Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.958
Filtrar
1.
Cell Stem Cell ; 31(5): 754-771.e6, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38701759

RESUMEN

Development of embryonic stem cells (ESCs) into neurons requires intricate regulation of transcription, splicing, and translation, but how these processes interconnect is not understood. We found that polypyrimidine tract binding protein 1 (PTBP1) controls splicing of DPF2, a subunit of BRG1/BRM-associated factor (BAF) chromatin remodeling complexes. Dpf2 exon 7 splicing is inhibited by PTBP1 to produce the DPF2-S isoform early in development. During neuronal differentiation, loss of PTBP1 allows exon 7 inclusion and DPF2-L expression. Different cellular phenotypes and gene expression programs were induced by these alternative DPF2 isoforms. We identified chromatin binding sites enriched for each DPF2 isoform, as well as sites bound by both. In ESC, DPF2-S preferential sites were bound by pluripotency factors. In neuronal progenitors, DPF2-S sites were bound by nuclear factor I (NFI), while DPF2-L sites were bound by CCCTC-binding factor (CTCF). DPF2-S sites exhibited enhancer modifications, while DPF2-L sites showed promoter modifications. Thus, alternative splicing redirects BAF complex targeting to impact chromatin organization during neuronal development.


Asunto(s)
Empalme Alternativo , Diferenciación Celular , Cromatina , Ribonucleoproteínas Nucleares Heterogéneas , Neuronas , Proteína de Unión al Tracto de Polipirimidina , Factores de Transcripción , Empalme Alternativo/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Ratones , Neuronas/metabolismo , Neuronas/citología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Transcripción Genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Exones/genética , Humanos , Autorrenovación de las Células/genética
2.
Commun Biol ; 7(1): 525, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702433

RESUMEN

Disabled 2 (Dab2), an adaptor protein, is up regulated in the hair follicle stem cells (HFSCs); however, its role in any tissue stem cells has not been studied. In the present study, we have reported that Dab2 conditional knockout (Dab2-cKO) mice exhibited a delay in the HF cycle due to perturbed activation of HFSCs. Further, Dab2-cKO mice showed a reduction in the number of HFSCs and reduced colony forming ability of HFSCs. Dab2-cKO mice showed extended quiescence of HFSCs concomitant with an increased expression of Nfatc1. Dab2-cKO mice showed a decreased expression of anti-aging genes such as Col17a1, decorin, Sirt2 and Sirt7. Dab2-cKO mice did not show full hair coat recovery in aged mice thereby suggesting an accelerated aging process. Overall, we unveil for the first time, the role of Dab2 that regulate activation and self-renewal of HFSCs.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Folículo Piloso , Ratones Noqueados , Células Madre , Animales , Folículo Piloso/metabolismo , Folículo Piloso/citología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Ratones , Células Madre/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Autorrenovación de las Células/genética , Ratones Endogámicos C57BL , Proliferación Celular
3.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653778

RESUMEN

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Asunto(s)
Diferenciación Celular , Regulación Neoplásica de la Expresión Génica , Neuroblastoma , Factores de Transcripción SOXC , Tretinoina , Neuroblastoma/metabolismo , Neuroblastoma/genética , Neuroblastoma/patología , Tretinoina/farmacología , Tretinoina/metabolismo , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Factores de Transcripción SOXC/metabolismo , Factores de Transcripción SOXC/genética , Humanos , Animales , Línea Celular Tumoral , Ratones , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Autorrenovación de las Células/efectos de los fármacos , Autorrenovación de las Células/genética , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Linaje de la Célula/genética , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Sistemas CRISPR-Cas , Proteína Proto-Oncogénica N-Myc/metabolismo , Proteína Proto-Oncogénica N-Myc/genética , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética
4.
Cell Rep ; 43(4): 114032, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38568805

RESUMEN

N(6)-methyladenosine (m6A) critically regulates RNA dynamics in various biological processes. The m6A demethylase ALKBH5 promotes tumorigenesis of glioblastoma, while the intricate web that orchestrates its regulation remains enigmatic. Here, we discover that cell density affects ALKBH5 subcellular localization and m6A dynamics. Mechanistically, ALKBH5 is phosphorylated by the large tumor suppressor kinase 2 (LATS2), preventing its nuclear export and enhancing protein stability. Furthermore, phosphorylated ALKBH5 reciprocally erases m6A from LATS2 mRNA, thereby stabilizing this transcript. Unexpectedly, LATS2 depletion suppresses glioblastoma stem cell self-renewal independent of yes-associated protein activation. Additionally, deficiency in either LATS2 or ALKBH5 phosphorylation impedes tumor progression in mouse xenograft models. Moreover, high levels of LATS2 expression and ALKBH5 phosphorylation are associated with tumor malignancy in patients with gliomas. Collectively, our study unveils an oncogenic positive feedback loop between LATS2 and ALKBH5, revealing a non-canonical branch of the Hippo pathway for RNA processing and suggesting potential anti-cancer interventions.


Asunto(s)
Adenosina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB , Proteínas Serina-Treonina Quinasas , Proteínas Supresoras de Tumor , Humanos , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Fosforilación , Ratones , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Adenosina/metabolismo , Retroalimentación Fisiológica , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinogénesis/genética , Línea Celular Tumoral , Ratones Desnudos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células HEK293 , ARN Mensajero/metabolismo , ARN Mensajero/genética , Autorrenovación de las Células
5.
Proc Natl Acad Sci U S A ; 121(18): e2317690121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648485

RESUMEN

The underlying mechanism(s) by which the PML::RARA fusion protein initiates acute promyelocytic leukemia is not yet clear. We defined the genomic binding sites of PML::RARA in primary mouse and human hematopoietic progenitor cells with V5-tagged PML::RARA, using anti-V5-PML::RARA chromatin immunoprecipitation sequencing and CUT&RUN approaches. Most genomic PML::RARA binding sites were found in regions that were already chromatin-accessible (defined by ATAC-seq) in unmanipulated, wild-type promyelocytes, suggesting that these regions are "open" prior to PML::RARA expression. We found that GATA binding motifs, and the direct binding of the chromatin "pioneering factor" GATA2, were significantly enriched near PML::RARA binding sites. Proximity labeling studies revealed that PML::RARA interacts with ~250 proteins in primary mouse hematopoietic cells; GATA2 and 33 others require PML::RARA binding to DNA for the interaction to occur, suggesting that binding to their cognate DNA target motifs may stabilize their interactions. In the absence of PML::RARA, Gata2 overexpression induces many of the same epigenetic and transcriptional changes as PML::RARA. These findings suggested that PML::RARA may indirectly initiate its transcriptional program by activating Gata2 expression: Indeed, we demonstrated that inactivation of Gata2 prior to PML::RARA expression prevented its ability to induce self-renewal. These data suggested that GATA2 binding creates accessible chromatin regions enriched for both GATA and Retinoic Acid Receptor Element motifs, where GATA2 and PML::RARA can potentially bind and interact with each other. In turn, PML::RARA binding to DNA promotes a feed-forward transcriptional program by positively regulating Gata2 expression. Gata2 may therefore be required for PML::RARA to establish its transcriptional program.


Asunto(s)
Factor de Transcripción GATA2 , Células Madre Hematopoyéticas , Proteínas de Fusión Oncogénica , Animales , Humanos , Ratones , Sitios de Unión , Autorrenovación de las Células , Cromatina/metabolismo , ADN/metabolismo , Factor de Transcripción GATA2/metabolismo , Factor de Transcripción GATA2/genética , Células Madre Hematopoyéticas/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patología , Proteínas de Fusión Oncogénica/metabolismo , Proteínas de Fusión Oncogénica/genética , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , Unión Proteica , Receptor alfa de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/genética
6.
Cell Stem Cell ; 31(3): 359-377.e10, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38458178

RESUMEN

Mitochondrial fatty acid oxidation (FAO) is essential for hematopoietic stem cell (HSC) self-renewal; however, the mechanism by which mitochondrial metabolism controls HSC fate remains unknown. Here, we show that within the hematopoietic lineage, HSCs have the largest mitochondrial NADPH pools, which are required for proper HSC cell fate and homeostasis. Bioinformatic analysis of the HSC transcriptome, biochemical assays, and genetic inactivation of FAO all indicate that FAO-generated NADPH fuels cholesterol synthesis in HSCs. Interference with FAO disturbs the segregation of mitochondrial NADPH toward corresponding daughter cells upon single HSC division. Importantly, we have found that the FAO-NADPH-cholesterol axis drives extracellular vesicle (EV) biogenesis and release in HSCs, while inhibition of EV signaling impairs HSC self-renewal. These data reveal the existence of a mitochondrial NADPH-cholesterol axis for EV biogenesis that is required for hematopoietic homeostasis and highlight the non-stochastic nature of HSC fate determination.


Asunto(s)
Vesículas Extracelulares , Células Madre Hematopoyéticas , NADP/metabolismo , Células Madre Hematopoyéticas/metabolismo , Diferenciación Celular/fisiología , Autorrenovación de las Células
7.
Nucleic Acids Res ; 52(7): 3667-3681, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38321961

RESUMEN

The Wnt/ß-Catenin pathway plays a key role in cell fate determination during development and in adult tissue regeneration by stem cells. These processes involve profound gene expression and epigenome remodeling and linking Wnt/ß-Catenin signaling to chromatin modifications has been a challenge over the past decades. Functional studies of the lysine demethylase LSD1/KDM1A converge to indicate that this epigenetic regulator is a key regulator of cell fate, although the extracellular cues controlling LSD1 action remain largely unknown. Here we show that ß-Catenin is a substrate of LSD1. Demethylation by LSD1 prevents ß-Catenin degradation thereby maintaining its nuclear levels. Consistently, in absence of LSD1, ß-Catenin transcriptional activity is reduced in both MuSCs and ESCs. Moreover, inactivation of LSD1 in mouse muscle stem cells and embryonic stem cells shows that LSD1 promotes mitotic spindle orientation via ß-Catenin protein stabilization. Altogether, by inscribing LSD1 and ß-Catenin in the same molecular cascade linking extracellular factors to gene expression, our results provide a mechanistic explanation to the similarity of action of canonical Wnt/ß-Catenin signaling and LSD1 on stem cell fate.


Asunto(s)
Autorrenovación de las Células , Histona Demetilasas , Vía de Señalización Wnt , beta Catenina , Animales , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Autorrenovación de las Células/genética , Núcleo Celular/metabolismo , Huso Acromático/metabolismo , Diferenciación Celular/genética , Humanos , Células Madre/metabolismo , Células Madre/citología
8.
J Hematol Oncol ; 17(1): 7, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302992

RESUMEN

BACKGROUND: While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS: Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS: METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS: Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Neoplásicas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Células Madre Neoplásicas/patología , Biosíntesis de Proteínas , Ribosomas/metabolismo , ARN
9.
Stem Cells Dev ; 33(7-8): 153-167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366751

RESUMEN

Mouse postnatal neural stem cells (pNSCs) can be expanded in vitro in the presence of epidermal growth factor and fibroblast growth factor 2 and upon removal of these factors cease proliferation and generate neurons, astrocytes, and oligodendrocytes. The genetic requirements for self-renewal and lineage-commitment of pNSCs are incompletely understood. In this study, we show that the transcription factors NFIA and NFIB, previously shown individually, to be essential for the normal commitment of pNSCs to the astrocytic lineage in vivo, are jointly required for normal self-renewal of pNSCs in vitro and in vivo. Using conditional knockout alleles of Nfia and Nfib, we show that the simultaneous loss of these two genes under self-renewal conditions in vitro reduces the expression of the proliferation markers PCNA and Ki67, eliminates clonogenicity of the cells, reduces the number of cells in S phase, and induces aberrant differentiation primarily into the neuroblast lineage. This phenotype requires the loss of both genes and is not seen upon loss of Nfia or Nfib alone, nor with combined loss of Nfia and Nfix or Nfib and Nfix. These data demonstrate a unique combined requirement for both Nfia and Nfib for pNSC self-renewal.


Asunto(s)
Factores de Transcripción NFI , Células-Madre Neurales , Animales , Ratones , Diferenciación Celular/fisiología , Autorrenovación de las Células , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo
10.
J Theor Biol ; 581: 111746, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38280545

RESUMEN

We construct a multi-stage cell lineage model for cell division, apoptosis and movement. Cells are assumed to secrete and respond to negative feedback molecules which act as a control on the stem cell divisions (including self-renewal, asymmetrical cell division (ACD) and differentiation). The densities of cells and molecules are described by coupled reaction-diffusion partial differential equations, and the plane wavefront propagation speeds can be obtained analytically and verified numerically. It is found that with ACD the population and propagation of stem cells can be promoted but the negative regulation on self-renewal and differentiation will work slowly. Regulatory inhibition on differentiation will inversely increase stem cells but not affect the population and wave propagation of the cell lineage. While negative regulation on self-renewal and ACD will decrease the population of stem cells and slow down the propagation, and even drive stem cells to extinction. Moreover we find that inhibition on self-renewal has a strength advantage while inhibition on ACD has a range advantage to kill stem cells. Possible relations to model cancer development and therapy are also discussed.


Asunto(s)
División Celular Asimétrica , Células Madre , Diferenciación Celular , Linaje de la Célula , Autorrenovación de las Células
12.
Elife ; 122024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38265286

RESUMEN

Intra-tissue genetic heterogeneity is universal to both healthy and cancerous tissues. It emerges from the stochastic accumulation of somatic mutations throughout development and homeostasis. By combining population genetics theory and genomic information, genetic heterogeneity can be exploited to infer tissue organization and dynamics in vivo. However, many basic quantities, for example the dynamics of tissue-specific stem cells remain difficult to quantify precisely. Here, we show that single-cell and bulk sequencing data inform on different aspects of the underlying stochastic processes. Bulk-derived variant allele frequency spectra (VAF) show transitions from growing to constant stem cell populations with age in samples of healthy esophagus epithelium. Single-cell mutational burden distributions allow a sample size independent measure of mutation and proliferation rates. Mutation rates in adult hematopietic stem cells are higher compared to inferences during development, suggesting additional proliferation-independent effects. Furthermore, single-cell derived VAF spectra contain information on the number of tissue-specific stem cells. In hematopiesis, we find approximately 2 × 105 HSCs, if all stem cells divide symmetrically. However, the single-cell mutational burden distribution is over-dispersed compared to a model of Poisson distributed random mutations. A time-associated model of mutation accumulation with a constant rate alone cannot generate such a pattern. At least one additional source of stochasticity would be needed. Possible candidates for these processes may be occasional bursts of stem cell divisions, potentially in response to injury, or non-constant mutation rates either through environmental exposures or cell-intrinsic variation.


Asunto(s)
Células Madre Adultas , Adulto , Humanos , Autorrenovación de las Células , Exposición a Riesgos Ambientales , Heterogeneidad Genética , Genómica
13.
Blood ; 143(19): 1965-1979, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38271660

RESUMEN

ABSTRACT: Acute myeloid leukemia (AML) is an aggressive hematological malignancy originating from transformed hematopoietic stem or progenitor cells. AML prognosis remains poor owing to resistance and relapse driven by leukemia stem cells (LSCs). Targeting molecules essential for LSC function is a promising therapeutic approach. The phosphatidylinositol 3-kinase (PI3K)/AKT pathway is often dysregulated in AML. We found that although PI3Kγ is highly enriched in LSCs and critical for self-renewal, it was dispensable for normal hematopoietic stem cells. Mechanistically, PI3Kγ-AKT signaling promotes nuclear factor erythroid 2-related factor 2 (NRF2) nuclear accumulation, which induces 6-phosphogluconate dehydrogenase (PGD) and the pentose phosphate pathway, thereby maintaining LSC stemness. Importantly, genetic or pharmacological inhibition of PI3Kγ impaired expansion and stemness of murine and human AML cells in vitro and in vivo. Together, our findings reveal a key role for PI3Kγ in selectively maintaining LSC function by regulating AKT-NRF2-PGD metabolic pathway. Targeting the PI3Kγ pathway may, therefore, eliminate LSCs without damaging normal hematopoiesis, providing a promising therapeutic strategy for AML.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Leucemia Mieloide Aguda , Células Madre Neoplásicas , Vía de Pentosa Fosfato , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Humanos , Ratones , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Autorrenovación de las Células , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Transducción de Señal , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética
14.
Haematologica ; 109(2): 411-421, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37584287

RESUMEN

Leukemia stem cells (LSC) represent a crucial and rare subset of cells present in acute myeloid leukemia (AML); they play a pivotal role in the initiation, maintenance, and relapse of this disease. Targeting LSC holds great promise for preventing AML relapse and improving long-term outcomes. However the precise molecular mechanisms governing LSC self-renewal are still poorly understood. Here, we present compelling evidence that the expression of miR-30e-5p, a potential tumor-suppressive microRNA, is significantly lower in AML samples than in healthy bone marrow samples. Forced expression of miR- 30e effectively inhibits leukemogenesis, impairs LSC self-renewal, and delays leukemia progression. Mechanistically, Cyb561 acts as a direct target of miR-30e-5p in LSC, and its deficiency restricts the self-renewal of LSC by activating reactive oxygen series signaling and markedly prolongs recipients' survival. Moreover, genetic or pharmacological overexpression of miR-30e-5p or knockdown of Cyb561 suppresses the growth of human AML cells. In conclusion, our findings establish the crucial role of the miR-30e-5p/Cyb561/ROS axis in finely regulating LSC self-renewal, highlighting Cyb561 as a potential therapeutic target for LSC-directed therapies.


Asunto(s)
Leucemia Mieloide Aguda , MicroARNs , Humanos , Especies Reactivas de Oxígeno , Autorrenovación de las Células/genética , MicroARNs/genética , Transducción de Señal , Recurrencia , Proliferación Celular/genética , Línea Celular Tumoral
15.
Stem Cell Rev Rep ; 20(1): 25-51, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37922108

RESUMEN

CD133 protein has been one of the most used surface markers to select and identify cancer cells with stem-like features. However, its expression is not restricted to tumoral cells; it is also expressed in differentiated cells and stem/progenitor cells in various normal tissues. CD133 participates in several cellular processes, in part orchestrating signal transduction of essential pathways that frequently are dysregulated in cancer, such as PI3K/Akt signaling and the Wnt/ß-catenin pathway. CD133 expression correlates with enhanced cell self-renewal, migration, invasion, and survival under stress conditions in cancer. Aside from the intrinsic cell mechanisms that regulate CD133 expression in each cellular type, extrinsic factors from the surrounding niche can also impact CD33 levels. The enhanced CD133 expression in cells can confer adaptive advantages by amplifying the activation of a specific signaling pathway in a context-dependent manner. In this review, we do not only describe the CD133 physiological functions known so far, but importantly, we analyze how the microenvironment changes impact the regulation of CD133 functions emphasizing its value as a marker of cell adaptability beyond a cancer-stem cell marker.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Transducción de Señal , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/genética , Células Madre Neoplásicas/metabolismo , Autorrenovación de las Células
16.
Sci Rep ; 13(1): 20314, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985890

RESUMEN

The skeleton forms from multipotent human mesenchymal stem cells (hMSCs) competent to commit to specific lineages. Long noncoding RNAs (lncRNAs) have been identified as key epigenetic regulators of tissue development. However, regulation of osteogenesis by lncRNAs as mediators of commitment to the bone phenotype is largely unexplored. We focused on LINC01638, which is highly expressed in hMSCs and has been studied in cancers, but not in regulating osteogenesis. We demonstrated that LINC01638 promotes initiation of the osteoblast phenotype. Our findings reveal that LINC01638 is present at low levels during the induction of osteoblast differentiation. CRISPRi knockdown of LINC01638 in MSCs prevents osteogenesis and alkaline phosphatase expression, inhibiting osteoblast differentiation. This resulted in decreased MSC growth rate, accompanied by double-strand breaks, DNA damage, and cell senescence. Transcriptome profiling of control and LINC01638-depleted hMSCs identified > 2000 differentially expressed mRNAs related to cell cycle, cell division, spindle formation, DNA repair, and osteogenesis. Using ChIRP-qPCR, molecular mechanisms of chromatin interactions revealed the LINC01638 locus (Chr 22) includes many lncRNAs and bone-related genes. These novel findings identify the obligatory role for LINC01638 to sustain MSC pluripotency regulating osteoblast commitment and growth, as well as for physiological remodeling of bone tissue.


Asunto(s)
Células Madre Mesenquimatosas , ARN Largo no Codificante , Humanos , Osteogénesis/genética , Autorrenovación de las Células , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Diferenciación Celular/genética
17.
Cancer Biol Ther ; 24(1): 2271638, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37927213

RESUMEN

The poly(rC) binding protein 1 gene (PCBP1) encodes the heterogeneous nuclear ribonucleoprotein E1 (hnRNPE1), a nucleic acid-binding protein that plays a tumor-suppressive role in the mammary epithelium by regulating phenotypic plasticity and cell fate. Following the loss of PCBP1 function, the FAM3C gene (encoding the Interleukin-like EMT inducer, or "ILEI" protein) and the leukemia inhibitory factor receptor (LIFR) gene are upregulated. Interaction between FAM3C and LIFR in the extracellular space induces phosphorylation of signal transducer and activator of transcription 3 (pSTAT3). Overexpression and/or hyperactivity of STAT3 has been detected in 40% of breast cancer cases and is associated with a poor prognosis. Herein, we characterize feed-forward regulation of LIFR expression in response to FAM3C/LIFR/STAT3 signaling in mammary epithelial cells. We show that PCBP1 upregulates LIFR transcription through activity at the LIFR promoter, and that FAM3C participates in transcriptional regulation of LIFR. Additionally, our bioinformatic analysis reveals a signature of transcriptional regulation associated with FAM3C/LIFR interaction and identifies the TWIST1 transcription factor as a downstream effector that participates in the maintenance of LIFR expression. Finally, we characterize the effect of LIFR expression in cell-based experiments that demonstrate the promotion of invasion, migration, and self-renewal of breast cancer stem cells (BCSCs), consistent with previous studies linking LIFR expression to tumor initiation and metastasis in mammary epithelial cells.


Asunto(s)
Neoplasias de la Mama , Proteínas de Unión al ADN , Proteínas de Unión al ARN , Femenino , Humanos , Neoplasias de la Mama/patología , Línea Celular Tumoral , Autorrenovación de las Células/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/genética , Subunidad alfa del Receptor del Factor Inhibidor de Leucemia/metabolismo , Proteínas de Neoplasias/genética , Receptores OSM-LIF/genética , Receptores OSM-LIF/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Invasividad Neoplásica
18.
Cell Tissue Res ; 394(3): 441-453, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851112

RESUMEN

Liver cancer stem cell (CSC) self-renewal and tumorigenesis are important causes of hepatocellular carcinoma (HCC) recurrence. We purposed to investigate the function of long noncoding RNA small nucleolar RNA host gene 9 (SNHG9) in liver CSC self-renewal and tumorigenesis in this study. Flow cytometry was carried out to separate CD133+ Populations and CD133- Populations from HCC cell lines. A combination of CD133+ cells and Matrigel matrix was subcutaneously injected to create the NOD-SCID mouse xenograft tumor model. Colony formation test and spheroids formation assay were carried out to clarify the impact of SNHG9 on the self-renewal of liver CSCs. RNA immunoprecipitation, RNA-pull down, and chromatin immunoprecipitation were performed on CD133+ cells to elucidate the mechanism of SNHG9 regulating PTEN expression. We found that SNHG9 was highly expressed in HCC clinical samples, HCC cells, and CD133+ cells. In vitro, interference with SNHG9 prevented the formation of colonies and spheroids in liver CSC cells and primary HCC cells. In vivo, interference with SNHG9 reduced the tumor volume and weight. SNHG9 could bind to EZH2, and SNHG9 interference suppressed EZH2 recruitment and H3K27me3 levels in the PTEN promoter region. In addition, SNHG9 inhibition promoted PTEN expression while having little impact on EZH2 levels. Interference with SNHG9 inhibited liver CSC self-renewal and tumorigenesis by up-regulating PTEN levels. In conclusion, by binding to EZH2, SNHG9 down-regulated PTEN levels, promoting liver CSC self-renewal and tumor formation, and exacerbating HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Ratones , Animales , Humanos , Neoplasias Hepáticas/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Autorrenovación de las Células , Transducción de Señal , Línea Celular Tumoral , Ratones Endogámicos NOD , Ratones SCID , Carcinogénesis/patología , Células Madre Neoplásicas/patología , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo
19.
PLoS Genet ; 19(9): e1010965, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37747936

RESUMEN

Drosophila ovarian Follicle Stem Cells (FSCs) present a favorable paradigm for understanding how stem cell division and differentiation are balanced in communities where those activities are independent. FSCs also allow exploration of how this balance is integrated with spatial stem cell heterogeneity. Posterior FSCs become proliferative Follicle Cells (FCs), while anterior FSCs become quiescent Escort Cells (ECs) at about one fourth the frequency. A single stem cell can nevertheless produce both FCs and ECs because it can move between anterior and posterior locations. Studies based on EdU incorporation to approximate division rates suggested that posterior FSCs divide faster than anterior FSCs. However, direct measures of cell cycle times are required to ascertain whether FC output requires a net flow of FSCs from anterior to posterior. Here, by using live imaging and FUCCI cell-cycle reporters, we measured absolute division rates. We found that posterior FSCs cycle more than three times faster than anterior FSCs and produced sufficient new cells to match FC production. H2B-RFP dilution studies supported different cycling rates according to A/P location and facilitated live imaging, showing A/P exchange of FSCs in both directions, consistent with the dynamic equilibrium inferred from division rate measurements. Inversely graded Wnt and JAK-STAT pathway signals regulate FSC differentiation to ECs and FCs. JAK-STAT promotes both differentiation to FCs and FSC cycling, affording some coordination of these activities. When JAK-STAT signaling was manipulated to be spatially uniform, the ratio of posterior to anterior division rates was reduced but remained substantial, showing that graded JAK-STAT signaling only partly explains the graded cycling of FSCs. By using FUCCI markers, we found a prominent G2/M cycling restriction of posterior FSCs together with an A/P graded G1/S restriction, that JAK-STAT signaling promotes both G1/S and G2/M transitions, and that PI3 kinase signaling principally stimulates the G2/M transition.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Femenino , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Transducción de Señal , Quinasas Janus/genética , Quinasas Janus/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Folículo Ovárico/metabolismo , Autorrenovación de las Células , División Celular/genética
20.
Nature ; 621(7979): 602-609, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37704733

RESUMEN

Vertebral bone is subject to a distinct set of disease processes from long bones, including a much higher rate of solid tumour metastases1-4. The basis for this distinct biology of vertebral bone has so far remained unknown. Here we identify a vertebral skeletal stem cell (vSSC) that co-expresses ZIC1 and PAX1 together with additional cell surface markers. vSSCs display formal evidence of stemness, including self-renewal, label retention and sitting at the apex of their differentiation hierarchy. vSSCs are physiologic mediators of vertebral bone formation, as genetic blockade of the ability of vSSCs to generate osteoblasts results in defects in the vertebral neural arch and body. Human counterparts of vSSCs can be identified in vertebral endplate specimens and display a conserved differentiation hierarchy and stemness features. Multiple lines of evidence indicate that vSSCs contribute to the high rates of vertebral metastatic tropism observed in breast cancer, owing in part to increased secretion of the novel metastatic trophic factor MFGE8. Together, our results indicate that vSSCs are distinct from other skeletal stem cells and mediate the unique physiology and pathology of vertebrae, including contributing to the high rate of vertebral metastasis.


Asunto(s)
Neoplasias de la Mama , Linaje de la Célula , Metástasis de la Neoplasia , Columna Vertebral , Células Madre , Humanos , Neoplasias de la Mama/patología , Diferenciación Celular , Autorrenovación de las Células , Metástasis de la Neoplasia/patología , Osteoblastos/citología , Osteoblastos/patología , Columna Vertebral/citología , Columna Vertebral/patología , Células Madre/citología , Células Madre/metabolismo , Células Madre/patología , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...