Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.195
Filtrar
1.
Beijing Da Xue Xue Bao Yi Xue Ban ; 56(2): 357-361, 2024 Apr 18.
Artículo en Chino | MEDLINE | ID: mdl-38595258

RESUMEN

Afferent baroreflex failure (ABF) is a rare disease. It refers to the clinical syndrome caused by the impairment of the afferent limb of the baroreflex or its central connections at the level of the medulla. The recognized causes include trauma, surgery in related areas (radical neck tumor surgery, carotid endarterectomy), neck radiotherapy, brain stem stroke, tumor growth paraganglioma and hereditary diseases, among which the most common cause is extensive neck surgery or radiotherapy for neck cancer. The main manifestations are fluctuating hypertension, orthostatic hypotension, paroxysmal tachycardia and bradycardia. This case is a young man, whose main feature is blood pressure fluctuation, accom-panied by neurogenic orthostatic hypotension (nOH). After examination, the common causes of hypertension and nOH were ruled out. Combined with the previous neck radiotherapy and neck lymph node dissection, it was considered that the blood pressure regulation was abnormal due to the damage of carotid sinus baroreceptor after radiotherapy for nasopharyngeal carcinoma and neck lymph node dissection, which was called ABF. At the same time, the patient was complicated with chronic hyponatremia. Combined with clinical and laboratory examination, the final consideration was caused by syndrome of in- appropriate antidiuretic hormone (SIADH). Baroreceptors controlled the secretion of heart rate, blood pressure and antidiuretic hormone through the mandatory "inhibition" signal. We speculate that the carotid sinus baroreceptor was damaged after neck radiotherapy and surgery, which leads to abnormal blood pressure regulation and nOH, while the function of inhibiting ADH secretion was weakened, resulting in higher ADH than normal level and mild hyponatremia. The goal of treating ABF patients was to reduce the frequency and amplitude of sudden changes in blood pressure and heart rate, and to alleviate the onset of symptomatic hypotension. At present, drug treatment is still controversial, and non-drug treatment may alleviate some patients' symptoms, but long-term effective treatment still needs further study. The incidence of ABF is not high, but it may lead to serious cardiovascular and cerebrovascular events, and the mechanism involved is extremely complicated, and there are few related studies. The reports of relevant medical records warn that patients undergoing neck radiotherapy or surgery should minimize the da-mage to the baroreceptor in the carotid sinus in order to reduce the adverse prognosis caused by complications.


Asunto(s)
Neoplasias de Cabeza y Cuello , Hipertensión , Hiponatremia , Hipotensión Ortostática , Masculino , Humanos , Barorreflejo/fisiología , Hipotensión Ortostática/complicaciones , Hiponatremia/complicaciones , Hipertensión/etiología , Presión Sanguínea , Neoplasias de Cabeza y Cuello/complicaciones , Frecuencia Cardíaca , Vasopresinas
2.
Menopause ; 31(5): 408-414, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38564706

RESUMEN

OBJECTIVE: We investigated the systemic arterial hypertension effects on cardiovascular autonomic modulation and baroreflex sensitivity (BRS) in women with or without preserved ovarian function. METHODS: A total of 120 women were allocated into two groups: middle-aged premenopausal women (42 ± 3 y old; n = 60) and postmenopausal women (57 ± 4 y old; n = 60). Each group was also divided into two smaller groups (n = 30): normotensive and hypertensive. We evaluated hemodynamic and anthropometric parameters, cardiorespiratory fitness, BRS, heart rate variability (HRV), and blood pressure variability. The effects of hypertension and menopause were assessed using a two-way analysis of variance. Post hoc comparisons were performed using the Student-Newman-Keuls test. RESULTS: Comparing premenopausal groups, women with systemic arterial hypertension showed lower BRS (9.1 ± 4.4 vs 13.4 ± 4.2 ms/mm Hg, P < 0.001 ) and HRV total variance (1,451 ± 955 vs 2,483 ± 1,959 ms 2 , P = 0.005) values than normotensive; however, the vagal predominance still remained. On the other hand, both postmenopausal groups showed an expressive reduction in BRS (8.3 ± 4.2 vs 11.3 ± 4.8 ms/mm Hg, P < 0.001) and HRV characterized by sympathetic modulation predominance (low-frequency oscillations; 56% ± 17 vs 44% ± 17, P < 0.001), in addition to a significant increase in blood pressure variability variance (28.4 ± 14.9 vs 22.4 ± 12.5 mm Hg 2 , P = 0.015) compared with premenopausal groups. Comparing both postmenopausal groups, the hypertensive group had significantly lower values ​​of HRV total variance (635 ± 449 vs 2,053 ± 1,720 ms 2 , P < 0.001) and BRS (5.3 ± 2.8 vs 11.3 ± 3.2 ms/mm Hg) than the normotensive. CONCLUSIONS: Hypertensive middle-aged premenopausal women present HRV autonomic modulation impairment, but they still maintain a vagal predominance. After menopause, even normotensive women show sympathetic autonomic predominance, which may also be associated with aging. Furthermore, postmenopausal women with hypertension present even worse cardiac autonomic modulation.


Asunto(s)
Sistema Nervioso Autónomo , Barorreflejo , Presión Sanguínea , Frecuencia Cardíaca , Hipertensión , Menopausia , Posmenopausia , Premenopausia , Humanos , Femenino , Persona de Mediana Edad , Hipertensión/fisiopatología , Adulto , Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Sistema Nervioso Autónomo/fisiopatología , Sistema Nervioso Autónomo/fisiología , Presión Sanguínea/fisiología , Menopausia/fisiología , Posmenopausia/fisiología , Premenopausia/fisiología , Sistema Cardiovascular/fisiopatología , Capacidad Cardiovascular/fisiología
3.
J Physiol Sci ; 74(1): 19, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500058

RESUMEN

The purpose of this study was to clarify sex differences in the inhibition of sympathetic vasomotor outflow which is caused by the loading of cardiopulmonary baroreceptors. Ten young males and ten age-matched females participated. The participants underwent a passive leg raising (PLR) test wherein they were positioned supine (baseline, 0º), and their lower limbs were lifted passively at 10º, 20º, 30º, and 40º. Each angle lasted for 3 min. Muscle sympathetic nerve activity (MSNA) was recorded via microneurography of the left radial nerve. Baseline MSNA was lower in females compared to males. MSNA burst frequency was decreased during the PLR in both males (- 6.2 ± 0.4 bursts/min at 40º) and females (- 6.5 ± 0.4 bursts/min at 40º), but no significant difference was detected between the two groups (P = 0.61). These results suggest that sex has minimal influence on the inhibition of sympathetic vasomotor outflow during the loading of cardiopulmonary baroreceptors in young individuals.


Asunto(s)
Pierna , Músculo Esquelético , Humanos , Masculino , Femenino , Músculo Esquelético/fisiología , Sistema Nervioso Simpático/fisiología , Presorreceptores , Extremidad Inferior , Presión Sanguínea/fisiología , Barorreflejo/fisiología , Frecuencia Cardíaca
4.
Clin Auton Res ; 34(1): 125-135, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38446362

RESUMEN

PURPOSE: Orthostasis increases the variability of continuously recorded blood pressure (BP). Low-frequency (LF) BP oscillations (Mayer waves) in this setting are related to the vascular-sympathetic baroreflex. Mechanisms of increased high-frequency (HF) BP oscillations at the periodicity of respiration during orthostasis have received less research attention. A previously reported patient with post-neurosurgical orthostatic hypotension (OH) and vascular-sympathetic baroreflex failure had large tilt-evoked, breathing-driven BP oscillations, suggesting that such oscillations can occur independently of vascular-sympathetic baroreflex modulation. In the present study we assessed effects of orthostasis on BP variability in the frequency domain in patient cohorts with or without OH. METHODS: Power spectral analysis of systolic BP variability was conducted on recordings from 73 research participants, 42 with neurogenic OH [13 pure autonomic failure, 14 Parkinson's disease (PD) with OH, 12 parkinsonian multiple system atrophy, and 3 status post-brainstem neurosurgery] and 31 without OH (control group of 16 healthy volunteers and 15 patients with PD lacking OH), before, during, and after 5' of head-up tilt at 90 degrees from horizontal. The data were log transformed for statistical testing. RESULTS: Across all subjects, head-up tilting increased HF power of systolic BP variability (p = 0.001), without a difference between the neurogenic OH and control groups. LF power during orthostasis was higher in the control than in the OH groups (p = 0.009). CONCLUSIONS: The results of this observational cohort study confirm those based on our case report and lead us to propose that even in the setting of vascular-sympathetic baroreflex failure orthostasis increases HF power of BP variability.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Hipotensión Ortostática , Humanos , Presión Sanguínea/fisiología , Barorreflejo/fisiología , Mareo , Frecuencia Cardíaca/fisiología , Respiración
5.
Sci Rep ; 14(1): 5669, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454093

RESUMEN

Squatting is an active posture test used in assessing baroreflex sensitivity, and the array of patients a physiotherapist handles may benefit from this test to avoid the adverse effects of exercise. Therefore, this study is designed to evaluate the effect of squatting on heart rate and blood pressure among undergraduate students. 35 males (mean age = 22.94 ± 1.846) and 40 females (mean age = 22.28 ± 2.075) participated in this experimental study. Demographic data and baseline cardiovascular parameters (blood pressure and heart rate) were taken before exercise. The exercise protocol, the squatting stress test, was done for 2 min, after which post-exercise blood pressure and heart rate were taken at one minute each. A repeated measure ANOVA and independent t-test were used to analyse the difference at the 0.05 alpha level. It was found that there was a significant difference between pre-exercise in lying and squatting post-exercise blood pressure and heart rate in the first and second minutes (p < 0.01), pre-exercise in lying and standing post-exercise blood pressure and heart rate in the first and second minutes (p < 0.01), pre-exercise in standing and standing post-exercise blood pressure and heart rate in the first and second minutes (p < 0.01), and pre-exercise in standing and squatting post-exercise blood pressure and heart rate in the first and second minutes (p < 0.01). Also, there was a significant difference in pre-exercise heart rate between lying and standing (p < 0.05) and not between the first minute and second minute post-squatting or standing exercise systolic blood pressure (p = 0.588) or diastolic blood pressure (p = 0.22-1). In conclusion, squatting trials among undergraduates revealed some statistically significant changes, especially between the cardiopulmonary parameters obtained in a standing position compared to lying and those measured after one minute. Therefore, caution should be observed when administering exercises that require changes in posture.


Asunto(s)
Barorreflejo , Postura , Masculino , Femenino , Humanos , Adulto Joven , Adulto , Postura/fisiología , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Barorreflejo/fisiología , Estudiantes
6.
J Physiol ; 602(6): 1049-1063, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38377223

RESUMEN

The blood pressure-lowering effect of aerobic training is preceded by improving cardiovascular autonomic control. We previously demonstrated that aerobic training conducted in the evening (ET) induces a greater decrease in blood pressure than morning training (MT). To study whether the greater blood pressure decrease after ET occurs through better cardiovascular autonomic regulation, this study aimed to compare MT versus ET on muscle sympathetic nerve activity (MSNA) and baroreflex sensitivity (BRS) in treated patients with hypertension. Elderly patients treated for hypertension were randomly allocated into MT (n = 12, 07.00-10.00 h) or ET (n = 11, 17.00-20.00 h) groups. Both groups trained for 10 weeks, 3 times/week, cycling for 45 min at moderate intensity. Beat-to-beat blood pressure (finger photoplethysmography), heart rate (electrocardiography) and MSNA (microneurography) were assessed at the initial and final phases of the study at baseline and during sequential bolus infusions of sodium nitroprusside and phenylephrine (modified-Oxford technique) to evaluate cardiac and sympathetic BRS. Mean blood pressure decreased significantly after ET but not after MT (-9 ± 11 vs. -1 ± 8 mmHg, P = 0.042). MSNA decreased significantly only after ET with no change after MT (-12 ± 5 vs. -3 ± 7 bursts/100 heart beats, P = 0.013). Sympathetic BRS improved after ET but not after MT (-0.8 ± 0.7 vs. 0.0 ± 0.8 bursts/100 heart beats/mmHg, P = 0.052). Cardiac BRS improved similarly in both groups (ET: +1.7 ± 1.8 vs. MT: +1.4 ± 1.9 ms/mmHg, Pphase  ≤ 0.001). In elderly patients treated for hypertension, only ET decreased mean blood pressure and MSNA and improved sympathetic BRS. These findings revealed that the sympathetic nervous system has a key role in ET's superiority to MT in blood pressure-lowering effect. KEY POINTS: Reducing muscle nerve sympathetic activity and increasing sympathetic baroreflex sensitivity plays a key role in promoting the greater blood pressure reduction observed with evening training. These findings indicated that simply changing the timing of exercise training may offer additional benefits beyond antihypertensive medications, such as protection against sympathetic overdrive and loss of baroreflex sensitivity, independent markers of mortality. Our new findings also suggest new avenues of investigation, such as the possibility that evening aerobic training may be beneficial in other clinical conditions with sympathetic overdrive, such as congestive heart failure and hypertrophic cardiomyopathy.


Asunto(s)
Sistema Cardiovascular , Hipertensión , Humanos , Anciano , Barorreflejo/fisiología , Hipertensión/terapia , Presión Sanguínea/fisiología , Corazón , Sistema Nervioso Simpático/fisiología , Frecuencia Cardíaca/fisiología , Músculo Esquelético
7.
Hypertension ; 81(4): 917-926, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38385250

RESUMEN

BACKGROUND: We tested the hypothesis that patients with heart failure with preserved ejection fraction (HFpEF) would have greater muscle sympathetic nerve activity (MSNA) at rest and sympathetic reactivity during a cold pressor test compared with non-heart failure controls. Further, given the importance of the baroreflex modulation of MSNA in the control of blood pressure (BP), we hypothesized that patients with HFpEF would exhibit a reduced sympathetic baroreflex sensitivity. METHODS: Twenty-eight patients with HFpEF and 44 matched controls (mean±SD: 71±8 versus 70±7 years; 9 men/19 women versus 16 men/28 women) were studied. BP, heart rate, and MSNA (microneurography) were measured during 6 to 10 minutes of supine rest and the 2-minute cold pressor test. Spontaneous sympathetic baroreflex sensitivity was assessed during supine rest. RESULTS: Patients with HFpEF had higher resting MSNA burst frequency (39±14 versus 31±12 bursts/min; P=0.020) and lower sympathetic baroreflex sensitivity (-2.83±0.76 versus -3.57±1.19 bursts/100 heartbeats/mm Hg; P=0.019) than controls, but burst incidence was not different between groups (56±19 versus 50±20 bursts/100 heartbeats; P=0.179). During the cold pressor test, increases in MSNA indices did not differ between groups (P=0.135-0.998), but patients had a smaller increase in diastolic BP (Δ4±6 versus Δ14±11 mm Hg; P<0.001) compared with controls. CONCLUSIONS: Despite augmented resting MSNA burst frequency, burst incidence was not significantly different between groups, and sympathetic baroreflex sensitivity was reduced in patients with HFpEF. Furthermore, patients had preserved sympathetic reactivity but attenuated diastolic BP responses during the cold pressor test. These data suggest that, during physiological stress, sympathetic reactivity is intact, but the peripheral pathway for sympathetic vasoconstriction may be impaired in HFpEF.


Asunto(s)
Insuficiencia Cardíaca , Masculino , Humanos , Femenino , Insuficiencia Cardíaca/diagnóstico , Volumen Sistólico , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Sistema Nervioso Simpático , Frecuencia Cardíaca/fisiología , Músculo Esquelético/fisiología
8.
Am J Physiol Regul Integr Comp Physiol ; 326(3): R230-R241, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38223938

RESUMEN

Although body fluid volume control by the kidneys may be classified as a long-term arterial pressure (AP) control system, it does not necessarily follow that the urine flow (UF) response to changes in AP is slow. We quantified the dynamic characteristics of the UF response to short-term AP changes by changing mean AP between 60 mmHg and 100 mmHg every 10 s according to a binary white noise sequence in anesthetized rats (n = 8 animals). In a baro-on trial (the carotid sinus baroreflex was enabled), the UF response represented the combined synergistic effects of pressure diuresis (PD) and neurally mediated antidiuresis (NMA). In a baro-fix trial (the carotid sinus pressure was fixed at 100 mmHg), the UF response mainly reflected the effect of PD. The UF step response was quantified using the sum of two exponential decay functions. The fast and slow components had time constants of 6.5 ± 3.6 s and 102 ± 85 s (means ± SD), respectively, in the baro-on trial. Although the gain of the fast component did not differ between the two trials (0.49 ± 0.21 vs. 0.66 ± 0.22 µL·min-1·kg-1·mmHg-1), the gain of the slow component was greater in the baro-on than in the baro-fix trial (0.51 ± 0.14 vs. 0.09 ± 0.39 µL·min-1·kg-1·mmHg-1, P = 0.023). The magnitude of NMA relative to PD was calculated to be 32.2 ± 29.8%. In conclusion, NMA contributed to the slow component, and its magnitude was approximately one-third of that of the effect of PD.NEW & NOTEWORTHY We quantified short-term dynamic characteristics of the urine flow (UF) response to arterial pressure (AP) changes using white noise analysis. The UF step response approximated the sum of two exponential decay functions with time constants of ∼6.5 s and 102 s. The neurally mediated antidiuretic (NMA) effect contributed to the slow component of the UF step response, with the magnitude of approximately one-third of that of the pressure diuresis (PD) effect.


Asunto(s)
Presión Arterial , Barorreflejo , Animales , Ratas , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Arterias Carótidas , Diuresis
9.
Mult Scler Relat Disord ; 83: 105416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244526

RESUMEN

BACKGROUND: Relapsing-remitting multiple sclerosis (RRMS) is a demyelinating disease of the central nervous system and cardiovascular autonomic dysfunction has been well documented in this population. The sympathetic nervous system contributes to beat-to-beat blood pressure regulation primarily by baroreflex control of the peripheral vasculature which may be impaired in females with RRMS. Even at rest, attenuated sympathetic control of vasomotor tone may result in large and frequent blood pressure excursions (i.e., greater blood pressure variability). Therefore, the primary purpose of this investigation was to test the following hypotheses; (1) females with RRMS have augmented beat-to-beat blood pressure variability compared to healthy controls and (2) reduced sympathetic baroreflex sensitivity in females with RRMS is related to augmented blood pressure variability. METHODS: Electrocardiogram and beat-to-beat blood pressure were continuously recorded during 8-10 min of supine rest in 26 females with clinically definite RRMS and 24 sex-, age- and BMI- matched healthy controls. Muscle sympathetic nerve activity (MSNA) was recorded in a subset of participants (MS, n = 15; CON, n = 14). Traditional statistical measurements of dispersions were used to index beat-to-beat blood pressure variability. Spontaneous sympathetic baroreflex sensitivity was quantified by sorting diastolic blood pressures into 3 mmHg bins and calculating MSNA burst incidence within each bin. Weighted linear regression was then used to account for the number of cardiac cycles in each bin and calculate slopes. Spontaneous cardiac baroreflex sensitivity was determined using the sequence method. RESULTS: Groups had similar resting mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), MSNA burst frequency and MSNA burst incidence (All P > 0.05). The standard deviation and interquartile range of MAP, SBP and DBP were less in females with RRMS compared to healthy controls (All P < 0.05). There were no between groups differences in sympathetic baroreflex sensitivity or cardiac baroreflex sensitivity (Both P > 0.05) and baroreflex sensitivity measures were not related to any indices of blood pressure variability (Both P > 0.05). CONCLUSION: These data suggest that females with RRMS have reduced beat-to-beat blood pressure variability. However, this does not appear to be related to changes in sympathetic or cardiac baroreflex sensitivity.


Asunto(s)
Hipertensión , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Humanos , Femenino , Masculino , Presión Sanguínea/fisiología , Barorreflejo/fisiología , Músculo Esquelético , Frecuencia Cardíaca/fisiología
10.
Sci Rep ; 14(1): 1215, 2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38216637

RESUMEN

Cardiovascular deconditioning and altered baroreflexes predispose returning astronauts to Orthostatic Intolerance. We assessed 7 astronauts (1 female) before and following long-duration spaceflight (146 ± 43 days) with minimal upright posture prior to testing. We applied lower body negative pressure (LBNP) of up to - 30 mmHg to supine astronauts instrumented for continual synchronous measurements of cardiovascular variables, and intermittent imaging the Portal Vein (PV) and Inferior Vena Cava (IVC). During supine rest without LBNP, postflight elevations to total peripheral resistance (TPR; 15.8 ± 4.6 vs. 20.8 ± 7.1 mmHg min/l, p < 0.05) and reductions in stroke volume (SV; 104.4 ± 16.7 vs. 87.4 ± 11.5 ml, p < 0.05) were unaccompanied by changes to heart rate (HR) or estimated central venous pressure (CVP). Small increases to systolic blood pressure (SBP) and diastolic blood pressure (DBP) were not statistically significant. Autoregressive moving average modelling (ARMA) during LBNP did not identify differences to either arterial (DBP → TPR and SBP → HR) or cardiopulmonary (CVP → TPR) baroreflexes consistent with intact cardiovascular control. On the other hand, IVC and PV diameter-CVP relationships during LBNP revealed smaller diameter for a given CVP postflight consistent with altered postflight venous wall dynamics.


Asunto(s)
Astronautas , Barorreflejo , Humanos , Femenino , Barorreflejo/fisiología , Presión Negativa de la Región Corporal Inferior , Presión Sanguínea/fisiología , Frecuencia Cardíaca/fisiología , Arterias
11.
Am J Physiol Heart Circ Physiol ; 326(3): H648-H654, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214903

RESUMEN

The prevalence of major depressive disorder (MDD) is highest in young adults and contributes to an increased risk of developing future cardiovascular disease (CVD). However, the underlying mechanisms remain unclear. The studies examining cardiac autonomic function that have included young unmedicated adults with MDD report equivocal findings, and few have considered the potential influence of disease severity or duration. We hypothesized that heart rate variability (HRV) and cardiac baroreflex sensitivity (BRS) would be reduced in young unmedicated adults with MDD (18-30 yr old) compared with healthy nondepressed young adults (HA). We further hypothesized that greater symptom severity would be related to poorer cardiac autonomic function in young adults with MDD. Heart rate and beat-to-beat blood pressure were continuously recorded during 10 min of supine rest to assess HRV and cardiac BRS in 28 HA (17 female, 22 ± 3 yr old) and 37 adults with MDD experiencing current symptoms of mild-to-moderate severity (unmedicated; 28 female, 20 ± 3 yr old). Neither HRV [root mean square of successive differences between normal heartbeats (RMSSD): 63 ± 34 HA vs. 79 ± 36 ms MDD; P = 0.14] nor cardiac BRS (overall gain, 21 ± 10 HA vs. 23 ± 7 ms/mmHg MDD; P = 0.59) were different between groups. In young adults with MDD, there was no association between current depressive symptom severity and either HRV (RMSSD, R2 = 0.004, P = 0.73) or cardiac BRS (overall gain, R2 = 0.02, P = 0.85). Taken together, these data suggest that cardiac autonomic dysfunction may not contribute to elevated cardiovascular risk factor profiles in young unmedicated adults with MDD of mild-to-moderate severity.NEW & NOTEWORTHY This study investigated cardiac autonomic function in young unmedicated adults with major depressive disorder (MDD). The results demonstrated that both heart rate variability and cardiac baroreflex sensitivity were preserved in young unmedicated adults with MDD compared with healthy nondepressed young adults. Furthermore, in young adults with MDD, current depressive symptom severity was not associated with any indices of cardiac autonomic function.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Trastorno Depresivo Mayor , Cardiopatías , Humanos , Femenino , Adulto Joven , Trastorno Depresivo Mayor/diagnóstico , Sistema Nervioso Autónomo , Corazón , Presión Sanguínea/fisiología , Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología
12.
Am J Physiol Heart Circ Physiol ; 326(3): H612-H622, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38214907

RESUMEN

Discharge of postganglionic muscle sympathetic nerve activity (MSNA) is related poorly to blood pressure (BP) in adults. Whether neural measurements beyond the prevailing level of MSNA can account for interindividual differences in BP remains unclear. The current study sought to evaluate the relative contributions of sympathetic-BP transduction and sympathetic baroreflex gain on resting BP in young adults. Data were analyzed from 191 (77 females) young adults (18-39 years) who underwent continuous measurement of beat-to-beat BP (finger photoplethysmography), heart rate (electrocardiography), and fibular nerve MSNA (microneurography). Linear regression analyses were computed to determine associations between sympathetic-BP transduction (signal-averaging) or sympathetic baroreflex gain (threshold technique) and resting BP, before and after controlling for age, body mass index, and MSNA burst frequency. K-mean clustering was used to explore sympathetic phenotypes of BP control and consequential influence on resting BP. Sympathetic-BP transduction was unrelated to BP in males or females (both R2 < 0.01; P > 0.67). Sympathetic baroreflex gain was positively associated with BP in males (R2 = 0.09, P < 0.01), but not in females (R2 < 0.01; P = 0.80), before and after controlling for age, body mass index, and MSNA burst frequency. K-means clustering identified a subset of participants with average resting MSNA, yet lower sympathetic-BP transduction and lower sympathetic baroreflex gain. This distinct subgroup presented with elevated BP in males (P < 0.02), but not in females (P = 0.10). Sympathetic-BP transduction is unrelated to resting BP, while the association between sympathetic baroreflex gain and resting BP in males reveals important sex differences in the sympathetic determination of resting BP.NEW & NOTEWORTHY In a sample of 191 normotensive young adults, we confirm that resting muscle sympathetic nerve activity is a poor predictor of resting blood pressure and now demonstrate that sympathetic baroreflex gain is associated with resting blood pressure in males but not females. In contrast, signal-averaged measures of sympathetic-blood pressure transduction are unrelated to resting blood pressure. These findings highlight sex differences in the neural regulation of blood pressure.


Asunto(s)
Barorreflejo , Hipertensión , Adulto Joven , Humanos , Masculino , Femenino , Presión Sanguínea/fisiología , Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Sistema Nervioso Simpático , Músculo Esquelético/inervación
13.
Artículo en Inglés | MEDLINE | ID: mdl-38220129

RESUMEN

The baroreflex involves cardiovascular homeostatic mechanisms that buffer the system against acute deviations in arterial blood pressure. It is comprised of the cardiac limb which involves adjustments in heart rate and the peripheral limb which involves adjustments in vascular resistance. This negative feedback loop mechanism has been investigated in numerous species of adult vertebrates, however our understanding of the maturation and functional importance of the reflex in developing animals remains poorly understood. In egglaying species, our knowledge of this mechanism is limited to the domestic chicken embryo and the embryonic alligator. While each of these species possess a cardiac baroreflex prior to hatching, they differ in the timing when it becomes functional, with the embryonic chicken possessing the reflex at 90% of incubation, while the alligator possesses the reflex at 70% of incubation. In an effort to determine if bird species might share similar patterns of active baroreflex function, we studied embryonic emus (Dromiceius novaehollandiae). However, we hypothesized that emus would possess a pattern of baroreflex function similar to that of the American alligator given the emu embryo possesses functional vagal tone at 70% of incubation, possibly indicating a more mature collection of cardiovascular control mechanism than those found in embryonic chickens. Our findings illustrate that emu embryos possess a hypotensive baroreflex at 90% of incubation. Therefore, our data fail to support our original hypothesis. While only two species of birds have been studied in this context, it could indicate that baroreflex function is not essential for cardiovascular homeostasis in birds for the majority of in ovo development.


Asunto(s)
Sistema Cardiovascular , Dromaiidae , Embrión de Pollo , Animales , Barorreflejo/fisiología , Pollos , Presión Arterial , Frecuencia Cardíaca/fisiología , Presión Sanguínea/fisiología
14.
J Appl Physiol (1985) ; 136(1): 189-198, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38059293

RESUMEN

Aging is accompanied by considerable deterioration of homeostatic systems, such as autonomic imbalance characterized by heightened sympathetic activity, lower parasympathetic tone, and depressed heart rate (HR) variability, which are aggravated by hypertension. Here, we hypothesized that these age-related deficits in aged hypertensive rats can be ameliorated by exercise training, with benefits to the cardiovascular system. Therefore, male 22-mo-old spontaneously hypertensive rats (SHRs) and age-matched Wistar Kyoto (WKY) submitted to moderate-intensity exercise training (T) or kept sedentary (S) for 8 wk were evaluated for hemodynamic/autonomic parameters, baroreflex sensitivity, cardiac sympathetic/parasympathetic tone and analysis of dopamine ß-hydroxylase (DBH+) and oxytocin (OT+) pathways of autonomic brain nuclei. Aged SHR-S versus WKY-S exhibited elevated mean arterial pressure (MAP: +51%) and HR (+20%), augmented pressure/HR variability, no cardiac vagal tone, and depressed reflex control of the heart (HR range, -28%; gain, -49%). SHR-T exhibited a lower resting HR, a partial reduction in the MAP (-14%), in the pressure/HR variabilities, and restored parasympathetic modulation, with improvement of baroreceptor reflex control when compared with SHR-S. Exercise training increased the ascending DBH+ projections conveying peripheral information to the paraventricular nucleus of hypothalamus (PVN), augmented the expression of OT+ neurons, and reduced the density of DBH+ neurons in the rostral ventrolateral medulla (RVLM) of SHR-T. Data indicate that exercise training induces beneficial neuroplasticity in brain autonomic circuitry, and it is highly effective to restore the parasympathetic tone, and attenuation of age-related autonomic imbalance and baroreflex dysfunction, thus conferring long-term benefits for cardiovascular control in aged hypertensive individuals.NEW & NOTEWORTHY Exercise training reduces high blood pressure and cardiovascular autonomic modulation in aged hypertensive rats. The dysfunction in the baroreflex sensitivity and impaired parasympathetic tone to the heart of aged hypertensive rats are restored by exercise training. Exercise induces beneficial neuroplasticity in the brain nuclei involved with autonomic control of cardiovascular function of aged hypertensive rats.


Asunto(s)
Barorreflejo , Hipertensión , Ratas , Masculino , Animales , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Ratas Endogámicas WKY , Ratas Endogámicas SHR , Frecuencia Cardíaca/fisiología , Plasticidad Neuronal
15.
J Sports Med Phys Fitness ; 64(2): 137-150, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37791830

RESUMEN

The objective of this review was to give an overview on the current knowledge on the neural mechanisms of cardiovascular regulation during acute exercise and the autonomic adaptations brought about by chronic exercise, that is, exercise training. Evidence derived mainly from human studies, which supports the contribution of the different control mechanisms, namely the centralcommand, the reflex drive from active muscles and the arterial baroreflex, with the attendant modifications in autonomic nervous system activity, in determining the acute cardiovascular responses to exercise are discussed, along with some controversial issues and evolving concepts in exercise physiology. In particular, data that show how the various neural mechanisms involved in cardiovascular regulation during exercise are differently modulated by factors related to the muscular activity being performed, such as the type and intensity of exercise and the size of the active muscle masses are presented, stressing the plasticity of the neural network. Thereafter, the clinical implications pertaining neural cardiovascular adaptations to exercise training are presented and discussed, in the context of cardiac diseases. In particular, I will summarize a series of investigations performed in our laboratory that utilized a new training methodology and different exercise formats to quantify the training load in cardiac patients. The way by which individualized exercise training doses affects the autonomic nervous system and the cardiorespiratory adaptations is highlighted.


Asunto(s)
Sistema Nervioso Autónomo , Ejercicio Físico , Humanos , Sistema Nervioso Autónomo/fisiología , Ejercicio Físico/fisiología , Corazón/fisiología , Barorreflejo/fisiología , Arterias
16.
Am J Physiol Regul Integr Comp Physiol ; 326(2): R121-R133, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047314

RESUMEN

Although Gaussian white noise (GWN) inputs offer a theoretical framework for identifying higher-order nonlinearity, an actual application to the data of the neural arc of the carotid sinus baroreflex did not succeed in fully predicting the well-known sigmoidal nonlinearity. In the present study, we assumed that the neural arc can be approximated by a cascade of a linear dynamic (LD) component and a nonlinear static (NS) component. We analyzed the data obtained using GWN inputs with a mean of 120 mmHg and standard deviations (SDs) of 10, 20, and 30 mmHg for 15 min each in anesthetized rats (n = 7). We first estimated the linear transfer function from carotid sinus pressure to sympathetic nerve activity (SNA) and then plotted the measured SNA against the linearly predicted SNA. The predicted and measured data pairs exhibited an inverse sigmoidal distribution when grouped into 10 bins based on the size of the linearly predicted SNA. The sigmoidal nonlinearity estimated via the LD-NS model showed a midpoint pressure (104.1 ± 4.4 mmHg for SD of 30 mmHg) lower than that estimated by a conventional stepwise input (135.8 ± 3.9 mmHg, P < 0.001). This suggests that the NS component is more likely to reflect the nonlinearity observed during pulsatile inputs that are physiological to baroreceptors. Furthermore, the LD-NS model yielded higher R2 values compared with the linear model and the previously suggested second-order Uryson model in the testing dataset.NEW & NOTEWORTHY We examined the input-size dependence of the baroreflex neural arc transfer characteristics during Gaussian white noise inputs. A linear dynamic-static nonlinear model yielded higher R2 values compared with a linear model and captured the well-known sigmoidal nonlinearity of the neural arc, indicating that the nonlinear dynamics contributed to determining sympathetic nerve activity. Ignoring such nonlinear dynamics might reduce our ability to explain underlying physiology and significantly limit the interpretation of experimental data.


Asunto(s)
Barorreflejo , Presorreceptores , Ratas , Animales , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Presorreceptores/fisiología , Sistema Nervioso Simpático/fisiología , Seno Carotídeo/inervación
18.
Exp Physiol ; 109(2): 214-226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38050866

RESUMEN

Autonomic dysfunction is a common complication of type 2 diabetes mellitus (T2DM). However, the character of dysfunction varies in different reports. Differences in measurement methodology and complications might have influenced the inconsistent results. We sought to evaluate comprehensively the relationship between abnormal glucose metabolism and autonomic function at rest and the response to exercise in healthy individuals and T2DM patients. We hypothesized that both sympathetic and parasympathetic indices would decrease with the progression of abnormal glucose metabolism in individuals with few complications related to high sympathetic tone. Twenty healthy individuals and 11 T2DM patients without clinically evident cardiovascular disease other than controlled hypertension were examined. Resting muscle sympathetic nerve activity (MSNA), heart rate variability, spontaneous cardiovagal baroreflex sensitivity (CBRS), sympathetic baroreflex sensitivity and the MSNA response to handgrip exercise were measured. Resting MSNA was lower in patients with T2DM than in healthy control subjects (P = 0.011). Resting MSNA was negatively correlated with haemoglobin A1c in all subjects (R = -0.45, P = 0.024). The parasympathetic components of heart rate variability and CBRS were negatively correlated with glycaemic/insulin indices in all subjects and even in the control group only (all, P < 0.05). In all subjects, the MSNA response to exercise was positively correlated with fasting blood glucose (R = 0.69, P < 0.001). Resting sympathetic activity and parasympathetic modulation of heart rate were decreased in relationship to abnormal glucose metabolism. Meanwhile, the sympathetic responses to handgrip were preserved in diabetics. The responses were correlated with glucose/insulin parameters throughout diabetic and control subjects. These results suggest the importance of a comprehensive assessment of autonomic function in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insulinas , Humanos , Fuerza de la Mano , Presión Sanguínea/fisiología , Sistema Nervioso Simpático/fisiología , Barorreflejo/fisiología , Frecuencia Cardíaca/fisiología , Glucosa , Músculo Esquelético/fisiología
20.
Comput Biol Med ; 168: 107690, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37984204

RESUMEN

Cardiovascular function is regulated by a short-term hemodynamic baroreflex loop, which tries to maintain arterial pressure at a normal level. In this study, we present a new multiscale model of the cardiovascular system named MyoFE. This framework integrates a mechanistic model of contraction at the myosin level into a finite-element-based model of the left ventricle pumping blood through the systemic circulation. The model is coupled with a closed-loop feedback control of arterial pressure inspired by a baroreflex algorithm previously published by our team. The reflex loop mimics the afferent neuron pathway via a normalized signal derived from arterial pressure. The efferent pathway is represented by a kinetic model that simulates the net result of neural processing in the medulla and cell-level responses to autonomic drive. The baroreflex control algorithm modulates parameters such as heart rate and vascular tone of vessels in the lumped-parameter model of systemic circulation. In addition, it spatially modulates intracellular Ca2+ dynamics and molecular-level function of both the thick and the thin myofilaments in the left ventricle. Our study demonstrates that the baroreflex algorithm can maintain arterial pressure in the presence of perturbations such as acute cases of altered aortic resistance, mitral regurgitation, and myocardial infarction. The capabilities of this new multiscale model will be utilized in future research related to computational investigations of growth and remodeling.


Asunto(s)
Barorreflejo , Ventrículos Cardíacos , Barorreflejo/fisiología , Presión Sanguínea/fisiología , Análisis de Elementos Finitos , Hemodinámica , Modelos Cardiovasculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...