Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Más filtros










Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(15): e2306399, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38348540

RESUMEN

Traumatic brain injury (TBI) leads to progressive neurodegeneration that may be caused by chronic traumatic encephalopathy (CTE). However, the precise mechanism remains unclear. Herein, the study identifies a crucial protein, axonemal dynein light intermediate polypeptide 1 (DNALI1), and elucidated its potential pathogenic role in post-TBI neurodegeneration. The DNALI1 gene is systematically screened through analyses of Aging, Dementia, and TBI studies, confirming its elevated expression both in vitro and in vivo. Moreover, it is observed that altered DNALI1 expression under normal conditions has no discernible effect. However, upon overexpression, DNALI1 inhibits autophagosome-lysosome fusion, reduces autophagic flux, and exacerbates cell death under pathological conditions. DNALI1 silencing significantly enhances autophagic flux and alleviates neurodegeneration in a CTE model. These findings highlight DNALI1 as a potential key target for preventing TBI-related neurodegeneration.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Encefalopatía Traumática Crónica , Humanos , Autofagosomas/metabolismo , Autofagosomas/patología , Lesiones Traumáticas del Encéfalo/complicaciones , Encefalopatía Traumática Crónica/etiología , Encefalopatía Traumática Crónica/patología , Autofagia , Lisosomas/metabolismo
2.
J Hazard Mater ; 445: 130623, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-37056006

RESUMEN

Autophagy was involved in vascular endothelial injury caused by PM2.5, which aggravated the pathogenesis of cardiovascular diseases. However, major toxic components and underlying mechanism responsible for PM2.5-induced autophagy remain unclear. In this study, the effects of water-extracted PM2.5 (WE-PM2.5) on autophagy in human umbilical vein endothelial cells (HUVEC) were studied. Our results showed WE-PM2.5 promoted autophagosome initiation and formation, meanwhile, lysosomal function was impaired, which further caused autophagic flux blockage in HUVEC cells. Furthermore, removal of metals alleviated WE-PM2.5-induced autophagic flux blockage, while the artificial metal mixture reproduced the WE-PM2.5 response. Mechanistically, ROS regulated autophagy-related proteins evidenced by BECN1, LC3B and p62 expression reversed by NAC pretreatment in WE-PM2.5-exposed cells. WE-PM2.5 also increased TXNIP expression mediated by ROS; moreover, knockdown of TXNIP in WE-PM2.5-exposed cells decreased BECN1 and LC3B expression, but had little effects on the expression of p62, CTSB, and CTSD, indicating WE-PM2.5-induced TXNIP was involved in autophagosome initiation and formation rather than autophagic degradation. Collectively, WE-PM2.5-induced ROS not only promoted autophagosome initiation and formation, but also inhibited autophagic degradation. However, as the downstream molecule of ROS, TXNIP was only involved in autophagosome initiation and formation. Importantly, WE-PM2.5-bound metals were largely responsible for autophagic flux blockage in HUVEC cells.


Asunto(s)
Autofagosomas , Autofagia , Humanos , Células Endoteliales de la Vena Umbilical Humana , Especies Reactivas de Oxígeno/metabolismo , Autofagosomas/metabolismo , Autofagosomas/patología , Metales/metabolismo , Material Particulado/toxicidad , Material Particulado/metabolismo , Proteínas Portadoras/metabolismo
3.
Nat Commun ; 13(1): 931, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177641

RESUMEN

Koolen-de Vries syndrome (KdVS) is a rare disorder caused by haploinsufficiency of KAT8 regulatory NSL complex subunit 1 (KANSL1), which is characterized by intellectual disability, heart failure, hypotonia, and congenital malformations. To date, no effective treatment has been found for KdVS, largely due to its unknown pathogenesis. Using siRNA screening, we identified KANSL1 as an essential gene for autophagy. Mechanistic study shows that KANSL1 modulates autophagosome-lysosome fusion for cargo degradation via transcriptional regulation of autophagosomal gene, STX17. Kansl1+/- mice exhibit impairment in the autophagic clearance of damaged mitochondria and accumulation of reactive oxygen species, thereby resulting in defective neuronal and cardiac functions. Moreover, we discovered that the FDA-approved drug 13-cis retinoic acid can reverse these mitophagic defects and neurobehavioral abnormalities in Kansl1+/- mice by promoting autophagosome-lysosome fusion. Hence, these findings demonstrate a critical role for KANSL1 in autophagy and indicate a potentially viable therapeutic strategy for KdVS.


Asunto(s)
Anomalías Múltiples/genética , Discapacidad Intelectual/genética , Mitofagia/genética , Proteínas Nucleares/genética , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/inmunología , Anomalías Múltiples/patología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/patología , Corteza Cerebral/citología , Corteza Cerebral/patología , Deleción Cromosómica , Cromosomas Humanos Par 17/genética , Cromosomas Humanos Par 17/inmunología , Modelos Animales de Enfermedad , Femenino , Haploinsuficiencia/inmunología , Células HeLa , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/inmunología , Discapacidad Intelectual/patología , Isotretinoína/farmacología , Isotretinoína/uso terapéutico , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Ratones , Ratones Transgénicos , Mitofagia/efectos de los fármacos , Mitofagia/inmunología , Neuronas , Proteínas Nucleares/metabolismo , Cultivo Primario de Células
4.
Exp Cell Res ; 411(2): 113001, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34973945

RESUMEN

Autophagy is involved in the activation of hepatic stellate cells (HSCs) and liver fibrosis. Previous studies have shown that interleukin 10 (IL-10) has a marked therapeutic effect against liver fibrosis. However, few studies have evaluated the effect of IL-10 on autophagy in HSCs and fibrotic livers. The aim of this study was to assess the effect of IL-10 on the autophagy of HSCs in vitro and in vivo and then to explore the underlying pathway. In vitro, The results revealed that IL-10 had inhibitory effects on hydrogen peroxide (H2O2)-induced autophagy, as evidenced by the decreased LC3II/I ratio and Beclin1 expression, increased p62 expression, reduced numbers of autophagosomes, and blocked autophagy initiation in HSCs. Mechanistically, IL-10 significantly promoted the phosphorylation of the signal transducer and activator of transcription 3(STAT3) and mammalian target of rapamycin (mTOR), leading to the activation of STAT3 and mTOR, which in turn inhibited autophagy. In vivo, the increased expression of IL-10 in fibrotic livers inhibited significantly liver fibrosis and decreased the autophagic activity in fibrotic livers and HSCs. Overall, our results indicate that IL-10 suppressed H2O2-induced autophagy in HSCs by activating the STAT3-mTOR signaling pathway. Present study provides a new theoretical basis for the anti-fibrotic effects of IL-10.


Asunto(s)
Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Interleucina-10/metabolismo , Interleucina-10/farmacología , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/patología , Autofagia/efectos de los fármacos , Línea Celular , Células Estrelladas Hepáticas/patología , Humanos , Peróxido de Hidrógeno/farmacología , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/prevención & control , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Ratas , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
5.
Pigment Cell Melanoma Res ; 35(1): 66-77, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34482636

RESUMEN

Melanoma cells expressing mutant B-RAF V600E are susceptible to treatment with the combination of a B-RAF inhibitor and a MEK1/2 inhibitor. We investigated the impact of the ERBB family and MAP4K inhibitor neratinib on the biology of PDX isolates of cutaneous melanoma expressing B-RAF V600E. Neratinib synergized with HDAC inhibitors to kill melanoma cells at their physiologic concentrations. Neratinib activated ATM, AMPK, ULK1, and PERK and inactivated mTORC1/2, ERK1/2, eIF2 alpha, and STAT3. Neratinib increased expression of Beclin1, ATG5, CD95, and FAS-L and decreased levels of multiple toxic BH3 domain proteins, MCL1, BCL-XL, FLIP-s, and ERBB1/2/4. ATG13 S318 phosphorylation and autophagosome formation was dependent upon ATM, and activation of ATM was dependent on reactive oxygen species. Reduced expression of ERBB1/2/4 required autophagosome formation and reduced MCL1/BCL-XL levels required eIF2 alpha phosphorylation. Maximal levels of eIF2 alpha phosphorylation required signaling by ATM-AMPK and autophagosome formation. Knock down of eIF2 alpha, CD95, FAS-L, Beclin1, and ATG5 or over-expression of FLIP-s significantly reduced killing. Combined knock down of Beclin1 and CD95 abolished cell death. Our data demonstrate that PDX melanoma cells expressing B-RAF V600E are susceptible to being killed by neratinib and more so when combined with HDACi.


Asunto(s)
Autofagosomas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Quinolinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Receptores de Muerte Celular/metabolismo , Neoplasias Cutáneas/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Autofagosomas/genética , Autofagosomas/metabolismo , Autofagosomas/patología , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Melanoma/enzimología , Melanoma/genética , Melanoma/patología , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Receptores de Muerte Celular/genética , Transducción de Señal , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología
6.
Clin J Am Soc Nephrol ; 16(11): 1676-1685, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750160

RESUMEN

BACKGROUND AND OBJECTIVES: Age and comorbidity-related sarcopenia represent a main cause of muscle dysfunction in patients on long-term hemodialysis. However, recent findings suggest muscle abnormalities that are not associated with sarcopenia. The aim of this study was to isolate functional and cellular muscle abnormalities independently of other major confounding factors, including malnutrition, age, comorbidity, or sedentary lifestyle, which are common in patients on maintenance hemodialysis. To overcome these confounding factors, alterations in skeletal muscle were analyzed in highly selected patients on long-term hemodialysis undergoing kidney transplantation. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: In total, 22 patients on long-term hemodialysis scheduled for kidney transplantation with few comorbidities, but with a long-term uremic milieu exposure, and 22 age, sex, and physical activity level frequency-matched control participants were recruited. We compared biochemical, functional, and molecular characteristics of the skeletal muscle using maximal voluntary force and endurance of the quadriceps, 6-minute walking test, and muscle biopsy of vastus lateralis. For statistical analysis, mean comparison and multiple regression tests were used. RESULTS: In patients on long-term hemodialysis, muscle endurance was lower, whereas maximal voluntary force was not significantly different. We observed a transition from type I (oxidative) to type II (glycolytic) muscle fibers, and an alteration of mitochondrial structure (swelling) without changes in DNA content, genome replication (peroxisome proliferator activator receptor γ coactivator-1α and mitochondrial transcription factor A), regulation of fusion (mitofusin and optic atrophy 1), or fission (dynamin-related protein 1). Notably, there were autophagosome structures containing glycogen along with mitochondrial debris, with a higher expression of light chain 3 (LC3) protein, indicating phagophore formation. This was associated with a greater conversion of LC3-I to LC3-II and the expression of Gabaralp1 and Bnip3l genes involved in mitophagy. CONCLUSIONS: In this highly selected long-term hemodialysis population, a low oxidative phenotype could be defined by a poor endurance, a fiber-type switch, and an alteration of mitochondria structure, without evidence of sarcopenia. This phenotype could be related to uremia through the activation of autophagy/mitophagy. CLINICAL TRIAL REGISTRATION NUMBERS: NCT02794142 and NCT02040363.


Asunto(s)
Fibras Musculares Esqueléticas/patología , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Diálisis Renal , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagosomas/patología , Biopsia , Estudios de Casos y Controles , Femenino , Humanos , Trasplante de Riñón , Masculino , Proteínas de la Membrana/genética , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Persona de Mediana Edad , Mitocondrias/patología , Mitofagia , Fibras Musculares Esqueléticas/metabolismo , Fuerza Muscular , Fenotipo , Resistencia Física , Proteínas Proto-Oncogénicas/genética , Transducción de Señal , Factores de Tiempo , Proteínas Supresoras de Tumor/genética , Listas de Espera , Prueba de Paso
7.
Cell Physiol Biochem ; 55(S4): 68-95, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34523304

RESUMEN

Protein homeostasis strongly depends on the targeted and selective removal of unneeded or flawed proteins, of protein aggregates, and of damaged or excess organelles by the two main intracellular degradative systems, namely the ubiquitin proteasomal system (UPS) and the autophagosomal lysosomal system. Despite representing completely distinct mechanisms of degradation, which underlie differing regulatory mechanisms, growing evidence suggests that the UPS and autophagy strongly interact especially in situations of overwhelming and impairment, and that both are involved in podocyte proteostasis and in the pathogenesis of podocyte injury. The differential impact of autophagy and the UPS on podocyte biology and on podocyte disease development and progression is not understood. Recent advances in understanding the role of the UPS and autophagy in podocyte biology are reviewed here.


Asunto(s)
Autofagia , Enfermedades Renales , Podocitos , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/patología , Humanos , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Enfermedades Renales/fisiopatología , Lisosomas/metabolismo , Lisosomas/patología , Podocitos/metabolismo , Podocitos/patología
8.
Mol Neurobiol ; 58(10): 4886-4905, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34212304

RESUMEN

Autophagy is a catabolic pathway by which misfolded proteins or damaged organelles are engulfed by autophagosomes and then transported to lysosomes for degradation. Recently, a great improvement has been done to explain the molecular mechanisms and roles of autophagy in several important cellular metabolic processes. Besides being a vital clearance pathway or a cell survival pathway in response to different stresses, autophagy dysfunction, either upregulated or down-regulated, has been suggested to be linked with numerous neurodegenerative disorders like Alzheimer's disease, Parkinson's disease, Huntington's disease, and Amyotrophic lateral sclerosis. Impairment at different stages of autophagy results in the formation of large protein aggregates and damaged organelles, which leads to the onset and progression of different neurodegenerative disorders. This article elucidates the recent progress about the role of autophagy in neurodegenerative disorders and explains how autophagy dysfunction is linked with the pathogenesis of such disorders as well as the novel potential autophagy-associated therapies for treating them.


Asunto(s)
Autofagosomas/metabolismo , Autofagia/fisiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/patología , Autofagia/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Inhibidores mTOR/farmacología , Inhibidores mTOR/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Trehalosa/farmacología , Trehalosa/uso terapéutico
9.
Cell Death Dis ; 12(7): 664, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215725

RESUMEN

Various retinal degenerative disorders manifest in alterations of the AKT/mTOR axis. Despite this, consensus on the therapeutic targeting of mTOR in degenerating retinas has not yet been achieved. Therefore, we investigated the role of AKT/mTOR signaling in rd16 retinas, in which we restored the AKT/mTOR axis by genetic ablation of pseudokinase TRB3, known to inhibit phosphorylation of AKT and mTOR. First, we found that TRB3 ablation resulted in preservation of photoreceptor function in degenerating retinas. Then, we learned that the mTOR downstream cellular pathways involved in the homeostasis of photoreceptors were also reprogrammed in rd16 TRB3-/- retinas. Thus, the level of inactivated translational repressor p-4E-BP1 was significantly increased in these mice along with the restoration of translational rate. Moreover, in rd16 mice manifesting decline in p-mTOR at P15, we found elevated expression of Beclin-1 and ATG5 autophagy genes. Thus, these mice showed impaired autophagy flux measured as an increase in LC3 conversion and p62 accumulation. In addition, the RFP-EGFP-LC3 transgene expression in rd16 retinas resulted in statistically fewer numbers of red puncta in photoreceptors, suggesting impaired late autophagic vacuoles. In contrast, TRIB3 ablation in these mice resulted in improved autophagy flux. The restoration of translation rate and the boost in autophagosome formation occurred concomitantly with an increase in total Ub and rhodopsin protein levels and the elevation of E3 ligase Parkin1. We propose that TRB3 may retard retinal degeneration and be a promising therapeutic target to treat various retinal degenerative disorders.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Células Fotorreceptoras de Vertebrados/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Degeneración Retiniana/enzimología , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Autofagosomas/genética , Autofagosomas/metabolismo , Autofagosomas/patología , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Beclina-1/genética , Beclina-1/metabolismo , Proteínas de Ciclo Celular/genética , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Células Fotorreceptoras de Vertebrados/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Rodopsina/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
10.
Biochem J ; 478(10): 1959-1976, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34047789

RESUMEN

Amphisomes are intermediate/hybrid organelles produced through the fusion of endosomes with autophagosomes within cells. Amphisome formation is an essential step during a sequential maturation process of autophagosomes before their ultimate fusion with lysosomes for cargo degradation. This process is highly regulated with multiple protein machineries, such as SNAREs, Rab GTPases, tethering complexes, and ESCRTs, are involved to facilitate autophagic flux to proceed. In neurons, autophagosomes are robustly generated in axonal terminals and then rapidly fuse with late endosomes to form amphisomes. This fusion event allows newly generated autophagosomes to gain retrograde transport motility and move toward the soma, where proteolytically active lysosomes are predominantly located. Amphisomes are not only the products of autophagosome maturation but also the intersection of the autophagy and endo-lysosomal pathways. Importantly, amphisomes can also participate in non-canonical functions, such as retrograde neurotrophic signaling or autophagy-based unconventional secretion by fusion with the plasma membrane. In this review, we provide an updated overview of the recent discoveries and advancements on the molecular and cellular mechanisms underlying amphisome biogenesis and the emerging roles of amphisomes. We discuss recent developments towards the understanding of amphisome regulation as well as the implications in the context of major neurodegenerative diseases, with a comparative focus on Alzheimer's disease and Parkinson's disease.


Asunto(s)
Autofagosomas/patología , Autofagia , Endosomas/patología , Enfermedades Neurodegenerativas/patología , Neuronas/patología , Animales , Autofagosomas/metabolismo , Endosomas/metabolismo , Humanos , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo
11.
STAR Protoc ; 2(2): 100408, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33851139

RESUMEN

Here, we describe a protocol for comprehensive quantification of autophagosome recruitment to mitochondria as an early step in mitophagy. Data collected using this protocol can be useful in the study of neurodegenerative disease, cancer, and metabolism-related disorders using models in which co-expression of mito-GFP and mCherry-Atg8a is feasible. This protocol has the advantage of assessment in an in vivo model organism (Drosophila melanogaster), where tissue-specific mitophagy can be investigated. For complete details on the use and execution of this protocol, please refer to (Cackovic et al., 2018).


Asunto(s)
Autofagosomas , Autofagia/fisiología , Mitocondrias , Imagen Molecular/métodos , Enfermedad de Parkinson , Animales , Autofagosomas/metabolismo , Autofagosomas/patología , Encéfalo/citología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Drosophila/citología , Drosophila/metabolismo , Microscopía Confocal/métodos , Mitocondrias/metabolismo , Mitocondrias/patología , Mitofagia , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología
12.
Nat Commun ; 12(1): 2107, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33833240

RESUMEN

Vacuolar H+-ATPases (V-ATPases) transport protons across cellular membranes to acidify various organelles. ATP6V0A1 encodes the a1-subunit of the V0 domain of V-ATPases, which is strongly expressed in neurons. However, its role in brain development is unknown. Here we report four individuals with developmental and epileptic encephalopathy with ATP6V0A1 variants: two individuals with a de novo missense variant (R741Q) and the other two individuals with biallelic variants comprising one almost complete loss-of-function variant and one missense variant (A512P and N534D). Lysosomal acidification is significantly impaired in cell lines expressing three missense ATP6V0A1 mutants. Homozygous mutant mice harboring human R741Q (Atp6v0a1R741Q) and A512P (Atp6v0a1A512P) variants show embryonic lethality and early postnatal mortality, respectively, suggesting that R741Q affects V-ATPase function more severely. Lysosomal dysfunction resulting in cell death, accumulated autophagosomes and lysosomes, reduced mTORC1 signaling and synaptic connectivity, and lowered neurotransmitter contents of synaptic vesicles are observed in the brains of Atp6v0a1A512P/A512P mice. These findings demonstrate the essential roles of ATP6V0A1/Atp6v0a1 in neuronal development in terms of integrity and connectivity of neurons in both humans and mice.


Asunto(s)
Encefalopatías/genética , Encéfalo/crecimiento & desarrollo , Neuronas/fisiología , Neurotransmisores/metabolismo , ATPasas de Translocación de Protón Vacuolares/genética , Animales , Autofagosomas/patología , Mapeo Encefálico/métodos , Catepsina D/metabolismo , Línea Celular , Células HEK293 , Humanos , Mutación con Pérdida de Función/genética , Lisosomas/patología , Imagen por Resonancia Magnética/métodos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Mutación Missense/genética , Neuronas/citología , Vesículas Sinápticas/patología
13.
Mol Cell ; 81(9): 2031-2040.e8, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33909989

RESUMEN

Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilserinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/genética , Autofagosomas/patología , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Virus de la Influenza A/patogenicidad , Macrólidos/farmacología , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Monensina/farmacología , Fagocitosis , Fosfatidiletanolaminas/metabolismo , Células RAW 264.7 , Transducción de Señal
14.
Autophagy ; 17(11): 3306-3322, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33632058

RESUMEN

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two clinically distinct classes of neurodegenerative disorders. Yet, they share a range of genetic, cellular, and molecular features. Hexanucleotide repeat expansions (HREs) in the C9orf72 gene and the accumulation of toxic protein aggregates in the nervous systems of the affected individuals are among such common features. Though the mechanisms by which HREs cause toxicity is not clear, the toxic gain of function due to transcribed HRE RNA or dipeptide repeat proteins (DPRs) produced by repeat-associated non-AUG translation together with a reduction in C9orf72 expression are proposed as the contributing factors for disease pathogenesis in ALS and FTD. In addition, several recent studies point toward alterations in protein homeostasis as one of the root causes of the disease pathogenesis. In this review, we discuss the effects of the C9orf72 HRE in the autophagy-lysosome pathway based on various recent findings. We suggest that dysfunction of the autophagy-lysosome pathway synergizes with toxicity from C9orf72 repeat RNA and DPRs to drive disease pathogenesis.Abbreviation: ALP: autophagy-lysosome pathway; ALS: amyotrophic lateral sclerosis; AMPK: AMP-activated protein kinase; ATG: autophagy-related; ASO: antisense oligonucleotide; C9orf72: C9orf72-SMCR8 complex subunit; DENN: differentially expressed in normal and neoplastic cells; DPR: dipeptide repeat protein; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; ER: endoplasmic reticulum; FTD: frontotemporal dementia; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; HRE: hexanucleotide repeat expansion; iPSC: induced pluripotent stem cell; ISR: integrated stress response; M6PR: mannose-6-phosphate receptor, cation dependent; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MN: motor neuron; MTORC1: mechanistic target of rapamycin kinase complex 1; ND: neurodegenerative disorder; RAN: repeat-associated non-ATG; RB1CC1/FIP200: RB1 inducible coiled-coil 1; SLC66A1/PQLC2: solute carrier family 66 member 1; SMCR8: SMCR8-C9orf72 complex subunit; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TARDBP/TDP-43: TAR DNA binding protein; TBK1: TANK binding kinase 1; TFEB: transcription factor EB; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system; WDR41: WD repeat domain 41.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Autofagia/genética , Proteína C9orf72/genética , Demencia Frontotemporal/genética , Lisosomas/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Autofagosomas/genética , Autofagosomas/patología , Autofagosomas/fisiología , Autofagia/fisiología , Transporte Axonal/genética , Transporte Axonal/fisiología , Proteína C9orf72/fisiología , Expansión de las Repeticiones de ADN/genética , Expansión de las Repeticiones de ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Demencia Frontotemporal/patología , Demencia Frontotemporal/fisiopatología , Terapia Genética , Humanos , Lisosomas/fisiología , Modelos Neurológicos , Degeneración Nerviosa/genética , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/fisiopatología , Proteostasis/genética , Proteostasis/fisiología , Proteínas de Unión al ARN/fisiología
15.
FEBS Lett ; 595(8): 1239-1263, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33615465

RESUMEN

Mitophagy is one of the selective autophagy pathways that catabolizes dysfunctional or superfluous mitochondria. Under mitophagy-inducing conditions, mitochondria are labeled with specific molecular landmarks that recruit the autophagy machinery to the surface of mitochondria, enclosed into autophagosomes, and delivered to lysosomes (vacuoles in yeast) for degradation. As damaged mitochondria are the major sources of reactive oxygen species, mitophagy is critical for mitochondrial quality control and cellular health. Moreover, appropriate control of mitochondrial quantity via mitophagy is vital for the energy supply-demand balance in cells and whole organisms, cell differentiation, and developmental programs. Thus, it seems conceivable that defects in mitophagy could elicit pleiotropic pathologies such as excess inflammation, tissue injury, neurodegeneration, and aging. In this review, we will focus on the molecular basis and physiological relevance of mitophagy, and potential of mitophagy as a therapeutic target to overcome such disorders.


Asunto(s)
Envejecimiento , Autofagosomas , Autofagia/genética , Mitocondrias , Mitofagia/genética , Enfermedades Neurodegenerativas , Envejecimiento/genética , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Autofagosomas/genética , Autofagosomas/metabolismo , Autofagosomas/patología , Humanos , Inflamación/genética , Inflamación/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Especies Reactivas de Oxígeno/metabolismo
16.
Biomed Pharmacother ; 136: 111227, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33485070

RESUMEN

Hydroxysafflor yellow A (HSYA) extracted from the herb Cathartics tinctorius L. negatively regulates liver cancer growth. However, the exact mechanism of HSYA action in liver cancer remains largely unknown. In this study, HSYA inhibited liver cancer cell growth in vivo and in vitro, evidenced by cell proliferation inhibition detected by CCK8, numerous apoptotic cells shown by flow cytometry assay, and expression of apoptosis-related proteins determined by western blot. Importantly, our data revealed that HSYA triggered autophagic response and autophagosome accumulation considering the increased levels of LC3II-conversion examined by western blot, LC3 puncta visualized by immunofluorescence, and expression of autophagy-related genes shown by quantitative real-time PCR. Furthermore, HSYA blocked the late-phase of autophagic flux via impairing the lysosomal acidification and downregulating LAMP1 expression, thereby likely inducing apoptosis. In addition, HSYA inhibited PI3K/AKT/mTOR signaling pathway. Taken together, as HSYA might inhibit cell proliferation and promote apoptosis via blocking autophagic flux in liver cancer, it may be considered a promising candidate for liver cancer therapy.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Chalcona/análogos & derivados , Neoplasias Hepáticas/tratamiento farmacológico , Quinonas/farmacología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/patología , Proliferación Celular/efectos de los fármacos , Chalcona/farmacología , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Lisosomas/patología , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
17.
Biochem Cell Biol ; 99(3): 364-373, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33347391

RESUMEN

The neuronal dystonin protein (DST-a) is a large cytoskeletal linker important for integrating the various components of the cytoskeleton. Recessive Dst mutations lead to a sensory neuropathy in mice, known as dystonia musculorum (Dstdt). The disease is characterized by ataxia, autonomic disturbances, and ultimately, death, which are associated with massive degeneration of the sensory neurons in the dorsal root ganglion (DRG). Recent investigation of Dstdt sensory neurons revealed an accumulation of autophagosomes and a disruption in autophagic flux, which was believed to be due to insufficient availability of motor protein. Motor protein levels and the endolysosomal pathway were assessed in pre-symptomatic (postnatal day 5; P5) and symptomatic (P15) stage wild-type and Dstdt DRGs. Levels of mRNA encoding molecular motors were reduced, although no significant reduction in the protein level was detected. An increase in lysosomal marker LAMP1 in medium-large size Dstdt-27J sensory neurons was observed, along with an accumulation of electron-light single-membraned vesicles in Dstdt-27J DRG tissue at the late stages of disease. These vesicles are likely to have been autolysosomes, and their presence in only late-stage Dstdt-27J sensory neurons is suggestive of a pathological defect in autophagy. Further investigation is necessary to confirm vesicle identity, and to determine the role of Dst-a in normal autophagic flux.


Asunto(s)
Autofagosomas/patología , Autofagia , Distonina/fisiología , Endosomas/patología , Mutación con Pérdida de Función , Lisosomas/patología , Neuronas/patología , Animales , Autofagosomas/metabolismo , Endosomas/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo
18.
Arterioscler Thromb Vasc Biol ; 41(2): e82-e96, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33356389

RESUMEN

OBJECTIVE: Atherosclerotic lesions are often characterized by accumulation of OxLDL (oxidized low-density lipoprotein), which is associated with vascular inflammation and lesion vulnerability to rupture. Extracellular AIBP (apolipoprotein A-I binding protein; encoded by APOA1BP gene), when secreted, promotes cholesterol efflux and regulates lipid rafts dynamics, but its role as an intracellular protein in mammalian cells remains unknown. The aim of this work was to determine the function of intracellular AIBP in macrophages exposed to OxLDL and in atherosclerotic lesions. Approach and Results: Using a novel monoclonal antibody against human and mouse AIBP, which are highly homologous, we demonstrated robust AIBP expression in human and mouse atherosclerotic lesions. We observed significantly reduced autophagy in bone marrow-derived macrophages, isolated from Apoa1bp-/- compared with wild-type mice, which were exposed to OxLDL. In atherosclerotic lesions from Apoa1bp-/- mice subjected to Ldlr knockdown and fed a Western diet, autophagy was reduced, whereas apoptosis was increased, when compared with that in wild-type mice. AIBP expression was necessary for efficient control of reactive oxygen species and cell death and for mitochondria quality control in macrophages exposed to OxLDL. Mitochondria-localized AIBP, via its N-terminal domain, associated with E3 ubiquitin-protein ligase PARK2 (Parkin), MFN (mitofusin)1, and MFN2, but not BNIP3 (Bcl2/adenovirus E1B 19-kDa-interacting protein-3), and regulated ubiquitination of MFN1 and MFN2, key components of mitophagy. CONCLUSIONS: These data suggest that intracellular AIBP is a new regulator of autophagy in macrophages. Mitochondria-localized AIBP augments mitophagy and participates in mitochondria quality control, protecting macrophages against cell death in the context of atherosclerosis.


Asunto(s)
Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Lipoproteínas LDL/toxicidad , Macrófagos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Fosfoproteínas/metabolismo , Racemasas y Epimerasas/metabolismo , Animales , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/patología , Apoptosis/efectos de los fármacos , Aterosclerosis/genética , Aterosclerosis/patología , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Autofagosomas/patología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Enfermedades de las Arterias Carótidas/metabolismo , Enfermedades de las Arterias Carótidas/patología , Modelos Animales de Enfermedad , Células HEK293 , Células Hep G2 , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Fosfoproteínas/genética , Racemasas y Epimerasas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
19.
Toxicol Lett ; 337: 28-37, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33232774

RESUMEN

Published evidences have shown that autophagy plays an important role in silica-induced lung inflammation and collagen deposition. Our previous study found that the level of growth arrest-specific protein 6 (Gas6) in bronchoalveolar lavage fluid was increased after silica exposure. However, it is unclear whether Gas6 is involved in the regulation of silica-induced autophagy dysfunction. In this study, we observed an autophagosomes accumulation in wild-type C57BL/6 (WT) mice lung after silica intratracheal instillation and then investigated whether genetic loss of Gas6 (Gas6-/-) could ameliorate it. Our data showed that Gas6-/- mice exhibited a limited autophagosomes accumulation from days 7-84 after silica exposure, revealed by reduced induction and increased degradation of autophagosomes in mice lung tissue. Interestingly, silica particles could elevate the expression of Mer receptor, which was significantly decreased in Gas6-/- mice (P < 0.05). Furthermore, we found that Mer deficiency (Mer-/-) could also reduce the formation of autophagosomes and restore the function of impaired lysosomes in silica-treated mice. Taken together, our results indicate that genetic loss of Gas6 attenuates silica-induced autophagosomes accumulation partly through down-regulating the expression of Mer receptor. Targeting Gas6/Mer-mediated autophagy pathway may provide a novel insight into the prevention and therapy of silica-induced pulmonary fibrosis.


Asunto(s)
Autofagosomas/patología , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Pulmón/patología , Neumonía/patología , Dióxido de Silicio/toxicidad , Silicosis/genética , Tirosina Quinasa c-Mer/deficiencia , Animales , Autofagia/genética , Líquido del Lavado Bronquioalveolar , Péptidos y Proteínas de Señalización Intercelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fibrosis Pulmonar/genética , Silicosis/patología , Tirosina Quinasa c-Mer/genética
20.
Int J Med Sci ; 17(17): 2869-2878, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33162815

RESUMEN

Objective: Uncoupling protein 2 (UCP2) is a member of inner mitochondrial membrane proteins and deletion of UCP2 exacerbates brain damage after cerebral ischemia/reperfusion (I/R). Nevertheless, its functional role during cerebral I/R is not entirely understood. The objective of present study was to explore the influence of UCP2 deletion on mitochondrial autophagy (mitophagy) and mitochondria-mediated cell death pathway after cerebral I/R. Methods: UCP2-/- and wildtype (WT) mice were subjected to 60 min middle cerebral artery occlusion (MCAO) and allowed reperfusion for 24 hours. Infarct volume and histological outcomes were assessed, reactive oxygen species (ROS) and autophagy markers were measured, and mitochondrial ultrastructure was examined. Results: Deletion of UCP2 enlarged infarct volume, increased numbers of necrotic and TUNEL positive cells, and significantly increased pro-apoptotic protein levels in UCP2-/- mice compared with WT mice subjected to the same duration of I/R. Further, deletion of UCP2 increased ROS production, elevated LC3, Beclin1 and PINK1, while it suppressed p62 compared with respective WT ischemic controls. Electron microscopic study demonstrated the number of autophagosomes was higher in the UCP2-/- group, compared with the WT group. Conclusions: It is concluded that deletion of UCP2 exacerbates cerebral I/R injury via reinforcing mitophagy and cellular apoptosis in mice.


Asunto(s)
Isquemia Encefálica/complicaciones , Encéfalo/patología , Infarto de la Arteria Cerebral Media/complicaciones , Daño por Reperfusión/patología , Proteína Desacopladora 2/deficiencia , Animales , Apoptosis , Autofagosomas/patología , Encéfalo/irrigación sanguínea , Encéfalo/citología , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/patología , Mitofagia , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/etiología , Proteína Desacopladora 2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...