Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.390
Filtrar
1.
PLoS One ; 19(5): e0303207, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728355

RESUMEN

This paper introduces a novel and improved double-resistor damped double-tuned passive power filter (DR-DDTF), designed using multi-objective optimization algorithms to mitigate harmonics and increase the hosting capacity of distribution systems with distributed energy resources. Although four different topologies of single-resistor damped double-tuned filters (DDTFs) have been studied before in the literature, the effectiveness of two different DR-DDTF configurations has not been examined. This work redresses this gap by demonstrating that via comprehensive simulations on two power systems, DR-DDTF provides better harmonic suppression and resonance mitigation than single-resistor alternatives. When it comes to optimizing the DR-DDTF for maximum hosting capacity and minimum system active power losses, the multi-objective artificial hummingbird outperformed six other algorithms in the benchmark. To allow for higher penetration of distributed generation without requiring grid upgrades, this newly developed harmonic mitigation filter provides a good alternative.


Asunto(s)
Algoritmos , Animales , Aves/fisiología , Suministros de Energía Eléctrica , Simulación por Computador , Modelos Teóricos
2.
Sci Rep ; 14(1): 10379, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710783

RESUMEN

Citizen science (CS) is the most effective tool for overcoming the limitations of government and/or professional data collection. To compensate for quantitative limitations of the 'Winter Waterbird Census of Korea', we conducted a total of four bird monitoring via CS from 2021 to 2022. To use CS data alongside national data, we studied CS data quality and improvement utilizing (1) digit-based analysis using Benford's law and (2) comparative analysis with national data. In addition, we performed bird community analysis using CS-specific data, demonstrating the necessity of CS. Neither CS nor the national data adhered to Benford's law. Alpha diversity (number of species and Shannon index) was lower, and total beta diversity was higher for the CS data than national data. Regarding the observed bird community, the number of species per family was similar; however, the number of individuals per family/species differed. We also identified the necessity of CS by confirming the possibility of predicting bird communities using CS-specific data. CS was influenced by various factors, including the perceptions of the survey participants and their level of experience. Therefore, conducting CS after systematic training can facilitate the collection of higher-quality data.


Asunto(s)
Aves , Censos , Ciencia Ciudadana , Animales , Aves/fisiología , República de Corea , Biodiversidad
3.
Sci Prog ; 107(2): 368504241245222, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745552

RESUMEN

A significant body of evidence indicates that climate change is influencing many aspects of avian ecology. Yet, how climate change is affecting, and is expected to influence some aspects of the breeding ecology of cavity-nesting birds remains uncertain. To explore the potential linkage between timing of first clutch, and the influence of ambient temperature on hatching success, we used Eastern Bluebird (Sialia sialis) nest records over a nine-year period from Alabama, USA. We investigated changes to annual clutch initiation dates, as well as variability in hatching success associated with ambient air temperatures during the incubation period. Using a simple linear model, we observed earlier annual egg laying dates over the nine years of this study with a difference of 24 days between earliest egg-laying date of the season. Daily temperature minima increased 2 °C across the nine-year time frame of this study. These data also indicate that Eastern Bluebird hatching success was the highest when mean ambient air temperature during incubation was between 19 °C and 24 °C (78%, as opposed to 69% and 68% above and below this temperature range, respectively). Our findings of increasing maxima, earlier maxima each year, and the lower minima of temperatures within our study area could expand the breadth of temperatures experienced by nesting Eastern Bluebirds possibly exposing them to temperatures outside of what promotes nesting success. These findings with a cavity-nesting bird highlight an optimal range of ambient temperatures associated with highest hatching success, conditions likely to be affected by climate change.


Asunto(s)
Cambio Climático , Comportamiento de Nidificación , Temperatura , Animales , Comportamiento de Nidificación/fisiología , Reproducción/fisiología , Pájaros Cantores/fisiología , Alabama , Estaciones del Año , Aves/fisiología
4.
Sci Rep ; 14(1): 10435, 2024 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714737

RESUMEN

During takeoff and landing, birds bounce and grab with their legs and feet. In this paper,the lower limb structure of the bionic bird is designed with reference to the function of jumping and grasping, and the PID algorithm based on the development module of stm32 development board is used to speed control the lower limb driving element, so that the motor and the bishaft steering gear move with the rate change of sine wave. According to the speed of grasping response time and the size of grasping force, the structure of the bionic bird paw is designed. Based on the photosensitive sensor fixed in the geometric center of the foot, the grasping action of the lower limb mechanism is intelligently controlled. Finally, the kinematic verification of the lower limb structure is carried out by ADAMS. Experiments show that the foot structure with four toes and three toes is more conducive to maintaining the stability of the body while realizing the fast grasping function. In addition, it can effectively improve the push-lift ratio of the bionic ornithopter by adjusting the sinusoidal waveform rate of the motor speed.


Asunto(s)
Biónica , Aves , Animales , Aves/fisiología , Fenómenos Biomecánicos , Algoritmos , Diseño de Equipo , Vuelo Animal/fisiología
6.
Ecol Lett ; 27(5): e14430, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38714364

RESUMEN

Wintering birds serve as vital climate sentinels, yet they are often overlooked in studies of avian diversity change. Here, we provide a continental-scale characterization of change in multifaceted wintering avifauna and examine the effects of climate change on these dynamics. We reveal a strong functional reorganization of wintering bird communities marked by a north-south gradient in functional diversity change, along with a superimposed mild east-west gradient in trait composition change. Assemblages in the northern United States saw contractions of the functional space and increases in functional evenness and originality, while the southern United States saw smaller contractions of the functional space and stasis in evenness and originality. Shifts in functional diversity were underlined by significant reshuffling in trait composition, particularly pronounced in the western and northern United States. Finally, we find strong contributions of climate change to this functional reorganization, underscoring the importance of wintering birds in tracking climate change impacts on biodiversity.


Asunto(s)
Biodiversidad , Aves , Cambio Climático , Estaciones del Año , Animales , Aves/fisiología , Estados Unidos
7.
J R Soc Interface ; 21(214): 20230737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38689546

RESUMEN

Patterns of collective escape of a bird flock from a predator are fascinating, but difficult to study under natural conditions because neither prey nor predator is under experimental control. We resolved this problem by using an artificial predator (RobotFalcon) resembling a peregrine falcon in morphology and behaviour. We imitated hunts by chasing flocks of corvids, gulls, starlings and lapwings with the RobotFalcon, and compared their patterns of collective escape to those when chased by a conventional drone and, in case of starlings, hunted by wild peregrine falcons. Active pursuit of flocks, rather than only flying nearby by either the RobotFalcon or the drone, made flocks collectively escape more often. The RobotFalcon elicited patterns of collective escape in flocks of all species more often than the drone. Attack altitude did not affect the frequency of collective escape. Starlings escaped collectively equally often when chased by the RobotFalcon or a wild peregrine falcon. Flocks of all species reacted most often by collective turns, second most often by compacting and third by splitting into subflocks. This study demonstrates the potential of an artificial aerial predator for studying the collective escape behaviour of free-living birds, opening exciting avenues in the empirical study of prey-predator interactions.


Asunto(s)
Reacción de Fuga , Falconiformes , Robótica , Animales , Reacción de Fuga/fisiología , Falconiformes/fisiología , Conducta Predatoria/fisiología , Aves/fisiología , Especificidad de la Especie
8.
Ecol Lett ; 27(5): e14427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698677

RESUMEN

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Asunto(s)
Artrópodos , Biodiversidad , Aves , Clima , Conducta Predatoria , Árboles , Animales , Artrópodos/fisiología , Aves/fisiología , Cadena Alimentaria , Larva/fisiología
9.
Proc Natl Acad Sci U S A ; 121(21): e2313599121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739790

RESUMEN

The ecoevolutionary drivers of species niche expansion or contraction are critical for biodiversity but challenging to infer. Niche expansion may be promoted by local adaptation or constrained by physiological performance trade-offs. For birds, evolutionary shifts in migratory behavior permit the broadening of the climatic niche by expansion into varied, seasonal environments. Broader niches can be short-lived if diversifying selection and geography promote speciation and niche subdivision across climatic gradients. To illuminate niche breadth dynamics, we can ask how "outlier" species defy constraints. Of the 363 hummingbird species, the giant hummingbird (Patagona gigas) has the broadest climatic niche by a large margin. To test the roles of migratory behavior, performance trade-offs, and genetic structure in maintaining its exceptional niche breadth, we studied its movements, respiratory traits, and population genomics. Satellite and light-level geolocator tracks revealed an >8,300-km loop migration over the Central Andean Plateau. This migration included a 3-wk, ~4,100-m ascent punctuated by upward bursts and pauses, resembling the acclimatization routines of human mountain climbers, and accompanied by surging blood-hemoglobin concentrations. Extreme migration was accompanied by deep genomic divergence from high-elevation resident populations, with decisive postzygotic barriers to gene flow. The two forms occur side-by-side but differ almost imperceptibly in size, plumage, and respiratory traits. The high-elevation resident taxon is the world's largest hummingbird, a previously undiscovered species that we describe and name here. The giant hummingbirds demonstrate evolutionary limits on niche breadth: when the ancestral niche expanded due to evolution (or loss) of an extreme migratory behavior, speciation followed.


Asunto(s)
Migración Animal , Aves , Especiación Genética , Animales , Migración Animal/fisiología , Aves/genética , Aves/fisiología , Aves/clasificación , Ecosistema , Altitud , Evolución Biológica
10.
Proc Natl Acad Sci U S A ; 121(19): e2311146121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38648469

RESUMEN

The pace and scale of environmental change represent major challenges to many organisms. Animals that move long distances, such as migratory birds, are especially vulnerable to change since they need chains of intact habitat along their migratory routes. Estimating the resilience of such species to environmental changes assists in targeting conservation efforts. We developed a migration modeling framework to predict past (1960s), present (2010s), and future (2060s) optimal migration strategies across five shorebird species (Scolopacidae) within the East Asian-Australasian Flyway, which has seen major habitat deterioration and loss over the last century, and compared these predictions to empirical tracks from the present. Our model captured the migration strategies of the five species and identified the changes in migrations needed to respond to habitat deterioration and climate change. Notably, the larger species, with single or few major stopover sites, need to establish new migration routes and strategies, while smaller species can buffer habitat loss by redistributing their stopover areas to novel or less-used sites. Comparing model predictions with empirical tracks also indicates that larger species with the stronger need for adaptations continue to migrate closer to the optimal routes of the past, before habitat deterioration accelerated. Our study not only quantifies the vulnerability of species in the face of global change but also explicitly reveals the extent of adaptations required to sustain their migrations. This modeling framework provides a tool for conservation planning that can accommodate the future needs of migratory species.


Asunto(s)
Migración Animal , Aves , Cambio Climático , Ecosistema , Animales , Migración Animal/fisiología , Aves/fisiología , Conservación de los Recursos Naturales , Modelos Biológicos
11.
Nat Commun ; 15(1): 3095, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653976

RESUMEN

Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.


Asunto(s)
Vocalización Animal , Animales , Vocalización Animal/fisiología , Masculino , Genómica , Genoma/genética , Femenino , Pájaros Cantores/genética , Pájaros Cantores/fisiología , Aves/genética , Aves/fisiología
12.
ScientificWorldJournal ; 2024: 5592074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665230

RESUMEN

Exploring avian species diversity and distribution patterns is vigorous for conservation efforts in biodiversity-rich countries such as Ethiopia. Compared to other species, birds are relatively well-known and easily observed, making them great markers of productivity or biodiversity. Although bird species are found all across the world, their survival and range have been negatively impacted by habitat loss, fragmentation, and destruction. Thus, the goal of this study is to provide baseline data on avifaunal diversity in the Northeast of Addis Ababa, including species richness, distribution, and relative abundance in various habitats conducted from January 2023 to September 2023 using a stratified sampling design into three habitat types: settlement, farmland, and abattoir. A fixed-width line transect sampling method was used at the farmland and settlement, and a point transect was employed at the abattoir site to collect the bird data. The data were compared using Mann-Whitney and Kruskal-Wallis statistical tests in both seasons and habitat types. A total of 42 bird species belonging to twenty-three families, and nine orders were recorded during the study period. Of these, blue-winged goose and wattled ibis are endemic to Ethiopia. Hooded vultures and White-backed vultures are critically endangered species. The mean abundance of bird species significantly varied in the three habitat types (χ2 = 13.6, df = 2, p=0.001). The abundance of bird species was nonsignificant difference between wet and dry seasons (U = -0.874, p=0.381). The highest diversity (H' = 2.74) was recorded at settlement, and the lowest diversity index (H' = 1.09) was recorded at the abattoir in the dry season. In the wet season, the highest diversity (H' = 2.66) was recorded in the farmland, and the lowest (H' = 1.08) was recorded at the abattoir. The highest evenness (J = 0.94 and J = 0.93) was recorded on the farmland in the wet and dry seasons, respectively. In the study area, urbanization is extremely impacting the environment and altering ecosystem services upon which human civilization depends. Most of the avian species observed in the study area are capable and tolerant of human-induced habitats in the city. Therefore, city planners must consider conserving urban bird species' habitats and feeding sites.


Asunto(s)
Biodiversidad , Aves , Etiopía , Animales , Aves/clasificación , Aves/fisiología , Ecosistema , Conservación de los Recursos Naturales , Estaciones del Año
13.
Curr Biol ; 34(9): 2030-2037.e3, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38636512

RESUMEN

Migration can be an energetically costly behavior with strong fitness consequences in terms of mortality and reproduction.1,2,3,4,5,6,7,8,9,10,11 Migrants should select migratory routes to minimize their costs, but both costs and benefits may change with experience.12,13,14 This raises the question of whether experience changes how individuals select their migratory routes. Here, we investigate the effect of age on route selection criteria in a collectively migrating soaring bird, the white stork (Ciconia ciconia). We perform step-selection analysis on a longitudinal dataset tracking 158 white storks over up to 9 years to quantify how they select their routes based on the social and atmospheric environments and to examine how this selection changes with age. We find clear ontogenetic shifts in route selection criteria. Juveniles choose routes that have good atmospheric conditions and high conspecific densities. Yet, as they gain experience, storks' selection on the availability of social information reduces-after their fifth migration, experienced birds also choose routes with low conspecific densities. Thus, our results suggest that as individuals age, they gradually replace information gleaned from other individuals with information gained from experience, allowing them to shift their migration timing and increasing the timescale at which they select their routes.


Asunto(s)
Migración Animal , Aves , Animales , Aves/fisiología , Conducta Social , Factores de Edad
14.
Sci Total Environ ; 930: 172814, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38679096

RESUMEN

Ocean contamination, particularly from persistent organic pollutants (POPs), remains a significant threat to marine predators that occupy high trophic positions. Long-lived procellariform seabirds are apex predators in marine ecosystems and tend to accumulate contaminants. Prolonged exposure to pollutants negatively affects their fitness including reproductive success. Low breeding success may represent a hurdle for the restoration of small and endangered seabird populations, including several highly threatened gadfly petrels. Here we investigated the annual variation (2019 and 2022) in organochlorine pesticide (OCP), polychlorinated biphenyl ether (PCB), polybrominated diphenyl ether (PBDE), and polycyclic aromatic hydrocarbon (PAH) exposure in the endangered Bermuda petrel (Pterodroma cahow), and the relationship between female contaminant burden and breeding parameters. We found that petrels were exposed to a wide range of pollutants (33 out of 55 showed measurable levels) with PCBs dominating the blood contaminant profiles in both years. Only 9 compounds were detected in >50 % of the birds. Specifically, among OCPs, p, p'-DDE and hexaclorobenzene were the most frequently detected while fluorene and acenaphthene were the most common PAH. The concentrations of ∑5PCBs and ∑7POPs were higher in older birds. Furthermore, females with greater contaminant burdens laid eggs with a lower probability of hatching. However, female investment in egg production (size and volume) was unrelated to their blood contaminant load. Overall, this study highlights the presence of a wide range of contaminants in the petrel's food web, and it sheds light on the potential impact of chronic exposure to sub-lethal levels of PCBs on the breeding success of seabirds. We claim that toxicological testing should be a practice integrated in the management of seabirds, particularly of endangered species to monitor how past and present anthropogenic activities impact their conservation status.


Asunto(s)
Aves , Especies en Peligro de Extinción , Monitoreo del Ambiente , Éteres Difenilos Halogenados , Contaminantes Orgánicos Persistentes , Reproducción , Animales , Reproducción/efectos de los fármacos , Aves/fisiología , Éteres Difenilos Halogenados/sangre , Femenino , Bifenilos Policlorados/sangre , Hidrocarburos Policíclicos Aromáticos/análisis , Hidrocarburos Clorados/sangre , Contaminantes Químicos del Agua , Plaguicidas/sangre
15.
Proc Natl Acad Sci U S A ; 121(15): e2307525121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557189

RESUMEN

Changes in climate can alter environmental conditions faster than most species can adapt. A prediction under a warming climate is that species will shift their distributions poleward through time. While many studies focus on range shifts, latitudinal shifts in species' optima can occur without detectable changes in their range. We quantified shifts in latitudinal optima for 209 North American bird species over the last 55 y. The latitudinal optimum (m) for each species in each year was estimated using a bespoke flexible non-linear zero-inflated model of abundance vs. latitude, and the annual shift in m through time was quantified. One-third (70) of the bird species showed a significant shift in their optimum. Overall, mean peak abundances of North American birds have shifted northward, on average, at a rate of 1.5 km per year (±0.58 SE), corresponding to a total distance moved of 82.5 km (±31.9 SE) over the last 55 y. Stronger poleward shifts at the continental scale were linked to key species' traits, including thermal optimum, habitat specialization, and territoriality. Shifts in the western region were larger and less variable than in the eastern region, and they were linked to species' thermal optimum, habitat density preference, and habitat specialization. Individual species' latitudinal shifts were most strongly linked to their estimated thermal optimum, clearly indicating a climate-driven response. Displacement of species from their historically optimal realized niches can have dramatic ecological consequences. Effective conservation must consider within-range abundance shifts. Areas currently deemed "optimal" are unlikely to remain so.


Asunto(s)
Cambio Climático , Clima , Animales , Aves/fisiología , Ecosistema , América del Norte
16.
Commun Biol ; 7(1): 406, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570618

RESUMEN

Adaptations are driven by specific natural selection pressures throughout biological evolution. However, these cannot inherently align with future shifts in selection dynamics, thus manifesting in opposing directions. We performed field experiments on cuckoo hosts to investigate the coexistence and conflict between two evolutionarily successive but opposing behavioral adaptations-egg retrieval and rejection. Our findings provide key insights. (1) Egg rejection against brood parasites in hosts reshapes egg retrieval to flexible reactions-retrieval, ignoring, or outright rejection of foreign eggs outside the nest cup, departing from instinctual retrieval. (2) Parasitism pressure and egg mimicry by parasites remarkably alter the proportions of the three host reactions. Host species with higher parasitism pressure exhibit frequent and rapid rejection of non-mimetic foreign eggs and reduced ignoring or retrieval responses. Conversely, heightened egg mimicry enhances retrieval behaviors while diminishing ignoring responses. (3) Cuckoos employ consistent mechanisms for rejecting foreign eggs inside or outside the nest cup. Direct rejection of eggs outside the nest cup shows that rejection precedes retrieval, indicating prioritization of specific adaptation over instinct. (4) Cuckoo hosts navigate the conflict between the intentions and motivations associated with egg rejection and retrieval by ignoring foreign eggs, a specific outcome of the rejection-retrieval tradeoff.


Asunto(s)
Aves , Comportamiento de Nidificación , Animales , Comportamiento de Nidificación/fisiología , Aves/fisiología , Evolución Biológica
17.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38654650

RESUMEN

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Asunto(s)
Evolución Biológica , Tamaño Corporal , Filogenia , Animales , Passeriformes/fisiología , Teorema de Bayes , América del Sur , Aves/fisiología
18.
Chaos ; 34(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558050

RESUMEN

During sleep, sporadically, it is possible to find neural patterns of activity in areas of the avian brain that are activated during the generation of the song. It has recently been found that in the vocal muscles of a sleeping bird, it is possible to detect activity patterns during these silent replays. In this work, we employ a dynamical systems model for song production in suboscine birds in order to translate the vocal muscles activity during sleep into synthetic songs. Besides allowing us to translate muscle activity into behavior, we argue that this approach poses the biomechanics as a unique window into the avian brain, with biophysical models as its probe.


Asunto(s)
Aves , Vocalización Animal , Animales , Vocalización Animal/fisiología , Aves/fisiología , Encéfalo/fisiología
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1902): 20230013, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38583472

RESUMEN

Species respond dynamically to climate change and exhibit time lags. Consequently, species may not occupy their full climatic niche during range shifting. Here, we assessed climate niche tracking during recent range shifts of European and United States (US) birds. Using data from two European bird atlases and from the North American Breeding Bird Survey between the 1980s and 2010s, we analysed range overlap and climate niche overlap based on kernel density estimation. Phylogenetic multiple regression was used to assess the effect of species morphological, ecological and biogeographic traits on range and niche metrics. European birds shifted their ranges north and north-eastwards, US birds westwards. Range unfilling was lower than expected by null models, and niche expansion was more common than niche unfilling. Also, climate niche tracking was generally lower in US birds and poorly explained by species traits. Overall, our results suggest that dispersal limitations were minor in range shifting birds in Europe and the USA while delayed extinctions from unfavourable areas seem more important. Regional differences could be related to differences in land use history and monitoring schemes. Comparative analyses of range and niche shifts provide a useful screening approach for identifying the importance of transient dynamics and time-lagged responses to climate change. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.


Asunto(s)
Biodiversidad , Aves , Animales , Estados Unidos , Filogenia , Aves/fisiología , Cambio Climático , América del Norte , Ecosistema
20.
Proc Natl Acad Sci U S A ; 121(18): e2316417121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648477

RESUMEN

Human actions are causing widespread increases in fire size, frequency, and severity in diverse ecosystems globally. This alteration of fire regimes is considered a threat to numerous animal species, but empirical evidence of how fire regimes are shifting within both threatened species' ranges and protected areas is scarce, particularly at large spatial and temporal scales. We used a big data approach to quantify multidecadal changes in fire regimes in southern Australia from 1980 to 2021, spanning 415 reserves (21.5 million ha) and 129 threatened species' ranges including birds, mammals, reptiles, invertebrates, and frogs. Most reserves and threatened species' ranges within the region have experienced declines in unburnt vegetation (≥30 y without fire), increases in recently burnt vegetation (≤5 y since fire), and increases in fire frequency. The mean percentage of unburnt vegetation within reserves declined from 61 to 36% (1980 to 2021), whereas the mean percentage of recently burnt vegetation increased from 20 to 35%, and mean fire frequency increased by 32%, with the latter two trends primarily driven by the record-breaking 2019 to 2020 fire season. The strongest changes occurred for high-elevation threatened species, and reserves of high elevation, high productivity, and strong rainfall decline, particularly in the southeast of the continent. Our results provide evidence for the widely held but poorly tested assumption that threatened species are experiencing widespread declines in unburnt habitat and increases in fire frequency. This underscores the imperative for developing management strategies that conserve fire-threatened species in an increasingly fiery future.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Especies en Peligro de Extinción , Incendios , Especies en Peligro de Extinción/tendencias , Animales , Australia , Reptiles , Mamíferos , Humanos , Aves/fisiología , Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...