 healthy control participants were studied. We recorded compound muscle action potential and sensory nerve action potential of the median nerve and the median nerve somatosensory evoked potential (SEP), and we measured parameters, including onset-to-peak amplitude of N13 and N20 and peak-to-peak amplitude between N20 and P25 (N20p-P25p). Clinical prognostic factors, including ALS Functional Rating Scale-Revised, were evaluated. We followed up patients until the endpoints (death or tracheostomy) and analyzed factors associated with survival using multivariate analysis in the Cox proportional hazard model. RESULTS: Compared to controls, patients with ALS showed a larger amplitude of N20p-P25p in the median nerve SEP. Median survival time after examination was shorter in patients with N20p-P25p ≥8 µV (0.82 years) than in those with N20p-P25p <8 µV (1.68 years, p = 0.0002, log-rank test). Multivariate analysis identified a larger N20p-P25p amplitude as a factor that was independently associated with shorter survival (p = 0.002). CONCLUSION: Sensory cortex hyperexcitability predicts short survival in patients with ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/fisiopatología , Potenciales de Acción , Anciano , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/terapia , Potenciales Evocados Somatosensoriales , Femenino , Estudios de Seguimiento , Humanos , Masculino , Nervio Mediano/fisiopatología , Músculo Esquelético/fisiopatología , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/terapia , Conducción Nerviosa , Pronóstico , Análisis de Supervivencia , Traqueostomía
10.
J Neuromuscul Dis ; 3(4): 511-515, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27911337

RESUMEN

Spinal muscular atrophy (SMA) is an early-onset motor neuron disease that leads to loss of muscle function. Butyrate (BA)-based compounds markedly improve the survival and motor phenotype of SMA mice. In this study, we examine the protective effects of the BA prodrug pivaloyloxymethyl butyrate (AN9) on the survival of SMNΔ7 SMA mice. Oral administration of AN9 beginning at PND04 almost doubled the average lifespan of SMNΔ7 SMA mice. AN9 treatment also increased the growth rate of SMNΔ7 SMA mice when compared to vehicle-treated SMNΔ7 SMA mice. In conclusion, BA prodrugs like AN9 have ameliorative effects on SMNΔ7 SMA mice.


Asunto(s)
Peso Corporal/efectos de los fármacos , Butiratos/farmacología , Atrofia Muscular Espinal/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones , Atrofia Muscular Espinal/mortalidad , Fenotipo , Profármacos/farmacología , Tasa de Supervivencia
11.
Mol Ther ; 24(9): 1592-601, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27401142

RESUMEN

Loss of Survival Motor Neuron-1 (SMN1) causes Spinal Muscular Atrophy, a devastating neurodegenerative disease. SMN2 is a nearly identical copy gene; however SMN2 cannot prevent disease development in the absence of SMN1 since the majority of SMN2-derived transcripts are alternatively spliced, encoding a truncated, unstable protein lacking exon 7. Nevertheless, SMN2 retains the ability to produce low levels of functional protein. Previously we have described a splice-switching Morpholino antisense oligonucleotide (ASO) sequence that targets a potent intronic repressor, Element1 (E1), located upstream of SMN2 exon 7. In this study, we have assessed a novel panel of Morpholino ASOs with the goal of optimizing E1 ASO activity. Screening for efficacy in the SMNΔ7 mouse model, a single ASO variant was more active in vivo compared with the original E1(MO)-ASO. Sequence variant eleven (E1(MOv11)) consistently showed greater efficacy by increasing the lifespan of severe Spinal Muscular Atrophy mice after a single intracerebroventricular injection in the central nervous system, exhibited a strong dose-response across an order of magnitude, and demonstrated excellent target engagement by partially reversing the pathogenic SMN2 splicing event. We conclude that Morpholino modified ASOs are effective in modifying SMN2 splicing and have the potential for future Spinal Muscular Atrophy clinical applications.


Asunto(s)
Intrones , Morfolinos/genética , Atrofia Muscular Espinal/genética , Elementos de Respuesta , Animales , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Marcación de Gen , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Ratones Noqueados , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidad , Mutación , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Transcripción Genética
12.
J Paediatr Child Health ; 51(11): 1137, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26541614
13.
Neurol Clin ; 33(4): 831-46, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26515624

RESUMEN

Spinal muscular atrophy is an autosomal-recessive disorder characterized by degeneration of motor neurons in the spinal cord and caused by mutations in the survival motor neuron 1 gene, SMN1. The severity of SMA is variable. The SMN2 gene produces a fraction of the SMN messenger RNA (mRNA) transcript produced by the SMN1 gene. There is an inverse correlation between SMN2 gene copy number and clinical severity. Clinical management focuses on multidisciplinary care. Preclinical models of SMA have led to an explosion of SMA clinical trials that hold great promise of effective therapy in the future.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Manejo de la Enfermedad , Atrofia Muscular Espinal , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Animales , Humanos , Atrofia Muscular Espinal/clasificación , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/mortalidad , Proteína 2 para la Supervivencia de la Neurona Motora/genética
14.
Nat Chem Biol ; 11(7): 511-7, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26030728

RESUMEN

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of small molecule-mediated, sequence-selective splice modulation and the potential for leveraging this strategy in other splicing diseases.


Asunto(s)
Empalme Alternativo , Atrofia Muscular Espinal/tratamiento farmacológico , ARN Bicatenario/agonistas , Ribonucleoproteína Nuclear Pequeña U1/agonistas , Bibliotecas de Moléculas Pequeñas/farmacología , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Sitios de Unión , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Modelos Moleculares , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/patología , Unión Proteica/efectos de los fármacos , Estabilidad Proteica/efectos de los fármacos , Proteolisis , Precursores del ARN/agonistas , Precursores del ARN/química , Precursores del ARN/metabolismo , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/química , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/metabolismo , Análisis de Supervivencia , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/genética
15.
Mol Ther ; 23(2): 270-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25369768

RESUMEN

Spinal muscular atrophy (SMA) is the second most common genetic cause of death in childhood. However, no effective treatment is available to halt disease progression. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene. We previously reported that PTEN depletion leads to an increase in survival of SMN-deficient motor neurons. Here, we aimed to establish the impact of PTEN modulation in an SMA mouse model in vivo. Initial experiments using intramuscular delivery of adeno-associated vector serotype 6 (AAV6) expressing shRNA against PTEN in an established mouse model of severe SMA (SMNΔ7) demonstrated the ability to ameliorate the severity of neuromuscular junction pathology. Subsequently, we developed self-complementary AAV9 expressing siPTEN (scAAV9-siPTEN) to allow evaluation of the effect of systemic suppression of PTEN on the disease course of SMA in vivo. Treatment with a single injection of scAAV9-siPTEN at postnatal day 1 resulted in a modest threefold extension of the lifespan of SMNΔ7 mice, increasing mean survival to 30 days, compared to 10 days in untreated mice. Our data revealed that systemic PTEN depletion is an important disease modifier in SMNΔ7 mice, and therapies aimed at lowering PTEN expression may therefore offer a potential therapeutic strategy for SMA.


Asunto(s)
Atrofia Muscular Espinal/genética , Fosfohidrolasa PTEN/genética , ARN Interferente Pequeño/genética , Animales , Supervivencia Celular/genética , Dependovirus/clasificación , Dependovirus/genética , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Silenciamiento del Gen , Silenciador del Gen , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Inyecciones Intramusculares , Ratones , Ratones Noqueados , Actividad Motora/genética , Neuronas Motoras/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/fisiopatología , Atrofia Muscular Espinal/terapia , Miocardio/metabolismo , Unión Neuromuscular/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fenotipo , Transducción Genética
16.
Stem Cell Reports ; 3(2): 297-311, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25254343

RESUMEN

Spinal muscular atrophy with respiratory distress type 1 (SMARD1) is a motor neuron disease caused by mutations in the IGHMBP2 gene, without a cure. Here, we demonstrate that neural stem cells (NSCs) from human-induced pluripotent stem cells (iPSCs) have therapeutic potential in the context of SMARD1. We show that upon transplantation NSCs can appropriately engraft and differentiate in the spinal cord of SMARD1 animals, ameliorating their phenotype, by protecting their endogenous motor neurons. To evaluate the effect of NSCs in the context of human disease, we generated human SMARD1-iPSCs motor neurons that had a significantly reduced survival and axon length. Notably, the coculture with NSCs ameliorate these disease features, an effect attributable to the production of neurotrophic factors and their dual inhibition of GSK-3 and HGK kinases. Our data support the role of iPSC as SMARD1 disease model and their translational potential for therapies in motor neuron disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas/citología , Células-Madre Neurales/citología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Axones/metabolismo , Diferenciación Celular , Linaje de la Célula , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Estimación de Kaplan-Meier , Ratones , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/terapia , Factores de Crecimiento Nervioso/metabolismo , Células-Madre Neurales/trasplante , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria del Recién Nacido/mortalidad , Síndrome de Dificultad Respiratoria del Recién Nacido/terapia , Trasplante Heterólogo
18.
Hum Mol Genet ; 22(13): 2612-25, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23459934

RESUMEN

Proper function of the motor unit is dependent upon the correct development of dendrites and axons. The infant/childhood onset motoneuron disease spinal muscular atrophy (SMA), caused by low levels of the survival motor neuron (SMN) protein, is characterized by muscle denervation and paralysis. Although different SMA models have shown neuromuscular junction defects and/or motor axon defects, a comprehensive analysis of motoneuron development in vivo under conditions of low SMN will give insight into why the motor unit becomes dysfunctional. We have generated genetic mutants in zebrafish expressing low levels of SMN from the earliest stages of development. Analysis of motoneurons in these mutants revealed motor axons were often shorter and had fewer branches. We also found that motoneurons had significantly fewer dendritic branches and those present were shorter. Analysis of motor axon filopodial dynamics in live embryos revealed that mutants had fewer filopodia and their average half-life was shorter. To determine when SMN was needed to rescue motoneuron development, SMN was conditionally induced in smn mutants during embryonic stages. Only when SMN was added back soon after motoneurons were born, could later motor axon development be rescued. Importantly, analysis of motor behavior revealed that animals with motor axon defects had significant deficits in motor output. We also show that SMN is required earlier for motoneuron development than for survival. These data support that SMN is needed early in development of motoneuron dendrites and axons to develop normally and that this is essential for proper connectivity and movement.


Asunto(s)
Neuronas Motoras/metabolismo , Neurogénesis/genética , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Axones/patología , Modelos Animales de Enfermedad , Actividad Motora/genética , Neuronas Motoras/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/mortalidad , Mutación , Pez Cebra
19.
Hum Gene Ther ; 24(3): 331-42, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23339722

RESUMEN

In the search for the most efficacious antisense oligonucleotides (AOs) aimed at inducing SMN2 exon 7 inclusion, we systematically assessed three AOs, PMO25 (-10, -34), PMO18 (-10, -27), and PMO20 (-10, -29), complementary to the SMN2 intron 7 splicing silencer (ISS-N1). PMO25 was the most efficacious in augmenting exon 7 inclusion in vitro in spinal muscular atrophy (SMA) patient fibroblasts and in vitro splicing assays. PMO25 and PMO18 were compared further in a mouse model of severe SMA. After a single intracerebroventricular (ICV) injection in neonatal mice, PMO25 increased the life span of severe SMA mice up to 30-fold, with average survival greater by 3-fold compared with PMO18 at a dose of 20 µg/g and 2-fold at 40 µg/g. Exon 7 inclusion was increased in the CNS but not in peripheral tissues. Systemic delivery of PMO25 at birth achieved a similar outcome and produced increased exon 7 inclusion both in the CNS and peripherally. Systemic administration of a 10-µg/g concentration of PMO25 conjugated to an octaguanidine dendrimer (VMO25) increased the life span only 2-fold in neonatal type I SMA mice, although it prevented tail necrosis in mild SMA mice. Higher doses and ICV injection of VMO25 were associated with toxicity. We conclude that (1) the 25-mer AO is more efficient than the 18-mer and 20-mer in modifying SMN2 splicing in vitro; (2) it is more efficient in prolonging survival in SMA mice; and (3) naked Morpholino oligomers are more efficient and safer than the Vivo-Morpholino and have potential for future SMA clinical applications.


Asunto(s)
Intrones , Morfolinos/metabolismo , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo , Empalme Alternativo , Animales , Emparejamiento Base , Secuencia de Bases , Modelos Animales de Enfermedad , Exones , Orden Génico , Humanos , Ratones , Ratones Transgénicos , Morfolinos/administración & dosificación , Morfolinos/química , Atrofia Muscular Espinal/mortalidad , Atrofia Muscular Espinal/terapia
20.
J Pediatr ; 162(1): 155-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22809660

RESUMEN

OBJECTIVE: To examine the natural history of spinal muscular atrophy (SMA) to gain further insight into the clinical course and pathogenesis. STUDY DESIGN: Survival pattern, age of onset, and ambulatory status were retrospectively analyzed in 70 patients with SMA with deletions of the survival motor neuron 1 genes that presented to a specialized neuromuscular clinic. The Kaplan-Meier method was used to obtain survival curves. Hammersmith Functional Motor Scale-Expanded and abductor pollicis brevis compound muscle action potential amplitudes were assessed in 25 of the surviving cohort and correlated with survival motor neuron 2 copy number. RESULTS: Survival probabilities at ages 1, 2, 4, 10, 20, and 40 years were 40%, 25%, 6%, and 0%, respectively, for patients with SMA type 1; 100%, 100%, 97%, 93%, 93%, and 52% for patients with SMA type 2 and all patients with SMA type 3 were alive (age range 7-33 years). There were significant associations between age of onset and long-term outcome, specifically survival in SMA type 1 (P < .01) and Hammersmith Functional Motor Scale-Expanded (P < .0001), and compound muscle action potential (P = .001) in SMA types 2 and 3. Motor function in patients with long-standing SMA reduced over prolonged periods or remained stable. Survival motor neuron 2 copy number related to continuing changes in motor function with age. CONCLUSION: The natural history of SMA suggests considerable early loss of motor neurons, with severity related to differences in the number of remaining motor neurons. As the ensuing chronic course in milder phenotypes suggests relative stability of remaining motor neurons, the maximal therapeutic window presents early.


Asunto(s)
Neuronas Motoras/fisiología , Atrofia Muscular Espinal/fisiopatología , Niño , Femenino , Humanos , Lactante , Masculino , Atrofia Muscular Espinal/mortalidad , Estudios Retrospectivos , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...