Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Part Fibre Toxicol ; 21(1): 30, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39118174

RESUMEN

Plastic pollution is an emerging environmental issue, with microplastics and nanoplastics raising health concerns due to bioaccumulation. This work explored the impact of polystyrene nanoparticle (PS-NPs) exposure during prepuberty on male reproductive function post maturation in rats. Rats were gavaged with PS-NPs (80 nm) at 0, 3, 6, 12 mg/kg/day from postnatal day 21 to 95. PS-NPs accumulated in the testes and reduced sperm quality, serum reproductive hormones, and testicular coefficients. HE staining showed impaired spermatogenesis. PS-NPs disrupted the blood-testis barrier (BTB) by decreasing junction proteins, inducing inflammation and apoptosis. Transcriptomics identified differentially expressed genes related to metabolism, lysosome, apoptosis, and TLR4 signaling. Molecular docking revealed Cordycepin could compete with polystyrene for binding to TLR4. Cordycepin alleviated oxidative stress and improved barrier function in PS-NPs treated Sertoli cells. In conclusion, prepubertal PS-NPs exposure induces long-term reproductive toxicity in male rats, likely by disrupting spermatogenesis through oxidative stress and BTB damage. Cordycepin could potentially antagonize this effect by targeting TLR4 and warrants further study as a protective agent. This study elucidates the mechanisms underlying reproductive toxicity of PS-NPs and explores therapeutic strategies.


Asunto(s)
Barrera Hematotesticular , Desoxiadenosinas , Nanopartículas , Poliestirenos , Espermatogénesis , Testículo , Animales , Masculino , Desoxiadenosinas/farmacología , Barrera Hematotesticular/efectos de los fármacos , Poliestirenos/toxicidad , Nanopartículas/toxicidad , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Simulación del Acoplamiento Molecular , Microplásticos/toxicidad , Receptor Toll-Like 4/metabolismo , Apoptosis/efectos de los fármacos , Maduración Sexual/efectos de los fármacos , Sustancias Protectoras/farmacología
2.
Cells ; 13(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39120333

RESUMEN

The yak (Bos grunniens) is a valuable livestock animal endemic to the Qinghai-Tibet Plateau in China with low reproductive rates. Cryptorchidism is one of the primary causes of infertility in male yaks. Compared with normal testes, the tight junctions (TJs) of Sertoli cells (SCs) and the integrity of the blood-testis barrier (BTB) in cryptorchidism are both disrupted. MicroRNAs are hairpin-derived RNAs of about 19-25 nucleotides in length and are involved in a variety of biological processes. Numerous studies have shown the involvement of microRNAs in the reproductive physiology of yak. In this study, we executed RNA sequencing (RNA-seq) to describe the expression profiles of mRNAs and microRNAs in yaks with normal testes and cryptorchidism to identify differentially expressed genes. GO and KEGG analyses were used to identify the biological processes and signaling pathways which the target genes of the differentially expressed microRNAs primarily engaged. It was found that novel-m0230-3p is an important miRNA that significantly differentiates between cryptorchidism and normal testes, and it is down-regulated in cryptorchidism with p < 0.05. Novel-m0230-3p and its target gene CSF1 both significantly contribute to the regulation of cell adhesion and tight junctions. The binding sites of novel-m0230-3p with CSF1 were validated by a dual luciferase reporter system. Then, mimics and inhibitors of novel-m0230-3p were transfected in vitro into SCs, respectively. A further analysis using qRT-PCR, immunofluorescence (IF), and Western blotting confirmed that the expression of cell adhesion and tight-junction-related proteins Occludin and ZO-1 both showed changes. Specifically, both the mRNA and protein expression levels of Occludin and ZO-1 in SCs decreased after transfection with the novel-m0230-3p mimics, while they increased after transfection with the inhibitors, with p < 0.05. These were achieved via the CSF1/CSF1R/Ras signaling pathway. In summary, our findings indicate a negative miRNA-mRNA regulatory network involving the CSF1/CSF1R/Ras signaling pathway in yak SCs. These results provide new insights into the molecular mechanisms of CSF1 and suggest that novel-m0230-3p and its target protein CSF1 could be used as potential therapeutic targets for yak cryptorchidism.


Asunto(s)
Barrera Hematotesticular , MicroARNs , Transducción de Señal , Uniones Estrechas , Animales , Masculino , Barrera Hematotesticular/metabolismo , Uniones Estrechas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Bovinos , Células de Sertoli/metabolismo , Testículo/metabolismo , Regulación de la Expresión Génica
3.
Toxicology ; 507: 153888, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019315

RESUMEN

Titanium dioxide nanoparticles (TiO2 NPs) can reduce sperm number, but the mechanisms of defective spermatogenesis induced by TiO2 NPs have not been studied through cell-cell interactions at present. A kind of biomimetic three-dimensional blood-testis barrier microfluidic chip capable of intercellular communication was constructed with soft lithography techniques, including Sertoli cell (TM4), spermatogonia (GC-1) and vascular endothelial cell units, to study the mechanisms of TiO2 NPs-induced defective spermatogenesis. TM4 and GC-1 cells cultured in TiO2 NPs exposure and control chips were collected for transcriptomics and metabonomics analysis, and key proteins and metabolites in changed biological processes were validated. In TM4 cells, TiO2 NPs suppressed glucose metabolism, especially lactate production, which reduced energy substrate supply for spermatogenesis. TiO2 NPs also decreased the levels of key proteins and metabolites of lactate production. In GC-1 cells, TiO2 NPs disturbed chemokine signaling pathways regulating cell proliferation and interfered with glutathione metabolism. The Cxcl13, Stat3 and p-Stat3 levels and cell proliferation rate were decreased, and the GSR, GPX4 and GSH contents were increased in GC-1 cells in chips under TiO2 NPs treatment. The decrease in energy substrate supply for spermatogenesis and inhibition of spermatogonia proliferation could be the main mechanisms of defective spermatogenesis induced by TiO2 NPs.


Asunto(s)
Barrera Hematotesticular , Células de Sertoli , Espermatogénesis , Espermatogonias , Titanio , Masculino , Titanio/toxicidad , Espermatogénesis/efectos de los fármacos , Animales , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Barrera Hematotesticular/efectos de los fármacos , Ratones , Espermatogonias/efectos de los fármacos , Espermatogonias/metabolismo , Espermatogonias/patología , Línea Celular , Nanopartículas del Metal/toxicidad , Dispositivos Laboratorio en un Chip , Proliferación Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/patología , Comunicación Celular/efectos de los fármacos
4.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000467

RESUMEN

The hemolymph-testis barrier (HTB) is a reproduction barrier in Crustacea, guaranteeing the safe and smooth process of spermatogenesis, which is similar to the blood-testis barrier (BTB) in mammals. The MAPK signaling pathway plays an essential role in spermatogenesis and maintenance of the BTB. However, only a few studies have focused on the influence of MAPK on crustacean reproduction. In the present study, we knocked down and inhibited MAPK in Eriocheir sinensis. Increased defects in spermatogenesis were observed, concurrently with a damaged HTB. Further research revealed that es-MMP14 functions downstream of ERK and p38 MAPK and degrades junctional proteins (Pinin and ZO-1); es-CREB functions in the ERK cascade as a transcription factor of ZO-1. In addition, when es-MMP14 and es-CREB were deleted, the defects in HTB and spermatogenesis aligned with abnormalities in the MAPK. However, JNK impacts the integrity of the HTB by changing the distribution of intercellular junctions. In summary, the MAPK signaling pathway maintains HTB integrity and spermatogenesis through es-MMP14 and es-CREB, which provides insights into the evolution of gene function during barrier evolution.


Asunto(s)
Braquiuros , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Sistema de Señalización de MAP Quinasas , Espermatogénesis , Testículo , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Masculino , Braquiuros/metabolismo , Braquiuros/genética , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Testículo/metabolismo , Transducción de Señal , Barrera Hematotesticular/metabolismo
5.
Sci Total Environ ; 948: 174738, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39009145

RESUMEN

2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47), being the most prevalent congener of polybrominated diphenyl ethers (PBDEs), has been found to accumulate greatly in the environment and induce spermatogenesis dysfunction. However, the specific underlying factors and mechanisms have not been elucidated. Herein, male Sprague-Dawley (SD) rats were exposed to corn oil, 10 mg/kg body weight (bw) PBDE-47 or 20 mg/kg bw PBDE-47 by gavage for 30 days. PBDE-47 exposure led to blood-testis barrier (BTB) integrity disruption and aberrant spermatogenesis. Given that Sertoli cells are the main toxicant target, to explore the potential mechanism involved, we performed RNA sequencing (RNA-seq) in Sertoli cells, and the differentially expressed genes were shown to be enriched in ferroptosis and lysosomal pathways. We subsequently demonstrated that ferroptosis was obviously increased in testes and Sertoli cells upon exposure to PBDE-47, and the junctional function of Sertoli cells was restored after treatment with the ferroptosis inhibitor ferrostatin-1. Since glutathione peroxidase 4 (GPX4) was dramatically reduced in PBDE-47-exposed testes and Sertoli cells and considering the RNA-sequencing results, we examined the activity of chaperone-mediated autophagy (CMA) and verified that the expression of LAMP2a and HSC70 was upregulated significantly after PBDE-47 exposure. Notably, Lamp2a knockdown not only inhibited ferroptosis by suppressing GPX4 degradation but also restored the impaired junctional function induced by PBDE-47. These collective findings strongly indicate that PBDE-47 induces Sertoli cell ferroptosis through CMA-mediated GPX4 degradation, resulting in decreased BTB-associated protein expression and eventually leading to BTB integrity disruption and spermatogenesis dysfunction.


Asunto(s)
Barrera Hematotesticular , Ferroptosis , Éteres Difenilos Halogenados , Animales , Masculino , Ratas , Barrera Hematotesticular/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Éteres Difenilos Halogenados/toxicidad , Ratas Sprague-Dawley , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Espermatogénesis/efectos de los fármacos , Testículo/efectos de los fármacos
6.
Theriogenology ; 227: 120-127, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39059123

RESUMEN

Although bitter receptors, known as Tas2Rs, have been identified in the testes and mature sperm, their expression in testicular Sertoli cells (SCs) and their role in recognizing harmful substances to maintain the immune microenvironment remain unknown. To explore their potential function in spermatogenesis, this study utilized TM4 cells and discovered the high expression of the bitter receptor Tas2R143 in the cells. Interestingly, when the Tas2R143 gene was knocked down for 24 and 48 h, there was a significant downregulation (P < 0.05) in the expression of tight junction proteins (occludin and ZO-1) and NF-κB. Additionally, Western blot results demonstrated that the siRNA-133+NF-κB co-treatment group displayed a significant downregulation (P < 0.05) in the expression of occludin and ZO-1 compared to both the siRNA-133 transfection group and the NF-κB inhibitors treatment group. These findings suggest that Tas2R143 likely regulates the expression of occludin and ZO-1 through the NF-κB signaling pathway and provides a theoretical basis for studying the regulatory mechanism of bitter receptors in the reproductive system, aiming to attract attention to the chemical perception mechanism of spermatogenesis.


Asunto(s)
Barrera Hematotesticular , FN-kappa B , Transducción de Señal , FN-kappa B/metabolismo , Barrera Hematotesticular/metabolismo , Masculino , Animales , Línea Celular , Ratones , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética , Ocludina/metabolismo , Ocludina/genética , Proteínas de Uniones Estrechas/metabolismo , Proteínas de Uniones Estrechas/genética , Células de Sertoli/metabolismo
7.
Pestic Biochem Physiol ; 203: 106010, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084803

RESUMEN

Thiram, a prevalent dithiocarbamate insecticide in agriculture, is widely employed as a crop insecticide and preservative. Chronic exposure to thiram has been linked to various irreversible damages, including tibial cartilage dysplasia, erythrocytotoxicity, renal issues, and immune system compromise. Limited research exists on its effects on reproductive organs. This study investigated the reproductive toxicology in mouse testes exposure to varying concentrations (0, 30, 60, and 120 mg/kg) of thiram. Our study uncovered a series of adverse effects in mice subjected to thiram exposure, including emaciation, stunted growth, decreased water intake, and postponed testicular maturation. Biochemical analysis in thiram-exposed mice showed elevated levels of LDH and AST, while ALP, TG, ALT, and urea were decreased. Histologically, thiram disrupted the testis' microarchitecture and compromised its barrier function by widening the gap between spermatogenic cells and promoting fibrosis. The expression of pro-apoptotic genes (Bax, APAF1, Cytc, and Caspase-3) was downregulated, whereas Bcl-2 expression increased in thiram-treated mice compared to controls. Conversely, the expression of Atg5 was upregulated, and mTOR and p62 expression decreased, with a trend towards lower LC3b levels. Thiram also disrupted the blood-testis barrier, significantly reducing the mRNA expression of zona occludens-1 (ZO-1) and occludin. In conclusion, chronic exposure to high thiram concentrations (120 mg/kg) caused testicular tissue damage, affecting the blood-testis barrier and modulating apoptosis and autophagy through the Bcl-2/Bax and mTOR/Atg5/p62 pathways. This study contributes to understanding the molecular basis of thiram-induced reproductive toxicity and underscores the need for further research and precautions for those chronically exposed to thiram and its environmental residuals.


Asunto(s)
Apoptosis , Proteína 5 Relacionada con la Autofagia , Autofagia , Barrera Hematotesticular , Proteínas Proto-Oncogénicas c-bcl-2 , Serina-Treonina Quinasas TOR , Testículo , Tiram , Proteína X Asociada a bcl-2 , Animales , Masculino , Apoptosis/efectos de los fármacos , Ratones , Serina-Treonina Quinasas TOR/metabolismo , Barrera Hematotesticular/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Proteína 5 Relacionada con la Autofagia/genética , Autofagia/efectos de los fármacos , Tiram/toxicidad , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína Sequestosoma-1/metabolismo , Proteína Sequestosoma-1/genética , Insecticidas/toxicidad , Transducción de Señal/efectos de los fármacos
8.
Virulence ; 15(1): 2384564, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39072452

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) causes a highly contagious disease that threatens the global swine industry. Recent studies have focused on the damage that PRRSV causes to the reproductive system of male pigs, although pathological research is lacking. Therefore, we examined the pathogenic mechanisms in male piglets infected with PRRSV. Gross and histopathological changes indicated that PRRSV affected the entire reproductive system, as confirmed via immunohistochemical analysis. PRRSV infected Sertoli cells and spermatogonia. To test the new hypothesis that PRRSV infection in piglets impairs blood - testis barrier (BTB) development, we investigated the pathology of PRRSV damage in the BTB. PRRSV infection significantly decreased the quantity and proliferative capacity of Sertoli cells constituting the BTB. Zonula occludens-1 and ß-catenin were downregulated in cell - cell junctions. Transcriptome analysis revealed that several crucial genes and signalling pathways involved in the growth and development of Leydig cells, Sertoli cells, and tight junctions in the testes were downregulated. Apoptosis, necroptosis, inflammatory, and oxidative stress-related pathways were activated, whereas hormone secretion-related pathways were inhibited. Many Sertoli cells and spermatogonia underwent apoptosis during early differentiation. Infected piglets exhibited disrupted androgen secretion, leading to significantly reduced testosterone and anti-Müllerian hormone levels. A cytokine storm occurred, notably upregulating cytokines such as tumour necrosis factor-α and interleukin-6. Markers of oxidative-stress damage (i.e. H2O2, malondialdehyde, and glutathione) were upregulated, whereas antioxidant-enzyme activities (i.e. superoxide dismutase, total antioxidant capacity, and catalase) were downregulated. Our results demonstrated that PRRSV infected multiple organs in the male reproductive system, which impaired growth in the BTB.


Asunto(s)
Barrera Hematotesticular , Síndrome Respiratorio y de la Reproducción Porcina , Virus del Síndrome Respiratorio y Reproductivo Porcino , Células de Sertoli , Testículo , Animales , Masculino , Porcinos , Virus del Síndrome Respiratorio y Reproductivo Porcino/patogenicidad , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Síndrome Respiratorio y de la Reproducción Porcina/virología , Síndrome Respiratorio y de la Reproducción Porcina/patología , Células de Sertoli/virología , Células de Sertoli/metabolismo , Barrera Hematotesticular/virología , Testículo/virología , Testículo/patología , Espermatogonias/virología , Apoptosis , Células Intersticiales del Testículo/virología , Citocinas/metabolismo , Testosterona/sangre , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
9.
Ecotoxicol Environ Saf ; 280: 116578, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38861803

RESUMEN

Sertoli cells (SCs) maintain testicular homeostasis and promote spermatogenesis by forming the blood-testis barrier (BTB) and secreting growth factors. The pro-proliferative and anti-apoptotic effects of nerve growth factor (NGF) on SCs have been proved previously. It is still unclear whether the damage effect of arsenic on testis is related to the inhibition of NGF expression, and whether NGF can mitigate arsenic-induced testicular damage by decreasing the damage of SCs induced by arsenic. Here, the lower expression of NGF in testes of arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) was observed through detection of Western blot and Real-time PCR. Subsequently, hematoxylin and eosin (HE) staining, Evans blue staining and transmission electron microscopy were used to evaluate the pathology, BTB permeability and tight junction integrity in testes of control mice, arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) and arsenic + NGF treated mice (freely drinking water containing 15 mg/l of NaAsO2 + intraperitoneal injection with 30 µg/kg of NGF), respectively. Evidently, spermatogenic tubule epithelial cells in testis of arsenic exposed mice were disordered and the number of cell layers was reduced, accompanied by increased permeability and damaged integrity of the tight junction in BTB, but these changes were less obvious in testes of mice treated with arsenic + NGF. In addition, the sperm count, motility and malformation rate of mice treated with arsenic + NGF were also improved. On the basis of the above experiments, the viability and apoptosis of primary cultured SCs treated with arsenic (10 µM NaAsO2) or arsenic + NGF (10 µM NaAsO2 + 100 ng/mL NGF) were detected by Cell counting kit-8 (CCK8) and transferase-mediated DUTP-biotin nick end labeling (TUNEL) staining, respectively. It is found that NGF ameliorated the decline of growth activity and the increase of apoptosis in arsenic-induced SCs. This remarkable biological effect that NGF inhibited the increase of Bax expression and the decrease of Bcl-2 expression in arsenic-induced SCs was also determined by western blot and Real-time PCR. Moreover, the decrease in transmembrane resistance (TEER) and the expression of tight junction proteins ZO-1 and occludin was mitigated in SCs induced by arsenic due to NGF treatment. In conclusion, the above results confirmed that NGF could ameliorate the injury effects of arsenic on testis, which might be related to the function of NGF to inhibit arsenic-induced SCs injury.


Asunto(s)
Arsénico , Barrera Hematotesticular , Factor de Crecimiento Nervioso , Células de Sertoli , Testículo , Animales , Masculino , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Ratones , Arsénico/toxicidad , Testículo/efectos de los fármacos , Testículo/patología , Barrera Hematotesticular/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Apoptosis/efectos de los fármacos , Uniones Estrechas/efectos de los fármacos
10.
Lipids Health Dis ; 23(1): 180, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862993

RESUMEN

BACKGROUND: The management of male infertility continues to encounter an array of challenges and constraints, necessitating an in-depth exploration of novel therapeutic targets to enhance its efficacy. As an eight-carbon medium-chain fatty acid, octanoic acid (OCA) shows promise for improving health, yet its impact on spermatogenesis remains inadequately researched. METHODS: Mass spectrometry was performed to determine the fatty acid content and screen for a pivotal lipid component in the serum of patients with severe spermatogenesis disorders. The sperm quality was examined, and histopathological analysis and biotin tracer tests were performed to assess spermatogenesis function and the integrity of the blood-testis barrier (BTB) in vivo. Cell-based in vitro experiments were carried out to investigate the effects of OCA administration on Sertoli cell dysfunction. This research aimed to elucidate the mechanism by which OCA may influence the function of Sertoli cells. RESULTS: A pronounced reduction in OCA content was observed in the serum of patients with severe spermatogenesis disorders, indicating that OCA deficiency is related to spermatogenic disorders. The protective effect of OCA on reproduction was tested in a mouse model of spermatogenic disorder induced by busulfan at a dose 30 mg/kg body weight (BW). The mice in the study were separated into distinct groups and administered varying amounts of OCA, specifically at doses of 32, 64, 128, and 256 mg/kg BW. After evaluating sperm parameters, the most effective dose was determined to be 32 mg/kg BW. In vivo experiments showed that treatment with OCA significantly improved sperm quality, testicular histopathology and BTB integrity, which were damaged by busulfan. Moreover, OCA intervention reduced busulfan-induced oxidative stress and autophagy in mouse testes. In vitro, OCA pretreatment (100 µM) significantly ameliorated Sertoli cell dysfunction by alleviating busulfan (800 µM)-induced oxidative stress and autophagy. Moreover, rapamycin (5 µM)-induced autophagy led to Sertoli cell barrier dysfunction, while OCA administration exerted a protective effect by alleviating autophagy. CONCLUSIONS: This study demonstrated that OCA administration suppressed oxidative stress and autophagy to alleviate busulfan-induced BTB damage. These findings provide a deeper understanding of the toxicology of busulfan and a promising avenue for the development of novel OCA-based therapies for male infertility.


Asunto(s)
Autofagia , Barrera Hematotesticular , Busulfano , Caprilatos , Estrés Oxidativo , Células de Sertoli , Espermatogénesis , Masculino , Animales , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Busulfano/efectos adversos , Caprilatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Ratones , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Humanos , Espermatogénesis/efectos de los fármacos , Autofagia/efectos de los fármacos , Infertilidad Masculina/tratamiento farmacológico , Infertilidad Masculina/inducido químicamente , Infertilidad Masculina/patología , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Adulto
11.
Am J Physiol Cell Physiol ; 327(2): C291-C309, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38826136

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a family of "forever chemicals" including perfluorooctane sulfonate (PFOS). These toxic chemicals do not break down in the environment or in our bodies. In the human body, PFOS and perfluoroctanoic acid (PFOA) have a half-life (T1/2) of about 4-5 yr so low daily consumption of these chemicals can accumulate in the human body to a harmful level over a long period. Although the use of PFOS in consumer products was banned in the United States in 2022/2023, this forever chemical remains detectable in our tap water and food products. Every American tested has a high level of PFAS in their blood (https://cleanwater.org/pfas-forever-chemicals). In this report, we used a Sertoli cell blood-testis barrier (BTB) model with primary Sertoli cells cultured in vitro with an established functional tight junction (TJ)-permeability barrier that mimicked the BTB in vivo. Treatment of Sertoli cells with PFOS was found to perturb the TJ-barrier, which was the result of cytoskeletal disruption across the cell cytoplasm, disrupting actin and microtubule polymerization. These changes thus affected the proper localization of BTB-associated proteins at the BTB. Using RNA-Seq transcriptome profiling, bioinformatics analysis, and pertinent biochemical and cell biology techniques, it was discovered that PFOS -induced Sertoli cell toxicity through the c-Jun N-terminal kinase (JNK; also known as stress-activated protein kinase, SAPK) and its phosphorylated/active form p-JNK signaling pathway. More importantly, KB-R7943 mesylate (KB), a JNK/p-JNK activator, was capable of blocking PFOS-induced Sertoli cell injury, supporting the notion that PFOS-induced cell injury can possibly be therapeutically managed.NEW & NOTEWORTHY PFOS induces Sertoli cell injury, including disruption of the 1) blood-testis barrier function and 2) cytoskeletal organization, which, in turn, impedes male reproductive function. These changes are mediated by JNK/p-JNK signaling pathway. However, the use of KB-R7943, a JNK/p-JNK activator was capable of blocking PFOS-induced Sertoli cell injury, supporting the possibility of therapeutically managing PFOS-induced reproductive dysfunction.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Proteínas Quinasas JNK Activadas por Mitógenos , Células de Sertoli , Fluorocarburos/toxicidad , Ácidos Alcanesulfónicos/toxicidad , Masculino , Animales , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Células de Sertoli/patología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/genética , RNA-Seq , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/metabolismo , Uniones Estrechas/efectos de los fármacos , Uniones Estrechas/metabolismo , Uniones Estrechas/patología , Células Cultivadas , Ratones , Ratas , Ratas Sprague-Dawley
12.
Environ Geochem Health ; 46(7): 238, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849627

RESUMEN

Microplastics (MPs) are defined as plastic particles or fragments with a diameter of less than 5 mm. These particles have been identified as causing male reproductive toxicity, although the precise mechanism behind this association is yet to be fully understood. Recent research has found that exposure to polystyrene microplastics (PS-MPs) can disrupt spermatogenesis by impacting the integrity of the blood-testis barrier (BTB), a formidable barrier within mammalian blood tissues. The BTB safeguards germ cells from harmful substances and infiltration by immune cells. However, the disruption of the BTB leads to the entry of environmental pollutants and immune cells into the seminiferous tubules, resulting in adverse reproductive effects. Additionally, PS-MPs induce reproductive damage by generating oxidative stress, inflammation, autophagy, and alterations in the composition of intestinal flora. Despite these findings, the precise mechanism by which PS-MPs disrupt the BTB remains inconclusive, necessitating further investigation into the underlying processes. This review aims to enhance our understanding of the pernicious effects of PS-MP exposure on the BTB and explore potential mechanisms to offer novel perspectives on BTB damage caused by PS-MPs.


Asunto(s)
Barrera Hematotesticular , Microplásticos , Poliestirenos , Microplásticos/toxicidad , Poliestirenos/toxicidad , Masculino , Humanos , Barrera Hematotesticular/efectos de los fármacos , Animales , Espermatogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Contaminantes Ambientales/toxicidad
13.
Ecotoxicol Environ Saf ; 279: 116502, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38788563

RESUMEN

BACKGROUND: Despite the known reproductive toxicity induced by triptolide (TP) exposure, the regulatory mechanism underlying testicular vacuolization injury caused by TP remains largely obscure. METHODS: Male mice were subjected to TP at doses of 15, 30, and 60 µg/kg for 35 consecutive days. Primary Sertoli cells were isolated from 20-day-old rat testes and exposed to TP at concentrations of 0, 40, 80, 160, 320, and 640 nM. A Biotin tracer assay was conducted to assess the integrity of the blood-testis barrier (BTB). Transepithelial electrical resistance (TER) assays were employed to investigate BTB function in primary Sertoli cells. Histological structures of the testes and epididymides were stained with hematoxylin and eosin (H&E). The expression and localization of relevant proteins or pathways were assessed through Western blotting or immunofluorescence staining. RESULTS: TP exposure led to dose-dependent testicular injuries, characterized by a decreased organ coefficient, reduced sperm concentration, and the formation of vacuolization damage. Furthermore, TP exposure disrupted BTB integrity by reducing the expression levels of tight junction (TJ) proteins in the testes without affecting basal ectoplasmic specialization (basal ES) proteins. Through the TER assay, we identified that a TP concentration of 160 nM was optimal for elucidating BTB function in primary Sertoli cells, correlating with reductions in TJ protein expression. Moreover, TP exposure induced changes in the distribution of the BTB and cytoskeleton-associated proteins in primary Sertoli cells. By activating the AKT/mTOR signaling pathway, TP exposure disturbed the balance between mTORC1 and mTORC2, ultimately compromising BTB integrity in Sertoli cells. CONCLUSION: This investigation sheds light on the impacts of TP exposure on testes, elucidating the mechanism by which TP exposure leads to testicular vacuolization injury and offering valuable insights into comprehending the toxic effects of TP exposure on testes.


Asunto(s)
Barrera Hematotesticular , Citoesqueleto , Diterpenos , Compuestos Epoxi , Fenantrenos , Proteínas Proto-Oncogénicas c-akt , Células de Sertoli , Transducción de Señal , Serina-Treonina Quinasas TOR , Testículo , Masculino , Animales , Células de Sertoli/efectos de los fármacos , Células de Sertoli/patología , Diterpenos/toxicidad , Fenantrenos/toxicidad , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Testículo/efectos de los fármacos , Testículo/patología , Compuestos Epoxi/toxicidad , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratones , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/patología , Citoesqueleto/efectos de los fármacos , Ratas , Vacuolas/efectos de los fármacos , Ratas Sprague-Dawley
14.
Science ; 384(6698): 885-890, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781365

RESUMEN

Men or mice with homozygous serine/threonine kinase 33 (STK33) mutations are sterile owing to defective sperm morphology and motility. To chemically evaluate STK33 for male contraception with STK33-specific inhibitors, we screened our multibillion-compound collection of DNA-encoded chemical libraries, uncovered potent STK33-specific inhibitors, determined the STK33 kinase domain structure bound with a truncated hit CDD-2211, and generated an optimized hit CDD-2807 that demonstrates nanomolar cellular potency (half-maximal inhibitory concentration = 9.2 nanomolar) and favorable metabolic stability. In mice, CDD-2807 exhibited no toxicity, efficiently crossed the blood-testis barrier, did not accumulate in brain, and induced a reversible contraceptive effect that phenocopied genetic STK33 perturbations without altering testis size. Thus, STK33 is a chemically validated, nonhormonal contraceptive target, and CDD-2807 is an effective tool compound.


Asunto(s)
Anticoncepción , Anticonceptivos Masculinos , Inhibidores de Proteínas Quinasas , Proteínas Serina-Treonina Quinasas , Bibliotecas de Moléculas Pequeñas , Animales , Humanos , Masculino , Ratones , Barrera Hematotesticular/metabolismo , Anticonceptivos Masculinos/química , Anticonceptivos Masculinos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Testículo/efectos de los fármacos , Anticoncepción/métodos , Relación Estructura-Actividad
15.
Reprod Biol Endocrinol ; 22(1): 36, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570783

RESUMEN

Microtubule-associated protein 1a (Map1a) is a microtubule (MT) regulatory protein that binds to the MT protofilaments in mammalian cells to promote MT stabilization. Maps work with MT cleavage proteins and other MT catastrophe-inducing proteins to confer MT dynamics to support changes in the Sertoli cell shape to sustain spermatogenesis. However, no functional studies are found in the literature to probe its role in spermatogenesis. Using an RNAi approach, coupled with the use of toxicant-induced testis (in vivo)- and Sertoli cell (in vitro)-injury models, RNA-Seq analysis, transcriptome profiling, and relevant bioinformatics analysis, immunofluorescence analysis, and pertinent biochemical assays for cytoskeletal organization, we have delineated the functional role of Map1a in Sertoli cells and testes. Map1a was shown to support MT structural organization, and its knockdown (KD) also perturbed the structural organization of actin, vimentin, and septin cytoskeletons as these cytoskeletons are intimately related, working in concert to support spermatogenesis. More importantly, cadmium-induced Sertoli cell injury that perturbed the MT structural organization across the cell cytoplasm was associated with disruptive changes in the distribution of Map1a and a surge in p-p38-MAPK (phosphorylated p38-mitogen-activated protein kinase) expression but not total p38-MAPK. These findings thus support the notion that p-p38-MAPK activation is involved in cadmium-induced Sertoli cell injury. This conclusion was supported by studies using doramapimod, a specific p38-MAPK phosphorylation (activation) inhibitor, which was capable of restoring the cadmium-induced disruptive structural organization of MTs across the Sertoli cell cytoplasm. In summary: this study provides mechanistic insights regarding restoration of toxicant-induced Sertoli cell and testis injury and male infertility.


Asunto(s)
Actinas , Células de Sertoli , Ratas , Animales , Masculino , Actinas/metabolismo , Células de Sertoli/metabolismo , Cadmio , Ratas Sprague-Dawley , Barrera Hematotesticular/metabolismo , Microtúbulos/metabolismo , Testículo/metabolismo , Espermatogénesis/fisiología , Mamíferos
16.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612449

RESUMEN

Stress granules (SGs) are membraneless ribonucleoprotein (RNP)-based cellular foci formed in response to stress, facilitating cell survival by protecting against damage. Mammalian spermatogenesis should be maintained below body temperature for proper development, indicating its vulnerability to heat stress (HS). In this study, biotin tracer permeability assays showed that the inhibition of heat-induced SG assembly in the testis by 4-8 mg/kg cycloheximide significantly increased the percentage of seminiferous tubules with a damaged blood-testis barrier (BTB). Western blot results additionally revealed that the suppression of heat-induced SG assembly in Sertoli cell line, TM4 cells, by RNA inference of G3bp1/2 aggravated the decline in the BTB-related proteins ZO-1, ß-Catenin and Claudin-11, indicating that SGs could protect the BTB against damage caused by HS. The protein components that associate with SGs in Sertoli cells were isolated by sequential centrifugation and immunoprecipitation, and were identified by liquid chromatography with tandem mass spectrometry. Gene Ontology and KEGG pathway enrichment analysis revealed that their corresponding genes were mainly involved in pathways related to proteasomes, nucleotide excision repair, mismatch repair, and DNA replication. Furthermore, a new SG component, the ubiquitin associated protein 2 (UBAP2), was found to translocate to SGs upon HS in TM4 cells by immunofluorescence. Moreover, SG assembly was significantly diminished after UBAP2 knockdown by RNA inference during HS, suggesting the important role of UBAP2 in SG assembly. In addition, UBAP2 knockdown reduced the expression of ZO-1, ß-Catenin and Claudin-11, which implied its potential role in the function of the BTB. Overall, our study demonstrated the role of SGs in maintaining BTB functions during HS and identified a new component implicated in SG formation in Sertoli cells. These findings not only offer novel insights into the biological functions of SGs and the molecular mechanism of low fertility in males in summer, but also potentially provide an experimental basis for male fertility therapies.


Asunto(s)
Barrera Hematotesticular , ADN Helicasas , Masculino , Animales , Ratones , Proteínas de Unión a Poli-ADP-Ribosa , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Gránulos de Estrés , beta Catenina , ARN , Claudinas , Mamíferos
17.
Cell Tissue Res ; 396(2): 157-175, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38564020

RESUMEN

The blood-testis barrier (BTB) is formed adjacent to the seminiferous basement membrane. It is a distinct ultrastructure, partitioning testicular seminiferous epithelium into apical (adluminal) and basal compartments. It plays a vital role in developing and maturing spermatocytes into spermatozoa via reorganizing its structure. This enables the transportation of preleptotene spermatocytes across the BTB, from basal to adluminal compartments in the seminiferous tubules. Several bioactive peptides and biomolecules secreted by testicular cells regulate the BTB function and support spermatogenesis. These peptides activate various downstream signaling proteins and can also be the target themself, which could improve the diffusion of drugs across the BTB. The gap junction (GJ) and its coexisting junctions at the BTB maintain the immunological barrier integrity and can be the "gateway" during spermatocyte transition. These junctions are the possible route for toxicant entry, causing male reproductive dysfunction. Herein, we summarize the detailed mechanism of all the regulators playing an essential role in the maintenance of the BTB, which will help researchers to understand and find targets for drug delivery inside the testis.


Asunto(s)
Barrera Hematotesticular , Células de Sertoli , Masculino , Barrera Hematotesticular/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/citología , Humanos , Animales , Uniones Intercelulares/metabolismo , Espermatogénesis/fisiología , Uniones Comunicantes/metabolismo
18.
Toxicol Sci ; 200(1): 70-78, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38565259

RESUMEN

Peritubular macrophages (PTMφ) are predominantly localized near spermatogonial stem cells in the testis. We previously revealed that exposure of peripubertal male Fischer rats to mono-(2-ethylhexyl) phthalate (MEHP) leads to increased PTMφs in the testis. The mechanisms that trigger increases in PTMφs in the testis are poorly understood. However, MEHP exposure is known to both induce spermatocyte apoptosis and to perturb the blood-testis barrier (BTB). This study aims to elucidate the association between the disruption of BTB and the increases of PTMφs in the testis by comparing the effects observed with MEHP to 2 other testicular toxicants with variable effects on the BTB and subtype of germ cell undergoing apoptosis. Methoxyacetic acid (MAA) acts directly on spermatocytes and does not affect BTB function, whereas cadmium chloride (CdCl2) induces profound injury to BTB. The results indicated that MAA exposure significantly increased spermatocyte apoptosis, whereas no significant changes in the numbers of PTMφs in the testis occurred. In contrast, CdCl2 exposure disrupted BTB function and increased the abundance of PTMφs in the testis. To further investigate whether MEHP-induced changes in BTB integrity accounted for the increase in PTMφs, a plasmid for LG3/4/5, the functional component of laminin-alpha 2, was overexpressed in the testis to stabilize BTB integrity before MEHP exposure. The results showed that LG3/4/5 overexpression substantially reduced the ability of MEHP to compromise BTB integrity and prevented the increase in PTMφ numbers after MEHP exposure. These results indicate that BTB disruption is necessary to increase PTMφs in the testis induced by toxicants.


Asunto(s)
Apoptosis , Barrera Hematotesticular , Dietilhexil Ftalato , Macrófagos , Ratas Endogámicas F344 , Testículo , Animales , Masculino , Barrera Hematotesticular/efectos de los fármacos , Barrera Hematotesticular/patología , Barrera Hematotesticular/metabolismo , Dietilhexil Ftalato/toxicidad , Dietilhexil Ftalato/análogos & derivados , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Macrófagos/efectos de los fármacos , Apoptosis/efectos de los fármacos , Cloruro de Cadmio/toxicidad , Acetatos/toxicidad , Ratas , Espermatocitos/efectos de los fármacos , Espermatocitos/patología
19.
Biol Reprod ; 111(1): 227-241, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38590182

RESUMEN

Sertoli cells act as highly polarized testicular cells that nutritionally support multiple stages of germ cell development. However, the gene regulation network in Sertoli cells for modulating germ cell development has yet to be fully understood. In this study, we report that heterogeneous nuclear ribonucleoproteins C in Sertoli cells are essential for germ cell development and male fertility. Conditional knockout of heterogeneous nuclear ribonucleoprotein C in mouse Sertoli cells leads to aberrant Sertoli cells proliferation, disrupted cytoskeleton of Sertoli cells, and compromised blood-testis barrier function, resulting in loss of supportive cell function and, ultimately, defective spermiogenesis in mice. Further ribonucleic acid-sequencing analyses revealed these phenotypes are likely caused by the dysregulated genes in heterogeneous nuclear ribonucleoprotein C-deficient Sertoli cells related to cell adhesion, cell proliferation, and apoptotic process. In conclusion, this study demonstrates that heterogeneous nuclear ribonucleoprotein C plays a critical role in Sertoli cells for maintaining the function of Sertoli cells and sustaining steady-state spermatogenesis in mice.


Asunto(s)
Fertilidad , Ratones Noqueados , Células de Sertoli , Espermatogénesis , Animales , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/fisiología , Espermatogénesis/fisiología , Espermatogénesis/genética , Ratones , Fertilidad/fisiología , Fertilidad/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Barrera Hematotesticular/metabolismo
20.
FASEB J ; 38(5): e23526, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430456

RESUMEN

Germ cell development depends on the capacity of somatic Sertoli cells to undergo differentiation into a mature state and establish a germ cell-specific blood-testis barrier (BTB). The BTB structure confers an immunological barrier for meiotic and postmeiotic germ cells, and its dynamic permeability facilitates a transient movement of preleptotene spermatocytes through BTB to enter meiosis. However, the regulatory factors involved in Sertoli cell maturation and how BTB dynamics coordinate germ cell development remain unclear. Here, we found a histone deacetylase HDAC3 abundantly expresses in Sertoli cells and localizes in both cytoplasm and nucleus. Sertoli cell-specific Hdac3 knockout in mice causes infertility with compromised integrity of blood-testis barrier, leading to germ cells unable to traverse through BTB and an accumulation of preleptotene spermatocytes in juvenile testis. Mechanistically, nuclear HDAC3 regulates the expression program of Sertoli cell maturation genes, and cytoplasmic HDAC3 forms a complex with the gap junction protein Connexin 43 to modulate the BTB integrity and dynamics through regulating the distribution of tight junction proteins. Our findings identify HDAC3 as a critical regulator in promoting Sertoli cell maturation and maintaining the homeostasis of the blood-testis barrier.


Asunto(s)
Barrera Hematotesticular , Histona Desacetilasas , Células de Sertoli , Animales , Masculino , Ratones , Barrera Hematotesticular/metabolismo , Diferenciación Celular , Células de Sertoli/metabolismo , Espermatocitos/metabolismo , Espermatogénesis/genética , Testículo/metabolismo , Uniones Estrechas/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA