Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.097
Filtrar
1.
Autoimmunity ; 57(1): 2351872, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38739691

RESUMEN

Autophagy is a highly conserved biological process in eukaryotes, which degrades cellular misfolded proteins, damaged organelles and invasive pathogens in the lysosome-dependent manner. Autoimmune diseases caused by genetic elements, environments and aberrant immune responses severely impact patients' living quality and even threaten life. Recently, numerous studies have reported autophagy can regulate immune responses, and play an important role in autoimmune diseases. In this review, we summarised the features of autophagy and autophagy-related genes, enumerated some autophagy-related genes involved in autoimmune diseases, and further overviewed how to treat autoimmune diseases through targeting autophagy. Finally, we outlooked the prospect of relieving and curing autoimmune diseases by targeting autophagy pathway.


Asunto(s)
Enfermedades Autoinmunes , Autofagia , Humanos , Autofagia/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/terapia , Animales , Transducción de Señal/inmunología , Terapia Molecular Dirigida
2.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 362-366, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710519

RESUMEN

Ferroptosis is a novel form of cell death that is induced by excessive accumulation of ferrous ions and lipid peroxides. It triggers the release of damage-associated molecular patterns through autophagy-dependent mechanisms, serving as an adjunct to immunogenic cell death and activating both adaptive and innate immunity. In the tumor microenvironment, the regulation and influence of tumor cells and immune cells undergoing ferroptosis are regulated by various factors, which plays a crucial role in tumor development, treatment, and prognosis. This article provides an overview of the biological effects of ferroptosis on immune cells such as T cells, macrophages, neutrophils and B cells and tumor cells in the tumor microenvironment.


Asunto(s)
Ferroptosis , Neoplasias , Microambiente Tumoral , Ferroptosis/inmunología , Humanos , Neoplasias/inmunología , Neoplasias/metabolismo , Microambiente Tumoral/inmunología , Animales , Macrófagos/inmunología , Neutrófilos/inmunología , Autofagia/inmunología , Inmunidad Innata , Linfocitos T/inmunología , Linfocitos B/inmunología
3.
Front Immunol ; 15: 1343987, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690268

RESUMEN

Autophagy is a cellular process that functions to maintain intracellular homeostasis via the degradation and recycling of defective organelles or damaged proteins. This dynamic mechanism participates in various biological processes, such as the regulation of cellular differentiation, proliferation, survival, and the modulation of inflammation and immune responses. Recent evidence has demonstrated the involvement of polymorphisms in autophagy-related genes in various skin autoimmune diseases. In addition, autophagy, along with autophagy-related proteins, also contributes to homeostasis maintenance and immune regulation in the skin, which is associated with skin autoimmune disorders. This review aims to provide an overview of the multifaceted role of autophagy in skin autoimmune diseases and shed light on the potential of autophagy-targeting therapeutic strategies in dermatology.


Asunto(s)
Enfermedades Autoinmunes , Autofagia , Enfermedades de la Piel , Humanos , Autofagia/inmunología , Enfermedades Autoinmunes/inmunología , Enfermedades de la Piel/inmunología , Animales , Piel/inmunología , Piel/patología , Piel/metabolismo , Homeostasis/inmunología
4.
Dev Comp Immunol ; 156: 105181, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636698

RESUMEN

Interferon regulatory factor 7 (IRF7) is considered the master regulator of virus-induced interferon (IFN) production. However, to avoid an autoimmune response, the expression of IRF7 must be tightly controlled. In this study, we report that zebrafish ubiquitin-specific protease 8 (USP8) promotes IRF7 degradation through an autophagy-lysosome-dependent pathway to inhibit IFN production. First, zebrafish usp8 is induced upon spring viremia of carp virus (SVCV) infection and polyinosinic/polycytidylic acid (poly I:C) stimulation. Second, overexpression of USP8 suppresses SVCV or poly I:C-mediated IFN expression. Mechanistically, USP8 interacts with IRF7 and promotes its degradation via an autophagy-lysosome-dependent pathway. Finally, USP8 significantly suppresses cellular antiviral responses and enhances SVCV proliferation. In summary, our discoveries offer a perspective on the role of zebrafish USP8 and provide additional understanding of the regulation of IRF7 in host antiviral immune response.


Asunto(s)
Autofagia , Factor 7 Regulador del Interferón , Factores Reguladores del Interferón , Lisosomas , Rhabdoviridae , Proteínas de Pez Cebra , Pez Cebra , Animales , Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Autofagia/inmunología , Lisosomas/metabolismo , Factor 7 Regulador del Interferón/metabolismo , Factor 7 Regulador del Interferón/genética , Rhabdoviridae/fisiología , Rhabdoviridae/inmunología , Interferones/metabolismo , Poli I-C/inmunología , Infecciones por Rhabdoviridae/inmunología , Proteolisis , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Humanos , Inmunidad Innata
5.
Cancer Lett ; 590: 216856, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38583651

RESUMEN

Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.


Asunto(s)
Autofagia , Inmunoterapia , Neoplasias , Humanos , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/patología , Autofagia/inmunología , Autofagia/efectos de los fármacos , Inmunoterapia/métodos , Escape del Tumor , Animales , Inmunidad Adaptativa , Muerte Celular/inmunología , Inmunidad Innata
6.
Viruses ; 16(4)2024 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-38675873

RESUMEN

Tobamoviruses are a group of plant viruses that pose a significant threat to agricultural crops worldwide. In this review, we focus on plant immunity against tobamoviruses, including pattern-triggered immunity (PTI), effector-triggered immunity (ETI), the RNA-targeting pathway, phytohormones, reactive oxygen species (ROS), and autophagy. Further, we highlight the genetic resources for resistance against tobamoviruses in plant breeding and discuss future directions on plant protection against tobamoviruses.


Asunto(s)
Enfermedades de las Plantas , Inmunidad de la Planta , Tobamovirus , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Tobamovirus/inmunología , Tobamovirus/genética , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/inmunología , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Autofagia/inmunología , Reguladores del Crecimiento de las Plantas , Productos Agrícolas/inmunología , Productos Agrícolas/virología
7.
J Comp Physiol B ; 194(2): 105-119, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573502

RESUMEN

The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.


Asunto(s)
Evolución Biológica , Inmunidad Innata , Insectos , Mamíferos , Animales , Insectos/inmunología , Mamíferos/inmunología , Autofagia/inmunología
8.
Front Immunol ; 15: 1356369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38660307

RESUMEN

Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.


Asunto(s)
Autofagia , Proteínas de la Membrana , Neoplasias , Nucleotidiltransferasas , Transducción de Señal , Humanos , Autofagia/inmunología , Nucleotidiltransferasas/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Animales , Inmunidad Innata
9.
Int Immunopharmacol ; 132: 111929, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38555817

RESUMEN

Increased expression of CXCL10 and its receptor CXCR3 represents an inflammatory response in cells and tissues. Macrophage polarization and autophagy are major functions in inflammatory macrophages; however, the cellular functions of the CXCL10-CXCR3 axis in macrophages are not well understood. Here, we examined the role of CXCL10-CXCR3-axis-regulated autophagy in macrophage polarization. First, in non-inflammatory macrophages, whereas CXCL10 promotes M2 polarization and inhibits M1 polarization, CXCR3 antagonist AMG487 induces the opposite macrophage polarization. Next, CXCL10 promotes the expression of autophagy proteins (Atg5-Atg12 complex, p62, LC3-II, and LAMP1) and AMG487 inhibits their expression. Knockdown of LAMP1 by short interfering RNA switches the CXCL10-induced polarization from M2 to M1 in non-inflammatory macrophages. Furthermore, in inflammatory macrophages stimulated by poly(I:C), CXCL10 induces M1 polarization and AMG487 induces M2 polarization in association with a decrease in LAMP1. Finally, AMG487 alleviates lung injury after poly(I:C) treatment in mice. In conclusion, CXCL10-CXCR3 axis differentially directs macrophage polarization in inflammatory and non-inflammatory states, and autophagy protein LAMP1 acts as the switch controlling the direction of macrophage polarization by CXCL10-CXCR3.


Asunto(s)
Acetamidas , Autofagia , Quimiocina CXCL10 , Inflamación , Macrófagos , Ratones Endogámicos C57BL , Pirimidinonas , Receptores CXCR3 , Animales , Receptores CXCR3/metabolismo , Receptores CXCR3/genética , Quimiocina CXCL10/metabolismo , Quimiocina CXCL10/genética , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Autofagia/inmunología , Inflamación/inmunología , Inflamación/metabolismo , Poli I-C/farmacología , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Masculino , Transducción de Señal , Humanos , Activación de Macrófagos
10.
Adv Sci (Weinh) ; 11(18): e2310065, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447147

RESUMEN

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8+ T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8+ T cell activation. Even at low doses, UA markedly enhances the persistence and effector functions of primary CD8+ cytotoxic T lymphocytes (CTLs) and human chimeric antigen receptor (CAR) T cells both in vitro and in vivo. Mechanistically, UA interacts directly with ERK1/2 kinases, enhancing their activation and subsequently facilitating T cell activation by engaging ULK1. The UA-ERK1/2-ULK1 axis promotes autophagic flux in CD8+ CTLs, enhancing cellular metabolism and maintaining reactive oxygen species (ROS) levels, as evidenced by increased oxygen consumption and extracellular acidification rates. UA-treated CD8+ CTLs also display elevated ATP levels and enhanced spare respiratory capacity. Overall, UA activates ERK1/2, inducing autophagy and metabolic adaptation, showcasing its potential in tumor immunotherapy and interventions for diseases involving ERKs.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia , Linfocitos T CD8-positivos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Animales , Ratones , Humanos , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Sistema de Señalización de MAP Quinasas/inmunología , Cumarinas/farmacología , Cumarinas/metabolismo , Modelos Animales de Enfermedad , Neoplasias/inmunología , Neoplasias/terapia , Neoplasias/metabolismo , Ratones Endogámicos C57BL , Autofagia/inmunología
11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1394-1402, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37846690

RESUMEN

OBJECTIVE: To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma. METHODS: Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR). RESULTS: Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05). CONCLUSION: Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.


Asunto(s)
Antineoplásicos , Bortezomib , Linfoma de Burkitt , Receptores CXCR , Xantonas , Humanos , Antineoplásicos/inmunología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/biosíntesis , Proteínas Reguladoras de la Apoptosis/inmunología , Autofagia/efectos de los fármacos , Autofagia/inmunología , Proteína X Asociada a bcl-2/biosíntesis , Proteína X Asociada a bcl-2/inmunología , Bortezomib/inmunología , Bortezomib/farmacología , Bortezomib/uso terapéutico , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioterapia Combinada , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores CXCR/biosíntesis , Receptores CXCR/inmunología , ARN Mensajero , Serina-Treonina Quinasas TOR , Xantonas/inmunología , Xantonas/farmacología , Xantonas/uso terapéutico
12.
J Virol ; 97(4): e0181422, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36939341

RESUMEN

Rift Valley fever virus (RVFV) is a mosquito-borne bunyavirus that causes severe and potentially fatal hemorrhagic fever in humans. Autophagy is a self-degradative process that can restrict viral replication at multiple infection steps. In this study, we evaluated the effects of RVFV-triggered autophagy on viral replication and immune responses. Our results showed that RVFV infection triggered autophagosome formation and induced complete autophagy. Impairing autophagy flux by depleting autophagy-related gene 5 (ATG5), ATG7, or sequestosome 1 (SQSTM1) or treatment with autophagy inhibitors markedly reduced viral RNA synthesis and progeny virus production. Mechanistically, our findings demonstrated that the RVFV nucleoprotein (NP) C-terminal domain interacts with the autophagy receptor SQSTM1 and promotes the SQSTM1-microtubule-associated protein 1 light chain 3 B (LC3B) interaction and autophagy. Deletion of the NP C-terminal domain impaired the interaction between NP and SQSTM1 and its ability to trigger autophagy. Notably, RVFV-triggered autophagy promoted viral infection in macrophages but not in other tested cell types, including Huh7 hepatocytes and human umbilical vein endothelial cells, suggesting cell type specificity of this mechanism. It was further revealed that RVFV NP-triggered autophagy dampens antiviral innate immune responses in infected macrophages to promote viral replication. These results provide novel insights into the mechanisms of RVFV-triggered autophagy and indicate the potential of targeting the autophagy pathway to develop antivirals against RVFV. IMPORTANCE We showed that RVFV infection induced the complete autophagy process. Depletion of the core autophagy genes ATG5, ATG7, or SQSTM1 or pharmacologic inhibition of autophagy in macrophages strongly suppressed RVFV replication. We further revealed that the RVFV NP C-terminal domain interacted with SQSTM1 and enhanced the SQSTM1/LC3B interaction to promote autophagy. RVFV NP-triggered autophagy strongly inhibited virus-induced expression of interferon-stimulated genes in infected macrophages but not in other tested cell types. Our study provides novel insights into the mechanisms of RVFV-triggered autophagy and highlights the potential of targeting autophagy flux to develop antivirals against this virus.


Asunto(s)
Autofagia , Inmunidad Innata , Nucleoproteínas , Virus de la Fiebre del Valle del Rift , Inmunidad Innata/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Nucleoproteínas/inmunología , Nucleoproteínas/metabolismo , Autofagia/inmunología , Replicación Viral , Línea Celular , Fiebre del Valle del Rift/inmunología , Humanos , Animales , Macrófagos/virología
13.
Autophagy ; 19(10): 2811-2813, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36779581

RESUMEN

Previously considered as an exclusive extracellular bacterium, Staphylococcus aureus has been shown to be able to invade many cells in vitro and in humans. Once inside the host cell, both cytosolic and endosome-associated S. aureus strongly induce macroautophagy/autophagy. Whether autophagy fosters S. aureus intracellular survival or clearance remains unclear. The YAP1-TEAD axis regulates the expression of target genes controlling the cell fate (e.g., proliferation, migration, cell cycle …). Growing evidence indicates that YAP1-TEAD also regulates autophagy and lysosomal pathways. Recently we showed that the YAP1-TEAD axis promotes autophagy and lysosome biogenesis to restrict S. aureus intracellular replication. We also discovered that the C3 exoenzyme-like EDIN-B toxin produced by the pathogenic S. aureus ST80 strain inhibits YAP1 nuclear translocation resulting in a strong increase of intracellular S. aureus burden.


Asunto(s)
Autofagia , Espacio Intracelular , Staphylococcus aureus , Factores de Transcripción de Dominio TEA , Humanos , Autofagia/inmunología , Células HEK293 , Espacio Intracelular/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/clasificación , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/inmunología , Factores de Transcripción de Dominio TEA/metabolismo , Técnicas In Vitro
14.
Sci Rep ; 13(1): 1663, 2023 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-36717601

RESUMEN

Autophagy induction by starvation has been shown to enhance lysosomal delivery to mycobacterial phagosomes, resulting in the restriction of the Mycobacterium tuberculosis reference strain H37Rv. In contrast to H37Rv, our previous study showed that strains belonging to the notorious M. tuberculosis Beijing genotype could evade autophagic elimination. Our recent RNA-Seq analysis also discovered that the autophagy-resistant M. tuberculosis Beijing strain (BJN) evaded autophagic control by upregulating the expression of Kxd1, a BORC complex component, and Plekhm2, both of which function in lysosome positioning towards the cell periphery in host macrophages, thereby suppressing enhanced lysosomal delivery to its phagosome and sparing the BJN from elimination as a result. In this work, we further characterised the other specific components of the BORC complex, BORC5-8, and Kinesin proteins in autophagy resistance by the BJN. Depletion of BORCS5-8 and Kinesin-1, but not Kinesin-3, reverted autophagy avoidance by the BJN, resulting in increased lysosomal delivery to the BJN phagosomes. In addition, the augmented lysosome relocation towards the perinuclear region could now be observed in the BJN-infected host cells depleted in BORCS5-8 and Kinesin-1 expressions. Taken together, the data uncovered new roles for BORCS5-8 and Kinesin-1 in autophagy evasion by the BJN.


Asunto(s)
Autofagia , Cinesinas , Mycobacterium tuberculosis , Tuberculosis , Humanos , Autofagia/genética , Autofagia/inmunología , Beijing , Proteínas Portadoras/genética , Proteínas Portadoras/inmunología , Cinesinas/genética , Cinesinas/inmunología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Tuberculosis/genética , Tuberculosis/inmunología , Macrófagos/inmunología
15.
Eur J Immunol ; 53(2): e2249990, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36433684

RESUMEN

Adipose tissue inflammation is a driving factor for the development of obesity-associated metabolic disturbances, and a role of adipose tissue T cells in initiating the pro-inflammatory signaling is emerging. However, data on human adipose tissue T cells in obesity are limited, reflected by the lack of phenotypic markers to define tissue-resident T cell subsets. In this study, we performed a deep characterization of T cells in blood and adipose tissue depots using multicolor flow cytometry and RNA sequencing. We identified distinct subsets of T cells associated with obesity expressing the activation markers, CD26 and CCR5, and obesity-specific genes that are potentially engaged in activating pro-inflammatory pathway, including ceramide signaling, autophagy, and IL-6 signaling. These findings increase our knowledge on the heterogeneity of T cells in adipose tissue and on subsets that may play a role in obesity-related pathogenesis.


Asunto(s)
Tejido Adiposo , Inflamación , Resistencia a la Insulina , Obesidad , Subgrupos de Linfocitos T , Humanos , Tejido Adiposo/inmunología , Tejido Adiposo/patología , Autofagia/inmunología , Ceramidas/inmunología , Inflamación/sangre , Inflamación/genética , Inflamación/inmunología , Resistencia a la Insulina/genética , Resistencia a la Insulina/inmunología , Obesidad/sangre , Obesidad/genética , Obesidad/inmunología , Obesidad/patología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/patología
16.
Immunol Res ; 71(2): 229-246, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36451006

RESUMEN

Macro-autophagy is a highly conserved catabolic process among eukaryotes affecting macrophages. This work studies the genetic regulatory network involving the interplay between autophagy and macrophage polarization (activation). Autophagy-related genes (Atgs) and differentially expressed genes (DEGs) of macrophage polarization (M1-M2) were predicted, and their regulatory networks constructed. Naïve (M0) mouse bone marrow-derived monocytes were differentiated into M1 and M2a. Validation of the targets of Smad1, LC3A and LC3B, Atg16L1, Atg7, IL-6, CD68, Arg-1, and Vamp7 was performed in vitro. Immunophenotyping by flow cytometry revealed three macrophage phenotypes: M0 (IL-6 + /CD68 +), M1 (IL-6 + /CD68 + /Arg-1 +), and M2a (CD68 + /Arg-1). Confocal microscopy revealed increased autophagy in both M1 and M2a and a significant increase in the pre-autophagosomes size and number. Bafilomycin A increased the expression of CD68 and Arg-1 in all cell lineages. In conclusion, our approach predicted the protein targets mediating the interplay between autophagy and macrophage polarization. We suggest that autophagy reprograms macrophage polarization via CD68, arginase 1, Atg16L1-1, and Atg16L1-3. The current findings provide a foundation for the future use of macrophages in immunotherapy of different autoimmune disorders.


Asunto(s)
Autofagia , Redes Reguladoras de Genes , Activación de Macrófagos , Macrófagos , Animales , Ratones , Autofagia/genética , Autofagia/inmunología , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/inmunología , Interleucina-6/genética , Interleucina-6/inmunología , Activación de Macrófagos/genética , Activación de Macrófagos/inmunología , Macrófagos/inmunología , Macrófagos/fisiología , Monocitos/inmunología , Monocitos/fisiología
17.
Curr Med Chem ; 30(13): 1502-1528, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35078392

RESUMEN

All cells and intracellular components are remodeled and recycled in order to replace the old and damaged cells. Autophagy is a process by which damaged, and unwanted cells are degraded in the lysosomes. There are three different types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Autophagy has an effect on adaptive and innate immunity, suppression of any tumour, and the elimination of various microbial pathogens. The process of autophagy has both positive and negative effects, and this pertains to any specific disease or its stage of progression. Autophagy involves various processes which are controlled by various signaling pathways, such as Jun N-terminal kinase, GSK3, ERK1, Leucine-rich repeat kinase 2, and PTEN-induced putative kinase 1 and parkin RBR E3. Protein kinases are also important for the regulation of autophagy as they regulate the process of autophagy either by activation or inhibition. The present review discusses the kinase catalyzed phosphorylated reactions, the kinase inhibitors, types of protein kinase inhibitors and their binding properties to protein kinase domains, the structures of active and inactive kinases, and the hydrophobic spine structures in active and inactive protein kinase domains. The intervention of autophagy by targeting specific kinases may form the mainstay of treatment of many diseases and lead the road to future drug discovery.


Asunto(s)
Autofagia , Inhibidores de Proteínas Quinasas , Humanos , Autofagia/efectos de los fármacos , Autofagia/inmunología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3/metabolismo , Inmunidad Innata , Transducción de Señal , Inhibidores de Proteínas Quinasas/farmacología
18.
São Paulo; s.n; s.n; 2023. 75 p. tab, graf.
Tesis en Portugués | LILACS | ID: biblio-1437659

RESUMEN

Envelhecer compreende um fenômeno complexo, natural e irreversível, que submete o organismo a inúmeras alterações nos processos biológicos, fisiológicos, ambientais, psicológicos, comportamentais e sociais. Esse processo é caracterizado por um declínio gradual dos mecanismos homeostáticos do organismo, intimamente relacionados com o estado senescente. A senescência, quando diz respeito ao sistema imunológico, é denominada de imunossenescência, que pode ser definida como uma parada estável do ciclo celular associada a mudanças, com uma resposta que limita a proliferação de células envelhecidas ou danificadas. A autofagia está diretamente relacionada com a manutenção do fenótipo senescente, em que a atividade autofágica exerce um papel essencial e ativo na influência da biossíntese de proteínas e organelas. Essa via é regulada naturalmente pela proteína mTOR e quimicamente pelo fármaco rapamicina. Assim, pretendemos investigar: (1) as alterações no perfil corporal e hematimêtrico dos animais ao longo do tratamento com rapamicina; (2) avaliar o perfil de citocinas; (3) observar as modificações histológicas em órgãos linfoides primários e secundário; (4) analisar as populações de células linfoides e mieloides; e (5) avaliar a capacidade proliferativa de linfócitos in vitro. Camundongos SAMP-8 e SAMR-1 foram tratados com rapamicina durante dois meses. A mensuração da massa corporal e análises hematológicas foram realizadas antes e durante o tratamento. Amostras de soro, medula óssea, timo e baço foram analisados em ensaios de ELISA, histologia, população e subpopulações de células. Alterações na massa corporal, parâmetros hematológicos e celularidade de células foram nítidas entre os dois modelos utilizados. Diferenças também foram percebidas na detecção de citocinas IL-1ß. IL-6 e TNF-α, com resultados significantes nas amostras de baço, timo e medula óssea. As citocinas IL-7 e IL-15 apresentaram diferenças de secreção entre os grupos, sendo a primeira maior detectada em camundongos com senescência acelerada tratados com rapamicina. Em nossa análise histológica observamos que os camundongos SAM-P8 apresentaram involução tímica. E nas subpopulações de linfócitos T do baço, células TCD4+ e TCD8+ estavam, respectivamente, em maior e menor quantidade nos camundongos SAM-P8 tratados com rapamicina. Dessa forma, o camundongo da linhagem SAM-P8 é um excelente modelo para se estudar as alterações da senescência, em que o mesmo apresenta características fisiológicas distintas dos camundongos utilizados como controle (SAM-R1). Além disso, verificamos que a dose de rapamicina empregada não desencadeou alterações que pudessem comprometer a resposta imunológica desses camundongos, bem como na possibilidade de atuar na resposta contra os efeitos complexos do envelhecimento


Aging comprises a complex, natural, and irreversible phenomenon, which subjects the organism to countless alterations in biological, physiological, environmental, psychological, behavioral, and social processes. This process is characterized by a gradual decline in the organism's homeostatic mechanisms, closely related to senescence effects. Senescence, when it concerns the immune system, is called immunosenescence, which can be defined as a stable cell cycle arrest associated with changes and is a response that limits the proliferation of aged or damaged cells. Autophagy is a genetically regulated, conserved cellular process and a metabolic pathway essential for maintaining cellular homeostasis, which plays a constitutive and active role in controlling the biosynthesis of proteins and organelles. This pathway is regulated naturally by mTOR or chemically by the drug rapamycin, having a direct relationship with cellular homeostasis and maintenance of the senescent phenotype. Thus, we intend to investigate: (1) the changes in the body and hematimetic profile of the animals throughout the rapamycin treatment; (2) evaluate the cytokine profile; (3) observe histological changes in primary and secondary lymphoid organs; (4) analyze lymphoid and myeloid cell populations; and (5) evaluate the proliferative capacity of lymphocytes in vitro. SAMP-8 and SAMR-1 mice were treated with rapamycin for two months. Body mass measurement and hematological analyses were performed before and during treatment. Serum, bone marrow, thymus and spleen samples were analyzed in ELISA assays, histology, cell population and subpopulations. Changes in body mass, hematological parameters, and cellularity were clear between the two models used. Differences were also noticed in the detection of cytokines IL-1ß. IL-6 and TNF-α, with significant results in the spleen, thymus and bone marrow samples. The cytokines IL-7 and IL-15 showed differences in secretion between groups, the former being higher detected in mice with accelerated senescence treated with rapamycin. In our histological analysis we observed that SAM-P8 mice showed thymic involution. And in the spleen T-lymphocyte subpopulations, TCD4+ and TCD8+ cells were, respectively, in higher and lower quantities in SAM-P8 mice treated with rapamycin. Thus, the SAM-P8 mouse is an excellent model to study the changes of senescence, since it presents physiological characteristics different from the control mice (SAM-R1). Furthermore, we verified that the dose of rapamycin used did not trigger changes that could compromise the immune response of these mice, as well as the possibility of acting in the modulatory response against the complex effects of aging


Asunto(s)
Animales , Masculino , Ratones , Envejecimiento , Sirolimus/efectos adversos , Inmunosenescencia , Autofagia/inmunología , Técnicas In Vitro/métodos , Ensayo de Inmunoadsorción Enzimática/instrumentación , Preparaciones Farmacéuticas/administración & dosificación , Subgrupos de Linfocitos T/clasificación , Homeostasis
19.
Journal of Experimental Hematology ; (6): 1394-1402, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1009994

RESUMEN

OBJECTIVE@#To analyze the effects of mangiferin combined with bortezomib on the proliferation, invasion, apoptosis and autophagy of human Burkitt lymphoma Raji cells, as well as the expression of CXC chemokine receptors (CXCRs) family, and explore the molecular mechanism between them to provide scientific basis for basic research and clinical work of Burkitt lymphoma.@*METHODS@#Raji cells were intervened with different concentrations of mangiferin and bortezomib alone or in combination, then cell proliferation was detected by CCK-8 assay, cell invasion ability was detected by Transwell chamber method, cell apoptosis was detected by Annexin V/PI double-staining flow cytometry, apoptosis, autophagy and Akt/mTOR pathway protein expression were detected by Western blot, and the expression changes of CXCR family was detected by real-time quantitative PCR (RT-qPCR).@*RESULTS@#Different concentrations of mangiferin intervened Raji cells for different time could inhibit cell viability in a concentration- and time-dependent manner (r =-0.682, r =-0.836). When Raji cells were intervened by combination of mangiferin and bortezomib, compared with single drug group, the proliferation and invasion abilities were significantly decreased, while the apoptosis level was significantly increased (P <0.01). Mangiferin combined with bortezomib could significantly up-regulate the expression of pro-apoptotic protein Bax and down-regulate the expression of anti-apoptotic protein Bcl-2 after intervention in Raji cells. Caspase-3 was also hydrolyzed and activated, and then induced the apoptosis of Raji cells. Mangiferin combined with bortezomib could up-regulate the expression of LC3Ⅱ protein in Raji cells, and the ratio of LC3Ⅱ/LC3Ⅰ in cells was significantly up-regulated compared with single drug or control group (P <0.01). Mangiferin combined with bortezomib could significantly inhibit the phosphorylation levels of Akt and mTOR, inhibit the proliferation and invasion of Raji cells by inhibiting Akt/mTOR pathway, and induce cell autophagy and apoptosis. Mangiferin and bortezomib could down-regulate the expressions of CXCR4 and CXCR7 mRNA after single-agent intervention in Raji cells, and the down-regulations of CXCR4 and CXCR7 mRNA expression were more significant when the two drugs were combined (P <0.01). Mangiferin alone or combined with bortezomib had no significant effect on CXCR5 mRNA expression in Raji cells (P >0.05), while the combination of the two drugs could down-regulate the expression of CXCR3 (P <0.05).@*CONCLUSION@#Mangiferin combined with bortezomib can synergistically inhibit the proliferation and invasion of Raji cells, and induce autophagy and apoptosis. The mechanism may be related to the inhibition of Akt/mTOR signaling pathway, down-regulation of anti-apoptotic protein Bcl-2 and up-regulation of pro-apoptotic protein Bax, and the inhibition of the expression of CXCR family.


Asunto(s)
Humanos , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/inmunología , Autofagia/inmunología , Proteína X Asociada a bcl-2/inmunología , Bortezomib/uso terapéutico , Linfoma de Burkitt/inmunología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimioterapia Combinada , Proteínas Proto-Oncogénicas c-akt , Proteínas Proto-Oncogénicas c-bcl-2 , Receptores CXCR/inmunología , ARN Mensajero , Serina-Treonina Quinasas TOR , Xantonas/uso terapéutico
20.
Proc Natl Acad Sci U S A ; 119(40): e2204296119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161925

RESUMEN

Thymic stromal cells (TSCs) are critical regulators of T cell tolerance, but their basic biology has remained under-characterized because they are relatively rare and difficult to isolate. Recent work has revealed that constitutive autophagy in TSCs is required for self-antigen presentation and central T cell tolerance induction; however, the mechanisms regulating constitutive autophagy in TSCs are not well understood. Hydrogen peroxide has been shown to increase autophagy flux in other tissues, and we previously identified conspicuously low expression of the hydrogen peroxide-quenching enzyme catalase in TSCs. We investigated whether the redox status of TSCs established by low catalase expression regulates their basal autophagy levels and their capacity to impose central T cell tolerance. Transgenic overexpression of catalase diminished autophagy in TSCs and impaired thymocyte clonal deletion, concomitant with increased frequencies of spontaneous lymphocytic infiltrates in lung and liver and of serum antinuclear antigen reactivity. Effects on clonal deletion and autoimmune indicators were diminished in catalase transgenic mice when autophagy was rescued by expression of the Becn1F121A/F121A knock-in allele. These results suggest a metabolic mechanism by which the redox status of TSCs may regulate central T cell tolerance.


Asunto(s)
Autofagia , Tolerancia Inmunológica , Timo , Alelos , Animales , Autofagia/genética , Autofagia/inmunología , Beclina-1/genética , Catalasa/genética , Peróxido de Hidrógeno/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Oxidación-Reducción , Células del Estroma/inmunología , Timo/citología , Timo/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...