Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.995
Filtrar
1.
Handb Clin Neurol ; 201: 1-17, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38697733

RESUMEN

Peripheral nerves are functional networks in the body. Disruption of these networks induces varied functional consequences depending on the types of nerves and organs affected. Despite the advances in microsurgical repair and understanding of nerve regeneration biology, restoring full functions after severe traumatic nerve injuries is still far from achieved. While a blunted growth response from axons and errors in axon guidance due to physical barriers may surface as the major hurdles in repairing nerves, critical additional cellular and molecular aspects challenge the orderly healing of injured nerves. Understanding the systematic reprogramming of injured nerves at the cellular and molecular levels, referred to here as "hallmarks of nerve injury regeneration," will offer better ideas. This chapter discusses the hallmarks of nerve injury and regeneration and critical points of failures in the natural healing process. Potential pharmacological and nonpharmacological intervention points for repairing nerves are also discussed.


Asunto(s)
Regeneración Nerviosa , Traumatismos de los Nervios Periféricos , Humanos , Regeneración Nerviosa/fisiología , Traumatismos de los Nervios Periféricos/terapia , Traumatismos de los Nervios Periféricos/fisiopatología , Animales , Nervios Periféricos , Axones/fisiología , Axones/patología
2.
Cereb Cortex ; 34(5)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38745556

RESUMEN

The basic building block of the cerebral cortex, the pyramidal cell, has been shown to be characterized by a markedly different dendritic structure among layers, cortical areas, and species. Functionally, differences in the structure of their dendrites and axons are critical in determining how neurons integrate information. However, within the human cortex, these neurons have not been quantified in detail. In the present work, we performed intracellular injections of Lucifer Yellow and 3D reconstructed over 200 pyramidal neurons, including apical and basal dendritic and local axonal arbors and dendritic spines, from human occipital primary visual area and associative temporal cortex. We found that human pyramidal neurons from temporal cortex were larger, displayed more complex apical and basal structural organization, and had more spines compared to those in primary sensory cortex. Moreover, these human neocortical neurons displayed specific shared and distinct characteristics in comparison to previously published human hippocampal pyramidal neurons. Additionally, we identified distinct morphological features in human neurons that set them apart from mouse neurons. Lastly, we observed certain consistent organizational patterns shared across species. This study emphasizes the existing diversity within pyramidal cell structures across different cortical areas and species, suggesting substantial species-specific variations in their computational properties.


Asunto(s)
Células Piramidales , Humanos , Células Piramidales/fisiología , Animales , Masculino , Femenino , Ratones , Adulto , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Lóbulo Temporal/citología , Dendritas/fisiología , Persona de Mediana Edad , Axones/fisiología , Especificidad de la Especie
3.
Elife ; 122024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747563

RESUMEN

Midbrain dopamine neurons impact neural processing in the prefrontal cortex (PFC) through mesocortical projections. However, the signals conveyed by dopamine projections to the PFC remain unclear, particularly at the single-axon level. Here, we investigated dopaminergic axonal activity in the medial PFC (mPFC) during reward and aversive processing. By optimizing microprism-mediated two-photon calcium imaging of dopamine axon terminals, we found diverse activity in dopamine axons responsive to both reward and aversive stimuli. Some axons exhibited a preference for reward, while others favored aversive stimuli, and there was a strong bias for the latter at the population level. Long-term longitudinal imaging revealed that the preference was maintained in reward- and aversive-preferring axons throughout classical conditioning in which rewarding and aversive stimuli were paired with preceding auditory cues. However, as mice learned to discriminate reward or aversive cues, a cue activity preference gradually developed only in aversive-preferring axons. We inferred the trial-by-trial cue discrimination based on machine learning using anticipatory licking or facial expressions, and found that successful discrimination was accompanied by sharper selectivity for the aversive cue in aversive-preferring axons. Our findings indicate that a group of mesocortical dopamine axons encodes aversive-related signals, which are modulated by both classical conditioning across days and trial-by-trial discrimination within a day.


Asunto(s)
Axones , Condicionamiento Clásico , Neuronas Dopaminérgicas , Corteza Prefrontal , Animales , Corteza Prefrontal/fisiología , Ratones , Axones/fisiología , Condicionamiento Clásico/fisiología , Neuronas Dopaminérgicas/fisiología , Masculino , Recompensa , Dopamina/metabolismo , Ratones Endogámicos C57BL , Señales (Psicología)
4.
Science ; 384(6696): eadk4858, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723085

RESUMEN

To fully understand how the human brain works, knowledge of its structure at high resolution is needed. Presented here is a computationally intensive reconstruction of the ultrastructure of a cubic millimeter of human temporal cortex that was surgically removed to gain access to an underlying epileptic focus. It contains about 57,000 cells, about 230 millimeters of blood vessels, and about 150 million synapses and comprises 1.4 petabytes. Our analysis showed that glia outnumber neurons 2:1, oligodendrocytes were the most common cell, deep layer excitatory neurons could be classified on the basis of dendritic orientation, and among thousands of weak connections to each neuron, there exist rare powerful axonal inputs of up to 50 synapses. Further studies using this resource may bring valuable insights into the mysteries of the human brain.


Asunto(s)
Neuronas , Sinapsis , Lóbulo Temporal , Humanos , Neuronas/ultraestructura , Sinapsis/fisiología , Sinapsis/ultraestructura , Oligodendroglía/citología , Neuroglía , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Corteza Cerebral/ultraestructura , Dendritas/fisiología , Axones/fisiología , Axones/ultraestructura
5.
Invest Ophthalmol Vis Sci ; 65(5): 3, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691090

RESUMEN

Purpose: Forty-hertz light flicker stimulation has been proven to reduce neurodegeneration, but its effect on optic nerve regeneration is unclear. This study explores the effect of 40-Hz light flicker in promoting optic nerve regeneration in zebrafish and investigates the underlying mechanisms. Methods: Wild-type and mpeg1:EGFP zebrafish were used to establish a model of optic nerve crush. Biocytin tracing and hematoxylin and eosin staining were employed to observe whether 40-Hz light flicker promotes regeneration of retinal ganglion cell axons and dendrites. Optomotor and optokinetic responses were evaluated to assess recovery of visual function. Immunofluorescence staining of mpeg1:EGFP zebrafish was performed to observe changes in microglia. Differentially expressed genes that promote optic nerve regeneration following 40-Hz light flicker stimulation were identified and validated through RNA-sequencing analysis and quantitative real-time PCR (qRT-PCR). Results: Zebrafish exhibited spontaneous optic nerve regeneration after optic nerve injury and restored visual function. We observed that 40-Hz light flicker significantly activated microglia following optic nerve injury and promoted regeneration of retinal ganglion cell axons and dendrites, as well as recovery of visual function. Transcriptomics and qRT-PCR analyses revealed that 40-Hz light flicker increased the expression of genes associated with neuronal plasticity, including bdnf, npas4a, fosab, fosb, egr4, and ier2a. Conclusions: To our knowledge, this study is the first to demonstrate that 40-Hz light flicker stimulation promotes regeneration of retinal ganglion cell axons and dendrites and recovery of visual function in zebrafish, which is associated with microglial activation and enhancement of neural plasticity.


Asunto(s)
Microglía , Regeneración Nerviosa , Plasticidad Neuronal , Traumatismos del Nervio Óptico , Células Ganglionares de la Retina , Pez Cebra , Animales , Microglía/fisiología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/fisiopatología , Plasticidad Neuronal/fisiología , Células Ganglionares de la Retina/fisiología , Estimulación Luminosa , Modelos Animales de Enfermedad , Nervio Óptico/fisiología , Axones/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa
6.
Dev Psychobiol ; 66(5): e22486, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739111

RESUMEN

Maternal deprivation, as a result of the artificial rearing (AR) paradigm, disturbs electrophysiological and histological characteristics of the peripheral sensory sural (SU) nerve of infant and adult male rats. Such changes are prevented by providing tactile or social stimulation during isolation. AR also affects the female rat's brain and behavior; however, it is unknown whether this early adverse experience also alters their SU nerve development or if tactile stimulation might prevent these possible developmental effects. To assess these possibilities, the electrophysiological and histological characteristics of the SU nerve from adult diestrus AR female rats that: (i) received no tactile stimulation (AR group), (ii) received tactile stimulation in the anogenital and body area (AR-Tactile group), or (iii) were mother reared (MR group) were determined. We found that the amplitude, but not the area, of the evoked compound action potential response in SU nerves of AR rats was lower than those of SU nerves of MR female rats. Tactile stimulation prevented these effects. Additionally, we found a reduction in the outer diameter and myelin thickness of axons, as well as a large proportion of axons with low myelin thickness in nerves of AR rats compared to the nerves of the MR and AR-Tactile groups of rats; however, tactile stimulation only partially prevented these effects. Our data indicate that maternal deprivation disturbs the development of sensory SU nerves in female rats, whereas tactile stimulation partially prevents the changes generated by AR. Considering that our previous studies have shown more severe effects of AR on male SU nerve development, we suggest that sex-associated factors may be involved in these processes.


Asunto(s)
Privación Materna , Nervio Sural , Tacto , Animales , Femenino , Ratas , Nervio Sural/fisiología , Tacto/fisiología , Estimulación Física , Ratas Wistar , Axones/fisiología , Potenciales de Acción/fisiología , Vaina de Mielina/fisiología
7.
Biofabrication ; 16(3)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38565133

RESUMEN

Spinal cord injury (SCI) can cause permanent impairment to motor or sensory functions. Pre-cultured neural stem cell (NSC) hydrogel scaffolds have emerged as a promising approach to treat SCI by promoting anti-inflammatory effects, axon regrowth, and motor function restoration. Here, in this study, we performed a coaxial extrusion process to fabricate a core-shell hydrogel microfiber with high NSC density in the core portion. Oxidized hyaluronic acid, carboxymethyl chitosan, and matrigel blend were used as a matrix for NSC growth and to facilitate the fabrication process. During thein vitrodifferentiation culture, it was found that NSC microfibers could differentiate into neurons and astrocytes with higher efficiency compared to NSC cultured in petri dishes. Furthermore, duringin vivotransplantation, NSC microfibers were coated with polylactic acid nanosheets by electrospinning for reinforcement. The coated NSC nanofibers exhibited higher anti-inflammatory effect and lesion cavity filling rate compared with the control group. Meanwhile, more neuron- and oligodendrocyte-like cells were visualized at the lesion epicenter. Finally, axon regrowth across the whole lesion site was observed, demonstrating that the microfiber could guide renascent axon regrowth. Experiment results indicate that the NSC microfiber is a promising bioactive treatment for complete SCI treatment with superior outcomes.


Asunto(s)
Axones , Diferenciación Celular , Células-Madre Neurales , Neuronas , Traumatismos de la Médula Espinal , Andamios del Tejido , Animales , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/patología , Axones/efectos de los fármacos , Axones/fisiología , Axones/metabolismo , Diferenciación Celular/efectos de los fármacos , Neuronas/citología , Neuronas/efectos de los fármacos , Andamios del Tejido/química , Ratas Sprague-Dawley , Hidrogeles/química , Hidrogeles/farmacología , Quitosano/química , Quitosano/farmacología , Quitosano/análogos & derivados , Células Cultivadas , Regeneración Nerviosa/efectos de los fármacos , Nanofibras/química , Ratas , Femenino
8.
Curr Biol ; 34(9): 1904-1917.e6, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38642548

RESUMEN

Neurons have differential and fluctuating energy needs across distinct cellular compartments, shaped by brain electrochemical activity associated with cognition. In vitro studies show that mitochondria transport from soma to axons is key to maintaining neuronal energy homeostasis. Nevertheless, whether the spatial distribution of neuronal mitochondria is dynamically adjusted in vivo in an experience-dependent manner remains unknown. In Drosophila, associative long-term memory (LTM) formation is initiated by an early and persistent upregulation of mitochondrial pyruvate flux in the axonal compartment of neurons in the mushroom body (MB). Through behavior experiments, super-resolution analysis of mitochondria morphology in the neuronal soma and in vivo mitochondrial fluorescence recovery after photobleaching (FRAP) measurements in the axons, we show that LTM induction, contrary to shorter-lived memories, is sustained by the departure of some mitochondria from MB neuronal soma and increased mitochondrial dynamics in the axonal compartment. Accordingly, impairing mitochondrial dynamics abolished the increased pyruvate consumption, specifically after spaced training and in the MB axonal compartment, thereby preventing LTM formation. Our results thus promote reorganization of the mitochondrial network in neurons as an integral step in elaborating high-order cognitive processes.


Asunto(s)
Axones , Proteínas de Drosophila , Drosophila melanogaster , Memoria a Largo Plazo , Mitocondrias , Dinámicas Mitocondriales , Cuerpos Pedunculados , Animales , Memoria a Largo Plazo/fisiología , Dinámicas Mitocondriales/fisiología , Axones/metabolismo , Axones/fisiología , Cuerpos Pedunculados/fisiología , Cuerpos Pedunculados/metabolismo , Drosophila melanogaster/fisiología , Mitocondrias/metabolismo , Mitocondrias/fisiología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neuronas/metabolismo , Neuronas/fisiología
9.
J Nanobiotechnology ; 22(1): 194, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643117

RESUMEN

Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Neuritas/fisiología , Axones/fisiología , Neuronas
10.
Nat Commun ; 15(1): 2945, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600094

RESUMEN

An inter-regional cortical tract is one of the most fundamental architectural motifs that integrates neural circuits to orchestrate and generate complex functions of the human brain. To understand the mechanistic significance of inter-regional projections on development of neural circuits, we investigated an in vitro neural tissue model for inter-regional connections, in which two cerebral organoids are connected with a bundle of reciprocally extended axons. The connected organoids produced more complex and intense oscillatory activity than conventional or directly fused cerebral organoids, suggesting the inter-organoid axonal connections enhance and support the complex network activity. In addition, optogenetic stimulation of the inter-organoid axon bundles could entrain the activity of the organoids and induce robust short-term plasticity of the macroscopic circuit. These results demonstrated that the projection axons could serve as a structural hub that boosts functionality of the organoid-circuits. This model could contribute to further investigation on development and functions of macroscopic neuronal circuits in vitro.


Asunto(s)
Axones , Neuronas , Humanos , Axones/fisiología , Neuronas/fisiología , Organoides/fisiología , Encéfalo
11.
PLoS Genet ; 20(4): e1011139, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38669217

RESUMEN

As essential components of gene expression networks, transcription factors regulate neural circuit assembly. The homeobox transcription factor encoding gene, gs homeobox 1 (gsx1), is expressed in the developing visual system; however, no studies have examined its role in visual system formation. In zebrafish, retinal ganglion cell (RGC) axons that transmit visual information to the brain terminate in ten arborization fields (AFs) in the optic tectum (TeO), pretectum (Pr), and thalamus. Pretectal AFs (AF1-AF9) mediate distinct visual behaviors, yet we understand less about their development compared to AF10 in the TeO. Using gsx1 zebrafish mutants, immunohistochemistry, and transgenic lines, we observed that gsx1 is required for vesicular glutamate transporter, Tg(slc17a6b:DsRed), expression in the Pr, but not overall neuron number. gsx1 mutants have normal eye morphology, yet they exhibit impaired visual ability during prey capture. RGC axon volume in the gsx1 mutant Pr and TeO is reduced, and AF7 that is active during feeding is missing which is consistent with reduced hunting performance. Timed laser ablation of Tg(slc17a6b:DsRed)-positive cells reveals that they are necessary for AF7 formation. This work is the first to implicate gsx1 in establishing cell identity and functional neural circuits in the visual system.


Asunto(s)
Animales Modificados Genéticamente , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio , Células Ganglionares de la Retina , Proteínas de Pez Cebra , Pez Cebra , Animales , Axones/metabolismo , Axones/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Mutación , Células Ganglionares de la Retina/metabolismo , Colículos Superiores/metabolismo , Colículos Superiores/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vías Visuales/crecimiento & desarrollo , Vías Visuales/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Biomed Mater ; 19(3)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636508

RESUMEN

Spinal cord injury (SCI) is a devastating neurological disorder, leading to loss of motor or somatosensory function, which is the most challenging worldwide medical problem. Re-establishment of intact neural circuits is the basis of spinal cord regeneration. Considering the crucial role of electrical signals in the nervous system, electroactive bioscaffolds have been widely developed for SCI repair. They can produce conductive pathways and a pro-regenerative microenvironment at the lesion site similar to that of the natural spinal cord, leading to neuronal regeneration and axonal growth, and functionally reactivating the damaged neural circuits. In this review, we first demonstrate the pathophysiological characteristics induced by SCI. Then, the crucial role of electrical signals in SCI repair is introduced. Based on a comprehensive analysis of these characteristics, recent advances in the electroactive bioscaffolds for SCI repair are summarized, focusing on both the conductive bioscaffolds and piezoelectric bioscaffolds, used independently or in combination with external electronic stimulation. Finally, thoughts on challenges and opportunities that may shape the future of bioscaffolds in SCI repair are concluded.


Asunto(s)
Traumatismos de la Médula Espinal , Andamios del Tejido , Traumatismos de la Médula Espinal/terapia , Traumatismos de la Médula Espinal/fisiopatología , Humanos , Animales , Regeneración Nerviosa , Axones/fisiología , Materiales Biocompatibles/química , Ingeniería de Tejidos/métodos , Médula Espinal , Conductividad Eléctrica , Regeneración de la Medula Espinal , Estimulación Eléctrica/métodos
13.
J Physiol ; 602(9): 2107-2126, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38568869

RESUMEN

We are studying the mechanisms of H-reflex operant conditioning, a simple form of learning. Modelling studies in the literature and our previous data suggested that changes in the axon initial segment (AIS) might contribute. To explore this, we used blinded quantitative histological and immunohistochemical methods to study in adult rats the impact of H-reflex conditioning on the AIS of the spinal motoneuron that produces the reflex. Successful, but not unsuccessful, H-reflex up-conditioning was associated with greater AIS length and distance from soma; greater length correlated with greater H-reflex increase. Modelling studies in the literature suggest that these increases may increase motoneuron excitability, supporting the hypothesis that they may contribute to H-reflex increase. Up-conditioning did not affect AIS ankyrin G (AnkG) immunoreactivity (IR), p-p38 protein kinase IR, or GABAergic terminals. Successful, but not unsuccessful, H-reflex down-conditioning was associated with more GABAergic terminals on the AIS, weaker AnkG-IR, and stronger p-p38-IR. More GABAergic terminals and weaker AnkG-IR correlated with greater H-reflex decrease. These changes might potentially contribute to the positive shift in motoneuron firing threshold underlying H-reflex decrease; they are consistent with modelling suggesting that sodium channel change may be responsible. H-reflex down-conditioning did not affect AIS dimensions. This evidence that AIS plasticity is associated with and might contribute to H-reflex conditioning adds to evidence that motor learning involves both spinal and brain plasticity, and both neuronal and synaptic plasticity. AIS properties of spinal motoneurons are likely to reflect the combined influence of all the motor skills that share these motoneurons. KEY POINTS: Neuronal action potentials normally begin in the axon initial segment (AIS). AIS plasticity affects neuronal excitability in development and disease. Whether it does so in learning is unknown. Operant conditioning of a spinal reflex, a simple learning model, changes the rat spinal motoneuron AIS. Successful, but not unsuccessful, H-reflex up-conditioning is associated with greater AIS length and distance from soma. Successful, but not unsuccessful, down-conditioning is associated with more AIS GABAergic terminals, less ankyrin G, and more p-p38 protein kinase. The associations between AIS plasticity and successful H-reflex conditioning are consistent with those between AIS plasticity and functional changes in development and disease, and with those predicted by modelling studies in the literature. Motor learning changes neurons and synapses in spinal cord and brain. Because spinal motoneurons are the final common pathway for behaviour, their AIS properties probably reflect the combined impact of all the behaviours that use these motoneurons.


Asunto(s)
Segmento Inicial del Axón , Reflejo H , Neuronas Motoras , Ratas Sprague-Dawley , Animales , Neuronas Motoras/fisiología , Ratas , Masculino , Reflejo H/fisiología , Segmento Inicial del Axón/fisiología , Aprendizaje/fisiología , Médula Espinal/fisiología , Médula Espinal/citología , Axones/fisiología , Plasticidad Neuronal/fisiología , Condicionamiento Operante/fisiología , Ancirinas/metabolismo
14.
Mol Biol Cell ; 35(5): re1, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38598299

RESUMEN

Neurofilaments (NFs) are multisubunit, neuron-specific intermediate filaments consisting of a 10-nm diameter filament "core" surrounded by a layer of long intrinsically disordered protein (IDP) "tails." NFs are thought to regulate axonal caliber during development and then stabilize the mature axon, with NF subunit misregulation, mutation, and aggregation featuring prominently in multiple neurological diseases. The field's understanding of NF structure, mechanics, and function has been deeply informed by a rich variety of biochemical, cell biological, and mouse genetic studies spanning more than four decades. These studies have contributed much to our collective understanding of NF function in axonal physiology and disease. In recent years, however, there has been a resurgence of interest in NF subunit proteins in two new contexts: as potential blood- and cerebrospinal fluid-based biomarkers of neuronal damage, and as model IDPs with intriguing properties. Here, we review established principles and more recent discoveries in NF structure and function. Where possible, we place these findings in the context of biophysics of NF assembly, interaction, and contributions to axonal mechanics.


Asunto(s)
Axones , Filamentos Intermedios , Proteínas de Neurofilamentos , Filamentos Intermedios/metabolismo , Filamentos Intermedios/fisiología , Humanos , Animales , Axones/metabolismo , Axones/fisiología , Proteínas de Neurofilamentos/metabolismo , Fenómenos Biomecánicos , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Biofisica/métodos , Neuronas/metabolismo , Neuronas/fisiología
15.
Curr Biol ; 34(8): 1687-1704.e8, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38554708

RESUMEN

Neurons rely on the long-range trafficking of synaptic components to form and maintain the complex neural networks that encode the human experience. With a single neuron capable of forming thousands of distinct en passant synapses along its axon, spatially precise delivery of the necessary synaptic components is paramount. How these synapses are patterned, as well as how the efficient delivery of synaptic components is regulated, remains largely unknown. Here, we reveal a novel role for the microtubule (MT)-severing enzyme spastin in locally enhancing MT polymerization to influence presynaptic cargo pausing and retention along the axon. In human neurons derived from induced pluripotent stem cells (iPSCs), we identify sites stably enriched for presynaptic components along the axon prior to the robust assembly of mature presynapses apposed by postsynaptic contacts. These sites are capable of cycling synaptic vesicles, are enriched with spastin, and are hotspots for new MT growth and synaptic vesicle precursor (SVP) pausing/retention. The disruption of neuronal spastin level or activity, by CRISPRi-mediated depletion, transient overexpression, or pharmacologic inhibition of enzymatic activity, interrupts the localized enrichment of dynamic MT plus ends and diminishes SVP accumulation. Using an innovative human heterologous synapse model, where microfluidically isolated human axons recognize and form presynaptic connections with neuroligin-expressing non-neuronal cells, we reveal that neurons deficient for spastin do not achieve the same level of presynaptic component accumulation as control neurons. We propose a model where spastin acts locally as an amplifier of MT polymerization to pattern specific regions of the axon for synaptogenesis and guide synaptic cargo delivery.


Asunto(s)
Axones , Microtúbulos , Espastina , Espastina/metabolismo , Espastina/genética , Microtúbulos/metabolismo , Humanos , Axones/metabolismo , Axones/fisiología , Células Madre Pluripotentes Inducidas/metabolismo , Vesículas Sinápticas/metabolismo , Terminales Presinápticos/metabolismo , Terminales Presinápticos/fisiología , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
16.
Exp Neurol ; 376: 114750, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38492636

RESUMEN

Nerve injury often leads to severe dysfunction because of the lack of axon regeneration in adult mammal. Intriguingly a series of extracellular vesicles (EVs) have the obvious ability to accelerate the nerve repair. However, the detailed molecular mechanisms to describe that EVs switch neuron from a transmitter to a regenerative state have not been elucidated. This study elucidated the microRNA (miRNA) expression profiles of two types of EVs that promote nerve regeneration. The functions of these miRNAs were screened in vitro. Among the 12 overlapping miRNAs, miR-25-3p was selected for further analysis as it markedly promoted axon regeneration both in vivo and in vitro. Furthermore, knockdown experiments confirmed that PTEN and Klf4, which are the major inhibitors of axon regeneration, were the direct targets of miR-25-3p in dorsal root ganglion (DRG) neurons. The utilization of luciferase reporter assays and functional tests provided evidence that miR-25-3p enhances axon regeneration by targeting Tgif1. Additionally, miR-25-3p upregulated the phosphorylation of Erk. Furthermore, Rapamycin modulated the expression of miR-25-3p in DRG neurons. Finally, the pro-axon regeneration effects of EVs were confirmed by overexpressing miR-25-3p and Tgif1 knockdown in the optic nerve crush model. Thus, the enrichment of miR-25-3p in EVs suggests that it regulates axon regeneration, proving a potential cell-free treatment strategy for nerve injury.


Asunto(s)
Axones , Vesículas Extracelulares , Ganglios Espinales , Proteínas de Homeodominio , MicroARNs , Regeneración Nerviosa , Células de Schwann , Animales , MicroARNs/genética , MicroARNs/metabolismo , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/genética , Vesículas Extracelulares/metabolismo , Axones/fisiología , Células de Schwann/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/citología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Piel/metabolismo , Factor 4 Similar a Kruppel , Ratones Endogámicos C57BL , Células Madre/metabolismo
17.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542483

RESUMEN

With the development of single-cell sequencing technology, the cellular composition of more and more tissues is being elucidated. As the whole nervous system has been extensively studied, the cellular composition of the peripheral nerve has gradually been revealed. By summarizing the current sequencing data, we compile the heterogeneities of cells that have been reported in the peripheral nerves, mainly the sciatic nerve. The cellular variability of Schwann cells, fibroblasts, immune cells, and endothelial cells during development and disease has been discussed in this review. The discovery of the architecture of peripheral nerves after injury benefits the understanding of cellular complexity in the nervous system, as well as the construction of tissue engineering nerves for nerve repair and axon regeneration.


Asunto(s)
Axones , Traumatismos de los Nervios Periféricos , Humanos , Axones/fisiología , Células Endoteliales , Regeneración Nerviosa/fisiología , Células de Schwann/fisiología , Nervio Ciático/lesiones , Traumatismos de los Nervios Periféricos/genética
18.
Neurosci Lett ; 826: 137724, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467271

RESUMEN

Dorsal root avulsion injuries lead to loss of sensation and to reorganization of blood vessels (BVs) in the injured area. The inability of injured sensory axons to re-enter the spinal cord results in permanent loss of sensation, and often also leads to the development of neuropathic pain. Approaches that restore connection between peripheral sensory axons and their CNS targets are thus urgently need. Previous research has shown that sensory axons from peripherally grafted human sensory neurons are able to enter the spinal cord by growing along BVs which penetrate the CNS from the spinal cord surface. In this study we analysed the distribution of BVs after avulsion injury and how their pattern is affected by implantation at the injury site of boundary cap neural crest stem cells (bNCSCs), a transient cluster of cells, which are located at the boundary between the spinal cord and peripheral nervous system and assist the growth of sensory axons from periphery into the spinal cord during development. The superficial dorsal spinal cord vasculature was examined using intravital microscopy and intravascular BV labelling. bNCSC transplantation increased vascular volume in a non-dose responsive manner, whereas dorsal root avulsion alone did not decrease the vascular volume. To determine whether bNCSC are endowed with angiogenic properties we prepared 3D printed scaffolds, containing bNCSCs together with rings prepared from mouse aorta. We show that bNCSC do induce migration and assembly of endothelial cells in this system. These findings suggest that bNCSC transplant can promote vascularization in vivo and contribute to BV formation in 3D printed scaffolds.


Asunto(s)
Células-Madre Neurales , Traumatismos de la Médula Espinal , Ratones , Humanos , Animales , Cresta Neural , Células Endoteliales , Angiogénesis , Regeneración Nerviosa/fisiología , Raíces Nerviosas Espinales/lesiones , Médula Espinal , Axones/fisiología , Impresión Tridimensional
19.
Cell Rep ; 43(3): 113931, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38492223

RESUMEN

In adult mammals, injured retinal ganglion cells (RGCs) fail to spontaneously regrow severed axons, resulting in permanent visual deficits. Robust axon growth, however, is observed after intra-ocular injection of particulate ß-glucan isolated from yeast. Blood-borne myeloid cells rapidly respond to ß-glucan, releasing numerous pro-regenerative factors. Unfortunately, the pro-regenerative effects are undermined by retinal damage inflicted by an overactive immune system. Here, we demonstrate that protection of the inflamed vasculature promotes immune-mediated RGC regeneration. In the absence of microglia, leakiness of the blood-retina barrier increases, pro-inflammatory neutrophils are elevated, and RGC regeneration is reduced. Functional ablation of the complement receptor 3 (CD11b/integrin-αM), but not the complement components C1q-/- or C3-/-, reduces ocular inflammation, protects the blood-retina barrier, and enhances RGC regeneration. Selective targeting of neutrophils with anti-Ly6G does not increase axogenic neutrophils but protects the blood-retina barrier and enhances RGC regeneration. Together, these findings reveal that protection of the inflamed vasculature promotes neuronal regeneration.


Asunto(s)
Traumatismos del Nervio Óptico , beta-Glucanos , Animales , Neutrófilos , Regeneración Nerviosa/fisiología , Células Ganglionares de la Retina/fisiología , Axones/fisiología , Mamíferos
20.
PLoS Comput Biol ; 20(3): e1011846, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489374

RESUMEN

In a variety of neurons, action potentials (APs) initiate at the proximal axon, within a region called the axon initial segment (AIS), which has a high density of voltage-gated sodium channels (NaVs) on its membrane. In pyramidal neurons, the proximal AIS has been reported to exhibit a higher proportion of NaVs with gating properties that are "right-shifted" to more depolarized voltages, compared to the distal AIS. Further, recent experiments have revealed that as neurons develop, the spatial distribution of NaV subtypes along the AIS can change substantially, suggesting that neurons tune their excitability by modifying said distribution. When neurons are stimulated axonally, computational modelling has shown that this spatial separation of gating properties in the AIS enhances the backpropagation of APs into the dendrites. In contrast, in the more natural scenario of somatic stimulation, our simulations show that the same distribution can impede backpropagation, suggesting that the choice of orthodromic versus antidromic stimulation can bias or even invert experimental findings regarding the role of NaV subtypes in the AIS. We implemented a range of hypothetical NaV distributions in the AIS of three multicompartmental pyramidal cell models and investigated the precise kinetic mechanisms underlying such effects, as the spatial distribution of NaV subtypes is varied. With axonal stimulation, proximal NaV availability dominates, such that concentrating right-shifted NaVs in the proximal AIS promotes backpropagation. However, with somatic stimulation, the models are insensitive to availability kinetics. Instead, the higher activation threshold of right-shifted NaVs in the AIS impedes backpropagation. Therefore, recently observed developmental changes to the spatial separation and relative proportions of NaV1.2 and NaV1.6 in the AIS differentially impact activation and availability. The observed effects on backpropagation, and potentially learning via its putative role in synaptic plasticity (e.g. through spike-timing-dependent plasticity), are opposite for orthodromic versus antidromic stimulation, which should inform hypotheses about the impact of the developmentally regulated subcellular localization of these NaV subtypes.


Asunto(s)
Segmento Inicial del Axón , Canales de Sodio Activados por Voltaje , Segmento Inicial del Axón/fisiología , Canal de Sodio Activado por Voltaje NAV1.6/ultraestructura , Axones/fisiología , Neuronas/fisiología , Potenciales de Acción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...