Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(16): e2117465119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412890

RESUMEN

Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.


Asunto(s)
Azorhizobium caulinodans , Grano Comestible , Hordeum , Fijación del Nitrógeno , Nitrogenasa , Raíces de Plantas , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Grano Comestible/microbiología , Hordeum/microbiología , Inositol/análogos & derivados , Inositol/genética , Inositol/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Raíces de Plantas/microbiología , Simbiosis
2.
Appl Microbiol Biotechnol ; 104(6): 2715-2729, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32002604

RESUMEN

Establishment of the rhizobia-legume symbiosis is usually accompanied by hydrogen peroxide (H2O2) production by the legume host at the site of infection, a process detrimental to rhizobia. In Azorhizobium caulinodans ORS571, deletion of chp1, a gene encoding c-di-GMP phosphodiesterase, led to increased resistance against H2O2 and to elevated nodulation efficiency on its legume host Sesbania rostrata. Three domains were identified in the Chp1: a PAS domain, a degenerate GGDEF domain, and an EAL domain. An in vitro enzymatic activity assay showed that the degenerate GGDEF domain of Chp1 did not have diguanylate cyclase activity. The phosphodiesterase activity of Chp1 was attributed to its EAL domain which could hydrolyse c-di-GMP into pGpG. The PAS domain functioned as a regulatory domain by sensing oxygen. Deletion of Chp1 resulted in increased intracellular c-di-GMP level, decreased motility, increased aggregation, and increased EPS (extracellular polysaccharide) production. H2O2-sensitivity assay showed that increased EPS production could provide ORS571 with resistance against H2O2. Thus, the elevated nodulation efficiency of the ∆chp1 mutant could be correlated with a protective role of EPS in the nodulation process. These data suggest that c-di-GMP may modulate the A. caulinodans-S. rostrata nodulation process by regulating the production of EPS which could protect rhizobia against H2O2.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Azorhizobium caulinodans/enzimología , Proteínas Bacterianas/metabolismo , Nodulación de la Raíz de la Planta , Polisacáridos Bacterianos/biosíntesis , Simbiosis , 3',5'-GMP Cíclico Fosfodiesterasas/genética , Azorhizobium caulinodans/efectos de los fármacos , Proteínas Bacterianas/genética , Eliminación de Gen , Interacciones Microbiota-Huesped , Peróxido de Hidrógeno/farmacología , Movimiento , Sesbania/microbiología
3.
Mol Plant Microbe Interact ; 32(11): 1547-1556, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31287368

RESUMEN

Azorhizobium caulinodans can form root and stem nodules with the host plant Sesbania rostrata. The role of the CheZ phosphatase in the A. caulinodans chemotaxis pathway was previously explored using the nonchemotactic cheZ mutant strain (AC601). This mutant displayed stronger attachment to the root surface, enhancing early colonization; however, this did not result in increased nodulation efficiency. In this study, we further investigated the role of CheZ in the interaction between strain ORS571 and the roots of its host plant. By tracking long-term colonization dynamic of cheZ mutant marked with LacZ, we found a decrease of colonization of the cheZ mutant during this process. Furthermore, the cheZ mutant could not spread on the root surface freely and was gradually outcompeted by the wild type in original colonization sites. Quantitative reverse-transcription PCR analyses showed that exp genes encoding exopolysaccharides synthesis, including oac3, were highly expressed in the cheZ mutant. Construction of a strain carrying a deletion of both cheZ and oac3 resulted in a mutant strain defective in the colonization process to the same extent as found with the oac3 single-mutant strain. This result suggested that the enhanced colonization of the cheZ mutant may be achieved through regulating the formation of exopolysaccharides. This shows the importance of the chemotactic proteins in the interaction between rhizobia and host plants, and expands our understanding of the symbiosis interaction between rhizobium and host plant.


Asunto(s)
Azorhizobium caulinodans , Sesbania , Simbiosis , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Activación Enzimática , Mutación , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Sesbania/microbiología , Propiedades de Superficie , Simbiosis/genética
4.
FEMS Microbiol Lett ; 366(3)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657885

RESUMEN

Reactive oxygen species (ROS) are not only toxic products of oxygen from aerobic metabolism or stress but also signalling molecules involved in the development of the legume-Rhizobium symbiosis. To assess the importance of alkyl hydroperoxide reductase (AhpCD) in the nitrogen-fixating bacterium Azorhizobium caulinodans, we investigated the phenotypes of the ∆ahpCD strain with regards to ROS resistance and symbiotic interactions with Sesbania rostrata. The ∆ahpCD strain was notably more sensitive than its parent strain to hydrogen peroxide (H2O2) but not to two organic peroxides, in the early log phase. The expression of ahpCD was not controlled by a LysR-type transcriptional activator either in vitro or in vivo. The catalase activity of the ∆ahpCD strain was affected at a relatively low level of H2O2 stress. Furthermore, the ∆ahpCD strain induced a reduced number of stem nodules in S. rostrata with lowering of nitrogenase activity. These data suggest that A. caulinodans AhpCD is not only important for H2O2 detoxification in vitro but also critical for symbiosis with S. rostrata. Functional analysis of AhpCD is worth investigating in other rhizobia to gain a comprehensive view of its contributions to ROS defence and symbiotic association with legumes.


Asunto(s)
Azorhizobium caulinodans/enzimología , Interacciones Huésped-Patógeno/genética , Estrés Oxidativo/genética , Peroxirredoxinas/metabolismo , Sesbania/microbiología , Simbiosis/genética , Azorhizobium caulinodans/efectos de los fármacos , Azorhizobium caulinodans/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peroxirredoxinas/genética
5.
FEMS Microbiol Lett ; 363(13)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27190162

RESUMEN

The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts.


Asunto(s)
Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/genética , Catalasa/metabolismo , Fijación del Nitrógeno , Estrés Oxidativo , Nodulación de la Raíz de la Planta , Factores de Transcripción/metabolismo , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Azorhizobium caulinodans/metabolismo , Catalasa/genética , Regulación Bacteriana de la Expresión Génica , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Simbiosis
6.
PLoS One ; 9(6): e99349, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24915109

RESUMEN

Cyanuric acid hydrolase (CAH) catalyzes the hydrolytic ring-opening of cyanuric acid (2,4,6-trihydroxy-1,3,5-triazine), an intermediate in s-triazine bacterial degradation and a by-product from disinfection with trichloroisocyanuric acid. In the present study, an X-ray crystal structure of the CAH-barbituric acid inhibitor complex from Azorhizobium caulinodans ORS 571 has been determined at 2.7 Å resolution. The CAH protein fold consists of three structurally homologous domains forming a ß-barrel-like structure with external α-helices that result in a three-fold symmetry, a dominant feature of the structure and active site that mirrors the three-fold symmetrical shape of the substrate cyanuric acid. The active site structure of CAH is similar to that of the recently determined AtzD with three pairs of active site Ser-Lys dyads. In order to determine the role of each Ser-Lys dyad in catalysis, a mutational study using a highly sensitive, enzyme-coupled assay was conducted. The 109-fold loss of activity by the S226A mutant was at least ten times lower than that of the S79A and S333A mutants. In addition, bioinformatics analysis revealed the Ser226/Lys156 dyad as the only absolutely conserved dyad in the CAH/barbiturase family. These data suggest that Lys156 activates the Ser226 nucleophile which can then attack the substrate carbonyl. Our combination of structural, mutational, and bioinformatics analyses differentiates this study and provides experimental data for mechanistic insights into this unique protein family.


Asunto(s)
Azorhizobium caulinodans/enzimología , Dipéptidos/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Triazinas/metabolismo , Secuencia de Aminoácidos , Barbitúricos/metabolismo , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Evolución Molecular , Enlace de Hidrógeno , Hidrolasas/antagonistas & inhibidores , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína , Electricidad Estática , Homología Estructural de Proteína
7.
Artículo en Inglés | MEDLINE | ID: mdl-23908033

RESUMEN

Cyanuric acid is synthesized industrially and forms during the microbial metabolism of s-triazine herbicides. Cyanuric acid is metabolized by some microorganisms via cyanuric acid hydrolase (CAH), which opens the s-triazine ring as a prelude to further metabolism. CAH is a member of the rare cyanuric acid hydrolase/barbiturase family. Here, the crystallization and preliminary X-ray diffraction analysis of CAH from Azorhizobium caulinodans are reported. CAH was cocrystallized with barbituric acid, a close analog of cyanuric acid that is a tight-binding competitive inhibitor. Crystals suitable for X-ray diffraction experiments were grown in conditions containing PEG 8K or magnesium sulfate as precipitants. An X-ray diffraction data set was collected from CAH-barbituric acid crystals to 2.7 Å resolution. The crystals were found to belong to space group I4122, with unit-cell parameters a = b = 237.9, c = 105.3 Å, α = ß = γ = 90°.


Asunto(s)
Amidohidrolasas/química , Azorhizobium caulinodans/enzimología , Proteínas Bacterianas/química , Amidohidrolasas/genética , Secuencia de Aminoácidos , Azorhizobium caulinodans/genética , Proteínas Bacterianas/genética , Cristalización , Datos de Secuencia Molecular , Difracción de Rayos X
8.
Appl Environ Microbiol ; 78(17): 6251-61, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22752172

RESUMEN

Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.


Asunto(s)
Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteasa La/metabolismo , Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Fijación del Nitrógeno , Tallos de la Planta/microbiología , Proteasa La/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sesbania/microbiología , Sesbania/fisiología , Simbiosis
9.
J Bacteriol ; 194(17): 4579-88, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22730121

RESUMEN

Cyanuric acid hydrolases (AtzD) and barbiturases are homologous, found almost exclusively in bacteria, and comprise a rare protein family with no discernible linkage to other protein families or an X-ray structural class. There has been confusion in the literature and in genome projects regarding the reaction products, the assignment of individual sequences as either cyanuric acid hydrolases or barbiturases, and spurious connection of this family to another protein family. The present study has addressed those issues. First, the published enzyme reaction products of cyanuric acid hydrolase are incorrectly identified as biuret and carbon dioxide. The current study employed (13)C nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry to show that cyanuric acid hydrolase releases carboxybiuret, which spontaneously decarboxylates to biuret. This is significant because it revealed that homologous cyanuric acid hydrolases and barbiturases catalyze completely analogous reactions. Second, enzymes that had been annotated incorrectly in genome projects have been reassigned here by bioinformatics, gene cloning, and protein characterization studies. Third, the AtzD/barbiturase family has previously been suggested to consist of members of the amidohydrolase superfamily, a large class of metallohydrolases. Bioinformatics and the lack of bound metals both argue against a connection to the amidohydrolase superfamily. Lastly, steady-state kinetic measurements and observations of protein stability suggested that the AtzD/barbiturase family might be an undistinguished protein family that has undergone some resurgence with the recent introduction of industrial s-triazine compounds such as atrazine and melamine into the environment.


Asunto(s)
Amidohidrolasas/química , Amidohidrolasas/metabolismo , Bacterias/enzimología , Triazinas/metabolismo , Amidohidrolasas/genética , Secuencia de Aminoácidos , Azorhizobium caulinodans/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biuret/metabolismo , Bradyrhizobium/enzimología , Datos de Secuencia Molecular , Moorella/enzimología , Filogenia , Rhizobium leguminosarum/enzimología , Alineación de Secuencia , Análisis de Secuencia de Proteína , Especificidad por Sustrato
10.
PLoS One ; 7(5): e36744, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22662125

RESUMEN

BACKGROUND: The microaerophilic bacterium Azorhizobium caulinodans, when fixing N(2) both in pure cultures held at 20 µM dissolved O(2) tension and as endosymbiont of Sesbania rostrata legume nodules, employs a novel, respiratory-membrane endo-hydrogenase to oxidize and recycle endogenous H(2) produced by soluble Mo-dinitrogenase activity at the expense of O(2). METHODS AND FINDINGS: From a bioinformatic analysis, this endo-hydrogenase is a core (6 subunit) version of (14 subunit) NADH:ubiquinone oxidoreductase (respiratory complex I). In pure A. caulinodans liquid cultures, when O(2) levels are lowered to <1 µM dissolved O(2) tension (true microaerobic physiology), in vivo endo-hydrogenase activity reverses and continuously evolves H(2) at high rates. In essence, H(+) ions then supplement scarce O(2) as respiratory-membrane electron acceptor. Paradoxically, from thermodynamic considerations, such hydrogenic respiratory-membrane electron transfer need largely uncouple oxidative phosphorylation, required for growth of non-phototrophic aerobic bacteria, A. caulinodans included. CONCLUSIONS: A. caulinodans in vivo endo-hydrogenase catalytic activity is bidirectional. To our knowledge, this study is the first demonstration of hydrogenic respiratory-membrane electron transfer among aerobic (non-fermentative) bacteria. When compared with O(2) tolerant hydrogenases in other organisms, A. caulinodans in vivo endo-hydrogenase mediated H(2) production rates (50,000 pmol 10(9)·cells(-1) min(-1)) are at least one-thousandfold higher. Conceivably, A. caulinodans respiratory-membrane hydrogenesis might initiate H(2) crossfeeding among spatially organized bacterial populations whose individual cells adopt distinct metabolic states in response to variant O(2) availability. Such organized, physiologically heterogeneous cell populations might benefit from augmented energy transduction and growth rates of the populations, considered as a whole.


Asunto(s)
Azorhizobium caulinodans/enzimología , Hidrogenasas/metabolismo , Azorhizobium caulinodans/crecimiento & desarrollo , Complejo I de Transporte de Electrón/metabolismo , Hidrógeno/metabolismo , Hidrogenasas/química , Oxidación-Reducción
11.
Appl Environ Microbiol ; 78(8): 2803-12, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22307295

RESUMEN

C(4)-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N(2)-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD(+)-malic enzyme (DME) is required for N(2) fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N(2) fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N(2) at reduced rates, a pckA dme double mutant had no N(2)-fixing activity (Fix(-)). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix(-) phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix(-) nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)(+)-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N(2) fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s).


Asunto(s)
Azorhizobium caulinodans/fisiología , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Fijación del Nitrógeno , Sesbania/fisiología , Sinorhizobium/fisiología , Simbiosis , Acetilcoenzima A/metabolismo , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Activadores de Enzimas/metabolismo , Inhibidores Enzimáticos/metabolismo , Fumaratos/metabolismo , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Análisis de Secuencia de ADN , Sesbania/microbiología , Sinorhizobium/enzimología , Sinorhizobium/metabolismo , Ácido Succínico/metabolismo
12.
PLoS One ; 4(3): e4695, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19277114

RESUMEN

BACKGROUND: Nitrogen (N(2)) fixation also yields hydrogen (H(2)) at 1:1 stoichiometric amounts. In aerobic diazotrophic (able to grow on N(2) as sole N-source) bacteria, orthodox respiratory hupSL-encoded hydrogenase activity, associated with the cell membrane but facing the periplasm (exo-hydrogenase), has nevertheless been presumed responsible for recycling such endogenous hydrogen. METHODS AND FINDINGS: As shown here, for Azorhizobium caulinodans diazotrophic cultures open to the atmosphere, exo-hydrogenase activity is of no consequence to hydrogen recycling. In a bioinformatic analysis, a novel seven-gene A. caulinodans hyq cluster encoding an integral-membrane, group-4, Ni,Fe-hydrogenase with homology to respiratory complex I (NADH: quinone dehydrogenase) was identified. By analogy, Hyq hydrogenase is also integral to the cell membrane, but its active site faces the cytoplasm (endo-hydrogenase). An A. caulinodans in-frame hyq operon deletion mutant, constructed by "crossover PCR", showed markedly decreased growth rates in diazotrophic cultures; normal growth was restored with added ammonium--as expected of an H(2)-recycling mutant phenotype. Using A. caulinodans hyq merodiploid strains expressing beta-glucuronidase as promoter-reporter, the hyq operon proved strongly and specifically induced in diazotrophic culture; as well, hyq operon induction required the NIFA transcriptional activator. Therefore, the hyq operon is constituent of the nif regulon. CONCLUSIONS: Representative of aerobic N(2)-fixing and H(2)-recycling alpha-proteobacteria, A. caulinodans possesses two respiratory Ni,Fe-hydrogenases: HupSL exo-hydrogenase activity drives exogenous H(2) respiration, and Hyq endo-hydrogenase activity recycles endogenous H(2), specifically that produced by N(2) fixation. To benefit human civilization, H(2) has generated considerable interest as potential renewable energy source as its makings are ubiquitous and its combustion yields no greenhouse gases. As such, the reversible, group-4 Ni,Fe-hydrogenases, such as the A. caulinodans Hyq endo-hydrogenase, offer promise as biocatalytic agents for H(2) production and/or consumption.


Asunto(s)
Azorhizobium caulinodans/enzimología , Proteínas Bacterianas/fisiología , Genes Bacterianos , Hidrógeno/metabolismo , Hidrogenasas/fisiología , Fijación del Nitrógeno/fisiología , Azorhizobium caulinodans/genética , Azorhizobium caulinodans/crecimiento & desarrollo , Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/genética , Secuencia de Bases , Secuencia Conservada , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucuronidasa/metabolismo , Hidrogenasas/clasificación , Hidrogenasas/genética , Datos de Secuencia Molecular , Fijación del Nitrógeno/genética , Operón/genética , Proteínas Recombinantes de Fusión/biosíntesis , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
FEMS Microbiol Lett ; 274(2): 173-9, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17651409

RESUMEN

Azorhizobium caulinodans is a symbiotic diazotroph that contains duplicated nifH genes. This study focused on the biological sense behind the duplication. In-frame deletion mutants of nifH1 and nifH2 were constructed in order to analyze nitrogen fixation activity, both in symbiosis and in free-living conditions. Symbiotic nitrogen fixation activity was not affected by deletion of nifH1 or nifH2, while free-living nitrogen fixation activity was significantly decreased. Deletion of nifH1 had a significant effect in semi-aerobic condition, while deletion of nifH2 was significant in microaerobic condition, suggesting functional differences between nifH1 and nifH2. Transcriptional activity of nifH1 was higher than nifH2, both in microaerobic and semi-aerobic conditions.


Asunto(s)
Azorhizobium caulinodans/genética , Genes Duplicados , Fijación del Nitrógeno/fisiología , Oxidorreductasas/genética , Azorhizobium caulinodans/enzimología
14.
J Enzyme Inhib Med Chem ; 22(2): 247-9, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17518353

RESUMEN

The penta-N-acetyl-chitopentaose 2 has been prepared by using recombinant E. coli strains harboring the nodC gene (encoding chitooligosaccharide synthase) from Azorhizobium caulinodans. Then, the deacetylase NodB removed the N-acetyl moiety from the nonreducing terminus of 2 to give tetra-N-acetyl-chitopentaose 3. N-Acylation of 3 with stearyl chloride was performed in DMF containing water and provided the corresponding lipo-chitopentaose nodulation factor 4. A binding chitinase assay indicated that 4 was much more stable than 3.


Asunto(s)
Quitinasas/química , Oligosacáridos/biosíntesis , Oligosacáridos/química , Acilación , Amidohidrolasas/química , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Proteínas Bacterianas/química , Escherichia coli/genética , Ingeniería Genética/métodos , Glucósidos/biosíntesis , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo
15.
J Biol Chem ; 280(26): 24539-43, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15878857

RESUMEN

Decaprenylphosphoryl-d-arabinose, the lipid donor of mycobacterial d-arabinofuranosyl residues, is synthesized from phosphoribose diphosphate rather than from a sugar nucleotide. The first committed step in the process is the transfer of a 5-phosphoribosyl residue from phosphoribose diphosphate to decaprenyl phosphate to form decaprenylphosphoryl-5-phosphoribose via a 5-phospho-alpha-d-ribose-1-diphosphate:decaprenyl-phosphate 5-phospho-ribosyltransferase. A candidate for the gene encoding this enzyme (Rv3806c) was identified in Mycobacterium tuberculosis, primarily via its homology to one of four genes responsible for d-arabinosylation of nodulation factor in Azorhizobium caulinodans. The resulting protein was predicted to contain eight or nine transmembrane domains. The gene was expressed in Escherichia coli, and membranes from the expression strain of E. coli but not from a control strain of E. coli were shown to convert phosphoribose diphosphate and decaprenyl phosphate into decaprenylphosphoryl-5-phosphoribose. Neither UDP-galactose nor GDP-mannose was active as a sugar donor. The enzyme favored polyprenyl phosphate with 50-60 carbon atoms, was unable to use C-20 polyprenyl phosphate, and used C-75 polyprenyl phosphate less efficiently than C-50 or C-60. It requires CHAPS detergent and Mg(2+) for activity. The Rv3806c gene encoding 5-phospho-alpha-d-ribose-1-diphosphate:decaprenyl-phosphate 5-phosphoribosyltransferase is known to be essential for the growth of M. tuberculosis, and the tuberculosis drug ethambutol inhibits other steps in arabinan biosynthesis. Thus the Rv3806c-encoded enzyme appears to be a good target for the development of new tuberculosis drugs.


Asunto(s)
Arabinosa/química , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Ribosa-Fosfato Pirofosfoquinasa/química , Ribosamonofosfatos/química , Antituberculosos/farmacología , Azorhizobium caulinodans/enzimología , Sitios de Unión , Western Blotting , Catálisis , Ácidos Cólicos/farmacología , Cromatografía en Capa Delgada , Clonación Molecular , Cartilla de ADN/química , Detergentes/farmacología , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Escherichia coli/metabolismo , Etambutol/farmacología , Guanosina Difosfato/química , Guanosina Difosfato Manosa/química , Concentración de Iones de Hidrógeno , Cinética , Magnesio/química , Modelos Químicos , Mutagénesis Sitio-Dirigida , Fosfatos/química , Reacción en Cadena de la Polimerasa , Polisacáridos/química , Estructura Terciaria de Proteína , Ribosa/química , Tinción con Nitrato de Plata , Especificidad por Sustrato , Factores de Tiempo , Uridina Difosfato/química , Uridina Difosfato Galactosa/química
16.
FEMS Microbiol Lett ; 237(2): 399-405, 2004 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15321689

RESUMEN

In this work, we report the cloning and sequencing of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster. Sequence analysis revealed the presence of 20 open reading frames hupTUVhypFhupSLCDFGHJK hypABhupRhypCDEhupE. The physical and genetic organization of A. caulinodans ORS571 hydrogenase system suggests a close relatedness to that of Rhodobacter capsulatus. In contrast to the latter species, a gene homologous to Rhizobium leguminosarum hupE was identified downstream of the hyp operon. A hupSL mutation drastically reduced the high levels of hydrogenase activity induced by the A. caulinodans ORS571 wild-type strain in symbiosis with Sesbania rostrata plants. However, no significant effects on dry weight and nitrogen content of S. rostrata plants inoculated with the hupSL mutant were observed in plant growth experiments.


Asunto(s)
Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Genes Bacterianos , Hidrogenasas/genética , Hidrogenasas/metabolismo , Secuencia de Aminoácidos , Azorhizobium caulinodans/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Fabaceae/metabolismo , Fabaceae/microbiología , Hidrogenasas/química , Datos de Secuencia Molecular , Fijación del Nitrógeno , Alineación de Secuencia , Análisis de Secuencia de ADN , Simbiosis
17.
Mol Microbiol ; 52(2): 485-500, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15066035

RESUMEN

During lateral root base nodulation, the microsymbiont Azorhizobium caulinodans enters its host plant, Sesbania rostrata, via the formation of outer cortical infection pockets, a process that is characterized by a massive production of H(2)O(2). Infection threads guide bacteria from infection pockets towards nodule primordia. Previously, two mutants were constructed that produce lipopolysaccharides (LPSs) similar to one another but different from the wild-type LPS, and that are affected in extracellular polysaccharide (EPS) production. Mutant ORS571-X15 was blocked at the infection pocket stage and unable to produce EPS. The other mutant, ORS571-oac2, was impaired in the release from infection threads and was surrounded by a thin layer of EPS in comparison to the wild-type strain that produced massive amounts of EPS. Structural characterization revealed that EPS purified from cultured and nodule bacteria was a linear homopolysaccharide of alpha-1,3-linked 4,6-O-(1-carboxyethylidene)-D-galactosyl residues. In situ H(2)O(2) localization demonstrated that increased EPS production during early stages of invasion prevented the incorporation of H(2)O(2) inside the bacteria, suggesting a role for EPS in protecting the microsymbiont against H(2)O(2). In addition, ex planta assays confirmed a positive correlation between increased EPS production and enhanced protection against H(2)O(2).


Asunto(s)
Azorhizobium caulinodans/química , Azorhizobium caulinodans/fisiología , Fabaceae/microbiología , Lipopolisacáridos/química , Raíces de Plantas/microbiología , Polisacáridos Bacterianos/química , Simbiosis , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Secuencia de Carbohidratos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , Lipopolisacáridos/metabolismo , Mutación , Nitrógeno/metabolismo , Polisacáridos Bacterianos/metabolismo
18.
Folia Microbiol (Praha) ; 46(3): 217-22, 2001.
Artículo en Inglés | MEDLINE | ID: mdl-11702406

RESUMEN

Azide-resistant mutants of Azorhizobium caulinodans strains Sb3, S78, SrR13 and SrS8 were isolated and screened for nitrate reductase activity. Selected nitrate reductase negative mutants were inoculated on Sesbania bispinosa and S. rostrata under sterile conditions in chillum jars to study their symbiotic behavior. Azide-resistant mutants exhibited either similar or higher symbiotic effectiveness than the parent strain after 30 d of plant growth. Nodule mass, nitrogenase activity and uptake hydrogenase activity of the mutants varied depending on the host as well as on the plant growth stage. In comparison to wild-type parent strains, four azide-resistant mutants, Sb3Az18, S78Az21, SrR13Az17 and SrS8Az6 showed significant increase in nodulation and nitrogen fixation as well as shoot dry mass of the inoculated plants.


Asunto(s)
Azorhizobium caulinodans/efectos de los fármacos , Azorhizobium caulinodans/genética , Mutágenos/farmacología , Azida Sódica/farmacología , Azorhizobium caulinodans/enzimología , Farmacorresistencia Bacteriana , Fabaceae/microbiología , Mutación/efectos de los fármacos , Nitrito Reductasas/metabolismo , Simbiosis
19.
J Bacteriol ; 183(24): 7067-75, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11717264

RESUMEN

The nodZ gene, which is present in various rhizobial species, is involved in the addition of a fucose residue in an alpha 1-6 linkage to the reducing N-acetylglucosamine residue of lipo-chitin oligosaccharide signal molecules, the so-called Nod factors. Fucosylation of Nod factors is known to affect nodulation efficiency and host specificity. Despite a lack of overall sequence identity, NodZ proteins share conserved peptide motifs with mammalian and plant fucosyltransferases that participate in the biosynthesis of complex glycans and polysaccharides. These peptide motifs are thought to play important roles in catalysis. NodZ was expressed as an active and soluble form in Escherichia coli and was subjected to site-directed mutagenesis to investigate the role of the most conserved residues. Enzyme assays demonstrate that the replacement of the invariant Arg-182 by either alanine, lysine, or aspartate results in products with no detectable activity. A similar result is obtained with the replacement of the conserved acidic position (Asp-275) into its corresponding amide form. The residues His-183 and Asn-185 appear to fulfill functions that are more specific to the NodZ subfamily. Secondary structure predictions and threading analyses suggest the presence of a "Rossmann-type" nucleotide binding domain in the half C-terminal part of the catalytic domain of fucosyltransferases. Site-directed mutagenesis combined with theoretical approaches have shed light on the possible nucleotide donor recognition mode for NodZ and related fucosyltransferases.


Asunto(s)
Azorhizobium caulinodans/enzimología , Proteínas Bacterianas , Fucosiltransferasas/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico/genética , Secuencia Conservada , Escherichia coli/genética , Fucosiltransferasas/química , Fucosiltransferasas/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Secundaria de Proteína , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido
20.
Microbiology (Reading) ; 147(Pt 8): 2233-2245, 2001 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-11496000

RESUMEN

Azorhizobium caulinodans mutant 62004 carries a null allele of pdhB, encoding the E1beta subunit of pyruvate dehydrogenase, which converts pyruvate to acetyl-CoA. This pdhB mutant completely lacks pyruvate oxidation activities yet grows aerobically on C(4) dicarboxylates (succinate, L-malate) as sole energy source, albeit slowly, and displays pleiotropic growth defects consistent with physiological acetyl-CoA limitation. Temperature-sensitive (ts), conditional-lethal derivatives of the pdhB mutant lack (methyl)malonate semialdehyde dehydrogenase activity, which thus also allows L-malate conversion to acetyl-CoA. The pdhB mutant remains able to fix N(2) in aerobic culture, but is unable to fix N(2) in symbiosis with host Sesbania rostrata plants and cannot grow microaerobically. In culture, A. caulinodans wild-type can use acetate, beta-D-hydroxybutyrate and nicotinate--all direct precursors of acetyl-CoA--as sole C and energy source for aerobic, but not microaerobic growth. Paradoxically, acetyl-CoA is thus a required intermediate for microaerobic oxidative energy transduction while not itself oxidized. Accordingly, A. caulinodans energy transduction under aerobic and microaerobic conditions is qualitatively different.


Asunto(s)
Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/crecimiento & desarrollo , Complejo Piruvato Deshidrogenasa/metabolismo , Acetilcoenzima A/metabolismo , Aerobiosis , Azorhizobium caulinodans/genética , Clonación Molecular , Medios de Cultivo , Prueba de Complementación Genética , Hidroxibutiratos/metabolismo , Datos de Secuencia Molecular , Mutación , NAD/metabolismo , Fijación del Nitrógeno , Oxidación-Reducción , Complejo Piruvato Deshidrogenasa/genética , Piruvatos/metabolismo , Succinatos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...