Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 458(3): 608-613, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25681770

RESUMEN

The epithelial-mesenchymal transition (EMT), a key process in the tumor metastatic cascade, is characterized by the loss of cell-cell junctions and cell polarity, as well as the acquisition of migratory and invasive properties. Snail is an EMT-inducer whose expression in several different epithelial cells, e.g., Madin-Darby canine kidney (MDCK), leads to EMT. To further understand EMT induced by Snail expression, the Cre-loxP site-specific recombination system was used to investigate its reversibility. Transfection of MDCK cells with loxP-flanked Snail (Snail-loxP) resulted in EMT induction, which included the acquisition of a spindle-shaped fibroblastic morphology, the downregulation of epithelial markers, and the upregulation of mesenchymal markers. DNA methylation of the E-cadherin promoter, which often occurs during E-cadherin downregulation, was not observed in Snail+ cells. After Cre-mediated excision of Snail-loxP, the cells reacquired an epithelial morphology, upregulated epithelial markers, and downregulated mesenchymal markers. Thus, EMT induced by Snail expression was reversible.


Asunto(s)
Bacteriófago P1/enzimología , Transición Epitelial-Mesenquimal , Integrasas/genética , Factores de Transcripción/genética , Animales , Cadherinas/genética , Línea Celular , Metilación de ADN , Perros , Expresión Génica , Vectores Genéticos/genética , Humanos , Células de Riñón Canino Madin Darby , Regiones Promotoras Genéticas , Factores de Transcripción de la Familia Snail , Transgenes
2.
Annu Rev Virol ; 2(1): 25-40, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26958905

RESUMEN

Cre-lox of bacteriophage P1 has become one of the most widely used tools for genetic engineering in eukaryotes. The origins of this tool date to more than 30 years ago when Nat L. Sternberg discovered the recombinase, Cre, and its specific locus of crossover, lox, while studying the maintenance of bacteriophage P1 as a stable plasmid. Recombinations mediated by Cre assist in cyclization of the DNA of infecting phage and in resolution of prophage multimers created by generalized recombination. Early in vitro work demonstrated that, although it shares similarities with the well-characterized bacteriophage λ integration, Cre-lox is in many ways far simpler in its requirements for carrying out recombination. These features would prove critical for its development as a powerful and versatile tool in genetic engineering. We review the history of the discovery and characterization of Cre-lox and touch upon the present direction of Cre-lox research.


Asunto(s)
Bacteriófago P1/enzimología , Ingeniería Genética/historia , Integrasas/metabolismo , Proteínas Virales/metabolismo , Virología/historia , Bacteriófago P1/genética , Bacteriófago P1/fisiología , Historia del Siglo XX , Integrasas/genética , Recombinación Genética , Proteínas Virales/genética , Integración Viral
3.
Nucleic Acids Res ; 42(6): 3871-83, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24371286

RESUMEN

The bacteriophage P1 recombination enhancement function (Ref) protein is a RecA-dependent programmable endonuclease. Ref targets displacement loops formed when an oligonucleotide is bound by a RecA filament and invades homologous double-stranded DNA sequences. Mechanistic details of this reaction have been explored, revealing that (i) Ref is nickase, cleaving the two target strands of a displacement loop sequentially, (ii) the two strands are cleaved in a prescribed order, with the paired strand cut first and (iii) the two cleavage events have different requirements. Cutting the paired strand is rapid, does not require RecA-mediated ATP hydrolysis and is promoted even by Ref active site variant H153A. The displaced strand is cleaved much more slowly, requires RecA-mediated ATP hydrolysis and does not occur with Ref H153A. The two cleavage events are also affected differently by solution conditions. We postulate that the second cleavage (displaced strand) is limited by some activity of RecA protein.


Asunto(s)
División del ADN , Desoxirribonucleasas/metabolismo , Rec A Recombinasas/metabolismo , Proteínas Virales/metabolismo , Adenosina Trifosfato/metabolismo , Bacteriófago P1/enzimología , ADN/química , ADN/metabolismo , Roturas del ADN de Doble Cadena
4.
Cell Cycle ; 13(3): 462-70, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24280829

RESUMEN

The spatiotemporal manipulations of gene expression by the Cre recombinase (Cre) of bacteriophage P1 has become an essential asset to understanding mammalian genetics. Accumulating evidence suggests that Cre activity can, in addition to excising targeted loxP sites, induce cytotoxic effects, including abnormal cell cycle progression, genomic instability, and apoptosis, which can accelerate cancer progression. It is speculated that these defects are caused by Cre-induced DNA damage at off-target sites. Here we report the formation of tetraploid keratinocytes in the epidermis of keratin 5 and/or keratin 14 promoter-driven Cre (KRT5- and KRT14-Cre) expressing mouse skin. Biochemical analyses and flow cytometry demonstrated that Cre expression also induces DNA damage, genomic instability, and tetraploidy in HCT116 cells, and live-cell imaging revealed an extension of the G 2 cell cycle phase followed by defective or skipping of mitosis as cause for the tetraploidy. Since tetraploidy eventually leads to aneuploidy, a hallmark of cancer, our findings highlight the importance of distinguishing non-specific cytopathic effects from specific Cre/loxP-driven genetic manipulations when using Cre-mediated gene deletions.


Asunto(s)
Daño del ADN , Integrasas/metabolismo , Tetraploidía , Proteínas Virales/metabolismo , Animales , Bacteriófago P1/enzimología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Citocinesis , Células Epidérmicas , Puntos de Control de la Fase G2 del Ciclo Celular , Inestabilidad Genómica , Células HCT116 , Humanos , Integrasas/genética , Queratina-14/genética , Queratina-5/genética , Queratinocitos/citología , Ratones Transgénicos , Mitosis , Regiones Promotoras Genéticas , Proteínas Virales/genética
5.
Tsitol Genet ; 47(3): 21-32, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23821951

RESUMEN

Lox sites of the Cre/lox recombination system from bacteriophage P1 were analyzed for their ability to affect on transgene expression when inserted upstream from a gene coding sequence adjacent to the right border (RB) of T-DNA. Wild and mutated types of lox sites were tested for their effect upon bar gene expression in plants obtained via Agrobacterium-mediated and biolistic transformation methods. Lox-mediated expression of bar gene, recognized by resistance of transgenic plants to PPT, occurred only in plants obtained via Agrobacterium-mediated transformation. RT-PCR analysis confirms that PPT-resistant phenotype of transgenic plants obtained via Agrobacterium-mediated transformation was caused by activation of bar gene. The plasmid with promoterless gus gene together with the lox site adjacent to the RB was constructed and transferred to Nicotiana tabacum as well. Transgenic plants exhibited GUS activity and expression of gus gene was detected in plant leaves. Expression of bar gene from the vectors containing lox site near RB allowed recovery of numerous PPT-resistant transformants of such important crops as Beta vulgaris, Brassica napus, Lactuca sativa and Solanum tuberosum. Our results demonstrate that the lox site sequence adjacent to the RB can be used to control bar gene expression in transgenic plants.


Asunto(s)
Agrobacterium/genética , Bacteriófago P1 , Expresión Génica , Integrasas/genética , Plantas Modificadas Genéticamente/genética , Recombinación Genética , Bacteriófago P1/enzimología , Bacteriófago P1/genética , ADN de Plantas/genética , Genes de Plantas , Vectores Genéticos/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Methods Mol Biol ; 845: 85-98, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22328369

RESUMEN

Reverse genetics is commonly used to identify and characterize genes involved in a variety of cellular processes. There is a limited set of positive selectable markers available for use in making gene deletions or other genetic manipulations in Cryptococcus neoformans. Here, we describe the adaptation of the Bacteriophage P1 Cre-loxP system for use in C. neoformans, and its application in the excision and reuse of the geneticin drug marker. This tool will allow investigators to make multiple, sequential gene deletions in the same strain, which should facilitate the analysis of multigene families.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Cryptococcus neoformans/genética , Eliminación de Gen , Integrasas/metabolismo , Mutagénesis Sitio-Dirigida/métodos , Bacteriófago P1/enzimología , Marcadores Genéticos/genética , Gentamicinas/metabolismo , Integrasas/genética
7.
Biomol NMR Assign ; 6(1): 87-9, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21822941

RESUMEN

Lysozyme (Lyz) encoded by phage P1 is required for host cell lysis upon infection. Lyz has a N-terminal Signal Anchor Release (SAR) domain, responsible for its secretion into the periplasm and for its accumulation in a membrane tethered inactive form. Here, we report sequence-specific (1)H, (13)C and (15)N resonance assignments for secreted inactive form of Lyz at pH 4.5.


Asunto(s)
Bacteriófago P1/enzimología , Endopeptidasas/química , Muramidasa/química , Resonancia Magnética Nuclear Biomolecular , Endopeptidasas/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Muramidasa/metabolismo , Estructura Secundaria de Proteína
8.
J Biol Chem ; 286(10): 8240-8251, 2011 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-21193392

RESUMEN

The bacteriophage P1-encoded Ref protein enhances RecA-dependent recombination in vivo by an unknown mechanism. We demonstrate that Ref is a new type of enzyme; that is, a RecA-dependent nuclease. Ref binds to ss- and dsDNA but does not cleave any DNA substrate until RecA protein and ATP are added to form RecA nucleoprotein filaments. Ref cleaves only where RecA protein is bound. RecA functions as a co-nuclease in the Ref/RecA system. Ref nuclease activity can be limited to the targeted strands of short RecA-containing D-loops. The result is a uniquely programmable endonuclease activity, producing targeted double-strand breaks at any chosen DNA sequence in an oligonucleotide-directed fashion. We present evidence indicating that cleavage occurs in the RecA filament groove. The structure of the Ref protein has been determined to 1.4 Å resolution. The core structure, consisting of residues 77-186, consists of a central 2-stranded ß-hairpin that is sandwiched between several α-helical and extended loop elements. The N-terminal 76 amino acid residues are disordered; this flexible region is required for optimal activity. The overall structure of Ref, including several putative active site histidine residues, defines a new subclass of HNH-family nucleases. We propose that enhancement of recombination by Ref reflects the introduction of directed, recombinogenic double-strand breaks.


Asunto(s)
Bacteriófago P1/enzimología , Roturas del ADN de Doble Cadena , Desoxirribonucleasas/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Rec A Recombinasas/química , Proteínas Virales/química , Bacteriófago P1/genética , Desoxirribonucleasas/genética , Desoxirribonucleasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Estructura Terciaria de Proteína , Rec A Recombinasas/metabolismo , Relación Estructura-Actividad , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
Methods Mol Biol ; 416: 261-77, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18392973

RESUMEN

Efficient genome-engineering tools have been developed for use in whole-genome essentiality studies. In this chapter, we describe a powerful genomic deletion tool, the Tn5-targeted Cre/loxP excision system, for determining genetic essentiality and minimizing bacterial genomes on a genome-wide scale. This tool is based on the Tn5 transposition system, phage P1 transduction, and the Cre/loxP excision system. We have generated two large pools of independent transposon insertion mutants in Escherichia coli using random transposition of two modified Tn5 transposons (TnKloxP and TnCloxP) with two different selection markers, kanamycin-resistance gene (Km(R)) or chloramphenicol-resistance gene (Cm(R)), and a loxP site. Transposon integration sites are identified by direct genome sequencing of the genomic DNA. By combining a mapped transposon mutation from each of the mutant pools into the same chromosome using phage P1 transduction and then excising the nonessential genomic regions flanked by the two loxP sites using Cre-mediated loxP recombination, we can obtain numerous E. coli deletion strains from which nonessential regions of the genome are deleted. In addition to the combinatorial deletion of the E. coli genomic regions, we can create a cumulative E. coli deletion strain from which all the individual deleted regions are excised. This process will eventually yield an E. coli strain in which the genome is reduced in size and contains only regions that are essential for viability.


Asunto(s)
Clonación Molecular/métodos , Elementos Transponibles de ADN , Escherichia coli/genética , Eliminación de Gen , Ingeniería Genética/métodos , Bacteriófago P1/enzimología , Escherichia coli/clasificación , Genoma Bacteriano , Integrasas/genética , Mutagénesis , Transducción Genética/métodos
10.
Mutat Res ; 624(1-2): 1-8, 2007 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17482649

RESUMEN

The bacteriophage P1 hot gene product is a homolog of the theta subunit of E. coli DNA polymerase III. Previous studies with hot cloned on a plasmid have shown that Hot protein can substitute for theta, as evidenced by its stabilizing effect on certain dnaQ mutator mutants carrying an unstable pol III proofreading subunit (epsilon subunit). These results are consistent with Hot, like theta, being a replication protein involved in stabilizing the intrinsically unstable epsilon proofreading function. However, the function of hot for the viral life cycle is less clear. In the present study, we show that the hot gene is not essential. Based on its promoter structure, hot has been previously classified as a "late" phage gene, a property that is not easily reconciled with a presumed replication function. Here, we clarify this issue by demonstrating that P1 hot is actively expressed both during the lysogenic state and in the early stages of a lytic induction, in addition to its expression in the late stage of phage development. The results indicate that P1 hot has a complex expression pattern, compatible with a model in which Hot may affect the host replication machinery to benefit overall phage replication.


Asunto(s)
Bacteriófago P1/enzimología , Bacteriófago P1/genética , ADN Polimerasa III/genética , Genes Virales , Proteínas Virales/genética , Bacteriófago P1/crecimiento & desarrollo , Bacteriófago P1/fisiología , Secuencia de Bases , Cartilla de ADN/genética , ADN Viral/genética , ADN Polimerasa Dirigida por ADN/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Expresión Génica , Genes Bacterianos , Resistencia a la Kanamicina/genética , Lisogenia/genética , Mutación , Replicación Viral
11.
Infect Immun ; 74(2): 1084-90, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428755

RESUMEN

Central to the study of type III secretion systems is the availability of reporter systems to monitor bacterial protein translocation into host cells. We report here the development of a bacteriophage P1 Cre recombinase-based system to monitor the translocation of bacterial proteins into mammalian cells. Bacteriophage P1 Cre recombinase fused to the secretion and translocation signals of Salmonella enterica serovar Typhimurium of the type III secreted protein SopE was secreted in a type III secretion system-dependent fashion. More importantly, the SopE-Cre chimera was translocated into host cells via the type III secretion system and activated the expression of luciferase and green fluorescent protein reporters of Cre recombinase activity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófago P1/enzimología , Genes Reporteros , Integrasas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas Virales/metabolismo , Animales , Proteínas Bacterianas/genética , Bacteriófago P1/genética , Células COS , Chlorocebus aethiops , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/genética , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Plásmidos , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Proteínas Virales/genética
12.
Transgenic Res ; 14(5): 793-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16245170

RESUMEN

Agroinfiltration was used to express transiently cre recombinase from bacteriophage P1 in planta. Activation of gfp expression after cre-mediated excision of a bar intervening sequence served as a marker to monitor site-specific recombination events in lox-target N. benthamiana plants. Gfp expressing regenerants from A. tumefaciens infiltrated leaves were obtained with an efficiency of about 34%. In 20% of the regenerants bar gene excision was due to the expression of stably integrated cre gene, whereas in 14% of plants site-specific recombination was a consequence of transient cre expression. Phenotypic and molecular data indicated that the recombined state has been transferred to the T(1 )generation. These results demonstrate the suitability of agroinfiltration for the expression of cre recombinase in vivo.


Asunto(s)
Nicotiana/genética , Agrobacterium tumefaciens/genética , Bacteriófago P1/enzimología , Bacteriófago P1/genética , Secuencia de Bases , ADN Bacteriano/genética , ADN Recombinante/genética , Expresión Génica , Técnicas de Transferencia de Gen , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Plantas Modificadas Genéticamente , Proteínas Recombinantes/genética , Recombinasas/genética , Recombinación Genética
13.
J Bacteriol ; 187(16): 5528-36, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16077097

RESUMEN

The theta subunit (holE gene product) of Escherichia coli DNA polymerase (Pol) III holoenzyme is a tightly bound component of the polymerase core. Within the core (alpha-epsilon-theta), the alpha and epsilon subunits carry the DNA polymerase and 3' proofreading functions, respectively, while the precise function of theta is unclear. holE homologs are present in genomes of other enterobacteriae, suggestive of a conserved function. Putative homologs have also been found in the genomes of bacteriophage P1 and of certain conjugative plasmids. The presence of these homologs is of interest, because these genomes are fully dependent on the host replication machinery and contribute few, if any, replication factors themselves. To study the role of these theta homologs, we have constructed an E. coli strain in which holE is replaced by the P1 homolog, hot. We show that hot is capable of substituting for holE when it is assayed for its antimutagenic action on the proofreading-impaired dnaQ49 mutator, which carries a temperature-sensitive epsilon subunit. The ability of hot to substitute for holE was also observed with other, although not all, dnaQ mutator alleles tested. The data suggest that the P1 hot gene product can substitute for the theta subunit and is likely incorporated in the Pol III complex. We also show that overexpression of either theta or Hot further suppresses the dnaQ49 mutator phenotype. This suggests that the complexing of dnaQ49-epsilon with theta is rate limiting for its ability to proofread DNA replication errors. The possible role of hot for bacteriophage P1 is discussed.


Asunto(s)
Bacteriófago P1/enzimología , Bacteriófago P1/genética , ADN Polimerasa III/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/virología , Proteínas Virales/genética , Alelos , Secuencia de Aminoácidos , ADN Polimerasa III/metabolismo , Reparación del ADN/genética , Proteínas de Escherichia coli/metabolismo , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Fenotipo , Filogenia , Proteínas Virales/metabolismo
14.
Science ; 307(5706): 113-7, 2005 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-15637279

RESUMEN

The P1 lysozyme Lyz is secreted to the periplasm of Escherichia coli and accumulates in an inactive membrane-tethered form. Genetic and biochemical experiments show that, when released from the bilayer, Lyz is activated by an intramolecular thiol-disulfide isomerization, which requires a cysteine in its N-terminal SAR (signal-arrest-release) domain. Crystal structures confirm the alternative disulfide linkages in the two forms of Lyz and reveal dramatic conformational differences in the catalytic domain. Thus, the exported P1 endolysin is kept inactive by three levels of control-topological, conformational, and covalent-until its release from the membrane is triggered by the P1 holin.


Asunto(s)
Bacteriófago P1/enzimología , Muramidasa/química , Muramidasa/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Membrana Celular/enzimología , Fenómenos Químicos , Química Física , Cristalografía por Rayos X , Cisteína/química , Activación Enzimática , Escherichia coli/enzimología , Escherichia coli/virología , Isomerismo , Membrana Dobles de Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Muramidasa/genética , Mutación , Conformación Proteica , Señales de Clasificación de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo
15.
Structure ; 12(12): 2221-31, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15576035

RESUMEN

DNA polymerase III, the main replicative polymerase of E. coli, contains a small subunit, theta, that binds to the epsilon proofreading subunit and appears to enhance the enzyme's proofreading function--especially under extreme conditions. It was recently discovered that E. coli bacteriophage P1 encodes a theta homolog, named HOT. The (1)H-(15)N HSQC spectrum of HOT exhibits more uniform intensities and less evidence of conformational exchange than that of theta; this uniformity facilitates a determination of the HOT solution structure by NMR. The structure contains three alpha helices, as reported previously for theta; however, the folding topology of the two proteins is very different. Residual dipolar coupling measurements on labeled theta support the conclusion that it is structurally homologous with HOT. As judged by CD measurements, the melting temperature of HOT was 62 degrees C, compared to 56 degrees C for theta, consistent with other data suggesting greater thermal stability of the HOT protein.


Asunto(s)
Bacteriófago P1/enzimología , ADN Polimerasa III/química , Proteínas Virales/química , Secuencia de Aminoácidos , Bacteriófago P1/química , Bacteriófago P1/genética , Dicroismo Circular , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , Escherichia coli/química , Escherichia coli/enzimología , Escherichia coli/genética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Alineación de Secuencia , Termodinámica , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Nucleic Acids Res ; 32(20): 6086-95, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15550568

RESUMEN

Sequencing of the 7 kb immC region from four P1-related phages identified a novel DNA recombinase that exhibits many Cre-like characteristics, including recombination in mammalian cells, but which has a distinctly different DNA specificity. DNA sequence comparison to the P1 immC region showed that all phages had related DNA terminase, C1 repressor and DNA recombinase genes. Although these genes from phages P7, phi(w39) and p15B were highly similar to those from P1, those of phage D6 showed significant divergence. Moreover, the D6 sequence showed evidence of DNA deletion and substitution in this region relative to the other phages. Characterization of the D6 site-specific DNA recombinase (Dre) showed that it was a tyrosine recombinase closely related to the P1 Cre recombinase, but that it had a distinct DNA specificity for a 32 bp DNA site (rox). Cre and Dre are heterospecific: Cre did not catalyze recombination at rox sites and Dre did not catalyze recombination at lox sites. Like Cre, Dre catalyzed both integrative and excisive recombination and required no other phage-encoded proteins for recombination. Dre-mediated recombination in mammalian cells showed that, like Cre, no host bacterial proteins are required for efficient Dre-mediated site-specific DNA recombination.


Asunto(s)
Bacteriófagos/enzimología , Bacteriófagos/genética , Integrasas/genética , Integrasas/metabolismo , Recombinación Genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Animales , Bacteriófago P1/enzimología , Bacteriófago P1/genética , Secuencia de Bases , Células CHO , Cricetinae , Cricetulus , ADN/química , ADN/metabolismo , Empaquetamiento del ADN , Escherichia coli/virología , Genes Virales , Datos de Secuencia Molecular , Proteínas Represoras/genética , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato , Ensamble de Virus
17.
Nucleic Acids Res ; 31(14): 3918-28, 2003 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-12853607

RESUMEN

Since the ban gene of bacteriophage P1 suppresses a number of conditionally lethal dnaB mutations in Escherichia coli, it was assumed that Ban protein is a DNA helicase (DnaB analogue) that can substitute for DnaB in the host replication machinery. We isolated and sequenced the ban gene, purified the product, and analysed the function of Ban protein in vitro and in vivo. Ban hydrolyses ATP, unwinds DNA and forms hexamers in the presence of ATP and magnesium ions. Since all existing conditionally lethal dnaB strains bear DnaB proteins that may interfere with the protein under study, we constructed a dnaB null strain by using a genetic set-up designed to provoke the conditional loss of the entire dnaB gene from E.coli cells. This novel tool was used to show that Ban restores the viability of cells that completely lack DnaB at 30 degrees C, but not at 42 degrees C. Surprisingly, growth was restored by the dnaB252 mutation at a temperature that is restrictive for ban and dnaB252 taken separately. This indicates that Ban and DnaB are able to interact in vivo. Complementary to these results, we demonstrate the formation of DnaB-Ban hetero-oligomers in vitro by ion exchange chromatography. We discuss the interaction of bacterial proteins and their phage-encoded analogues to fulfil functions that are essential to phage and host growth.


Asunto(s)
Proteínas Bacterianas , Bacteriófago P1/genética , ADN Helicasas/metabolismo , Escherichia coli/genética , Proteínas Virales/metabolismo , Secuencia de Aminoácidos , Bacteriófago P1/enzimología , ADN Helicasas/genética , ADN Viral/química , ADN Viral/genética , Dimerización , AdnB Helicasas , Escherichia coli/enzimología , Escherichia coli/crecimiento & desarrollo , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Unión Proteica , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/aislamiento & purificación
18.
Nat Biotechnol ; 20(10): 1018-23, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12244329

RESUMEN

An increasing number of microbial genomes have been completely sequenced, and functional analyses of these genomic sequences are under way. To facilitate these analyses, we have developed a genome-engineering tool for determining essential genes and minimizing bacterial genomes. We made two large pools of independent transposon mutants in Escherichia coli using modified Tn5 transposons with two different selection markers and precisely mapped the chromosomal location of 800 of these transposons. By combining a mapped transposon mutation from each of the mutant pools into the same chromosome using phage P1 transduction and then excising the flanked genomic segment by Cre-mediated loxP recombination, we obtained E. coli strains in which large genomic fragments (59-117 kilobases) were deleted. Some of these individual deletions were then combined into a single "cumulative deletion strain" that lacked 287 open reading frames (313.1 kilobases) but that nevertheless exhibited normal growth under standard laboratory conditions.


Asunto(s)
Clonación Molecular/métodos , Elementos Transponibles de ADN , Escherichia coli/genética , Eliminación de Gen , Ingeniería Genética/métodos , Genoma Bacteriano , Transducción Genética/métodos , Bacteriófago P1/enzimología , Línea Celular , Cromosomas Bacterianos , Escherichia coli/clasificación , Integrasas/genética , Mutagénesis , Recombinación Genética , Origen de Réplica , Especificidad de la Especie , Proteínas Virales/genética
19.
J Mol Biol ; 311(3): 453-9, 2001 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-11492999

RESUMEN

The site-specific recombinase Cre must employ control mechanisms to impose directionality on recombination. When two recombination sites (locus of crossing over in phage P1, loxP) are placed as direct repeats on the same DNA molecule, collision between loxP-bound Cre dimers leads to excision of intervening DNA. If two sites are placed as inverted repeats, the intervening segment is flipped around. Cre catalyzes these reactions in the absence of protein co-factors. Current models suggest that directionality is controlled at two steps in the recombination pathway: the juxtaposition of loxP sites and the single-strand-transfer reactions within the synaptic complex. Here, we show that in Escherichia coli strain 294-Cre, directionality for recombination is altered when the expression of Cre is increased. This leads to deletion instead of inversion on substrates carrying two loxP sites as inverted repeats. The nucleotide sequence composition of loxP sites remaining in aberrant products indicates that site alignment and/or DNA strand transfer in the in vivo Cre-loxP recombination pathway are not always tightly controlled.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Bacteriófago P1/enzimología , Bacteriófago P1/genética , Integrasas/metabolismo , Mutagénesis Sitio-Dirigida/genética , Recombinación Genética/genética , Proteínas Virales/metabolismo , Secuencia de Bases , Western Blotting , Dimerización , Escherichia coli/genética , Genes Reporteros/genética , Genes Virales/genética , Integrasas/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Eliminación de Secuencia/genética , Proteínas Virales/genética
20.
Nucleic Acids Res ; 29(12): E56-6, 2001 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-11410679

RESUMEN

The selective alteration of the genome using Cre recombinase to target the rearrangement of genes flanked by LOX recognition sequences has required the use of two separate genetic constructs in trans, one containing cre and the other containing the gene of interest flanked by LOX sites. We have developed a strategy in which both the cre recombinase gene and LOX recombination sites may be cloned within a single vector in cis. This method uses a modified form of Cre (CREM) that contains alterations to the 5' region including the introduction of a Kozak consensus sequence and insertion of a functional intron. This system allows for the inducible, tissue-specific activation or inactivation of gene expression in a single vector and can be utilized for the 300-fold amplification of gene expression from a weak promoter. This approach can be applied to targeting strategies for generating genetically altered mice and gene therapy.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Regulación de la Expresión Génica , Marcación de Gen/métodos , Vectores Genéticos/genética , Integrasas/metabolismo , Recombinación Genética/genética , Proteínas Virales , Animales , Bacteriófago P1/enzimología , Secuencia de Consenso/genética , Citomegalovirus/genética , Células Eucariotas/metabolismo , Sistema de Lectura Ribosómico/genética , Genes Reporteros/genética , Terapia Genética/métodos , Integrasas/genética , Intrones/genética , Ratones , Mutagénesis Insercional/genética , Especificidad de Órganos , Células Procariotas/metabolismo , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA