Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 184: 106380, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37821049

RESUMEN

In developing countries, diarrhoea is a major issue of concern, where consistent use of antibiotics has resulted in several side effects along with development of resistance among pathogens against these antibiotics. Since natural products are becoming the treatment of choice, therefore present investigation involves mechanistic evaluation of antidiarrhoeal potential of Begonia roxburghii and its marker rutin against Shigella flexneri (SF) induced diarrhoea in rats following in vitro, in vivo and in silico protocols. The roots of the plant are used as vegetable in the North East India and are also used traditionally in treating diarrhoea. Phytochemically standardized ethanolic extract of B. roxburghii (EBR) roots and its marker rutin were first subjected to in vitro antibacterial evaluation against SF. Diarrhoea was induced in rats using suspension of SF and various diarrhoeagenic parameters were examined after first, third and fifth day of treatment at 100, 200 and 300 mg/kg, p.o. with EBR and 50 mg/kg, p.o. with rutin respectively. Additionally, density of SF in stools, stool water content, haematological and biochemical parameters, cytokine profiling, ion concentration, histopathology and Na+/K+-ATPase activity were also performed. Molecular docking and dynamics simulation studies of ligand rutin was studied against secreted extracellular protein A (Sep A, PDB: 5J44) from SF and Inducible nitric oxide synthase (iNOS, PDB: 1DD7) followed by network pharmacology. EBR and rutin demonstrated a potent antibacterial activity against SF and also showed significant recovery from diarrhoea (EBR: 81.29 ± 0.91% and rutin: 75.27 ± 0.89%) in rats after five days of treatment. EBR and rutin also showed significant decline in SF density in stools, decreased cytokine expression, potential antioxidant activity, cellular proliferative nature and recovered ion loss due to enhanced Na+/K+-ATPase activity, which was also supported by histopathology. Rutin showed a very high docking score of -11.61 and -9.98 kcal/mol against iNOS and Sep A respectively and their stable complex was also confirmed through dynamics, while network pharmacology suggested that, rutin is quite capable of modulating the pathways of iNOS and Sep A. Thus, we may presume that rutin played a key role in the observed antidiarrhoeal activity of B. roxburghii against SF induced diarrhoea.


Asunto(s)
Begoniaceae , Rutina , Ratas , Animales , Rutina/farmacología , Rutina/uso terapéutico , Shigella flexneri , Begoniaceae/metabolismo , Antidiarreicos/uso terapéutico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Simulación del Acoplamiento Molecular , Diarrea/tratamiento farmacológico , Diarrea/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Citocinas/metabolismo , Adenosina Trifosfatasas/metabolismo
2.
ACS Nano ; 16(12): 21334-21344, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36482510

RESUMEN

Plant photosynthesis is considered to be an environmentally friendly and effective measure for reducing carbon dioxide levels to meet the global objective of carbon neutrality. However, the light energy utilization of photosynthetic pigments is insufficient. Begonia pavonine (B. pavonina) with blue leaves exhibits a photosynthetic quantum yield 10% higher than those of other plants by virtue of their photonic crystal (PC) thylakoids. Inspired by this property, we prepared non-angle-dependent PC hydrogels and assembled them with algae Chlorella pyrenoidosa (C. pyre). The band edge of PC hydrogels matched the absorption peaks of C. pyre, and the resulting slow photon effect increased the interaction time between incident light and photosynthetic pigments, which in turn induced the expression of light-harvesting proteins and the synthesis of pigments, thereby improving the light energy utilization. Further, we introduced an artificial antenna into the assembly, which assisted the slow photon effect in increasing the oxygen evolution and carbon sequestration rate by more than 200%. This method avoids the photobleaching problems faced by methods of synthesizing artificial antenna pigments and the biosafety problems faced by genetically engineered methods of editing pigments or proteins.


Asunto(s)
Begoniaceae , Chlorella , Chlorella/metabolismo , Begoniaceae/metabolismo , Fotosíntesis , Plantas/metabolismo , Tilacoides/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo
3.
Plant Sci ; 312: 111045, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34620443

RESUMEN

The present study provides a visual insight into the effects of simulated microgravity (MG) on somatic embryogenesis (SE) in Begonia through the analysis of phytohormone fluctuations and energy metabolism. To investigate this relationship, thin cell layer culture model was first used. The results showed that MG changed the phytohormone content and stimulated starch biosynthesis to convert into sugar to release energy needed for regeneration and proliferation. Moreover, from the results it is likely that MG accelerated the initiation and subsequently maturation and aging of SE via decrease of AUX and increase of ABA. High content of GA, CKs, starch, sugar and low ABA as well as high CKs/ABA ratio were responsible for the increase in the number of embryos under clinorotation which was 1.57-fold higher than control after 90 days. The increase in fresh and dry weight of somatic embryos and chlorophyll content under MG were confirmed as their adaptive responses to gravitational stress. However, long-term exposure to MG (120 days) stimulated biosynthesis of ABA levels 1.85-fold higher than controls, which resulted in a decrease in chlorophyll content, increase in number of mature embryos and stomata length. These results revealed that MG regulated the induction, differentiation and senescence of somatic embryos via a biochemical interaction pathway.


Asunto(s)
Ácido Abscísico/metabolismo , Begoniaceae/crecimiento & desarrollo , Begoniaceae/metabolismo , Diferenciación Celular/efectos de los fármacos , Metabolismo Energético , Reguladores del Crecimiento de las Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Técnicas de Cultivo de Célula , Técnicas de Embriogénesis Somática de Plantas
4.
Sci Rep ; 11(1): 17773, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34493743

RESUMEN

Begonia is an important horticultural plant group, as well as one of the most speciose Angiosperm genera, with over 2000 described species. Genus wide studies of genome size have shown that Begonia has a highly variable genome size, and analysis of paralog pairs has previously suggested that Begonia underwent a whole genome duplication. We address the contribution of gene duplication to the generation of diversity in Begonia using a multi-tissue RNA-seq approach. We chose to focus on chalcone synthase (CHS), a gene family having been shown to be involved in biotic and abiotic stress responses in other plant species, in particular its importance in maximising the use of variable light levels in tropical plants. We used RNA-seq to sample six tissues across two closely related but ecologically and morphologically divergent species, Begonia conchifolia and B. plebeja, yielding 17,012 and 19,969 annotated unigenes respectively. We identified the chalcone synthase gene family members in our Begonia study species, as well as in Hillebrandia sandwicensis, the monotypic sister genus to Begonia, Cucumis sativus, Arabidopsis thaliana, and Zea mays. Phylogenetic analysis suggested the CHS gene family has high duplicate turnover, all members of CHS identified in Begonia arising recently, after the divergence of Begonia and Cucumis. Expression profiles were similar within orthologous pairs, but we saw high inter-ortholog expression variation. Sequence analysis showed relaxed selective constraints on some ortholog pairs, with substitutions at conserved sites. Evidence of pseudogenisation and species specific duplication indicate that lineage specific differences are already beginning to accumulate since the divergence of our study species. We conclude that there is evidence for a role of gene duplication in generating diversity through sequence and expression divergence in Begonia.


Asunto(s)
Aciltransferasas/genética , Begoniaceae/genética , Evolución Biológica , Duplicación de Gen , Proteínas de Plantas/genética , Transcriptoma , Secuencia de Aminoácidos , Secuencia de Bases , Begoniaceae/clasificación , Begoniaceae/metabolismo , Evolución Molecular , Ontología de Genes , Variación Genética , Genoma de Planta , Anotación de Secuencia Molecular , Familia de Multigenes , Especificidad de Órganos , Filogenia , Estructuras de las Plantas/metabolismo , ARN de Planta/biosíntesis , ARN de Planta/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
5.
Anal Biochem ; 597: 113692, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32198012

RESUMEN

NMR is one of the most important platforms for metabolomic studies. Though 2D NMR has been applied in metabolomics, most applications have mainly focused on metabolite identification whilst limitations causing a bottle-neck for applying high-throughput 2D NMR data for quantity related statistical analysis lies on the data interpretation methods. In this study, instead of using the traditional methods of calculating the 2D NMR data to search for the important features, a new procedure, which applies the high-resolution 1D NMR metabolites chemical shift range to filter the 2D NMR data, was developed. This new method was demonstrated using both a mixture of standard metabolites and a case study on plant extracts using 2D non-uniform sampling (NUS) total correlation spectroscopy (TOCSY) data. As a result, our method successfully filtered out the important features with a high success rate, and the extracted peaks showed high linearity between the calculated intensities and the concentrations of metabolites from a range of 0.05 mM-2 mM. The method was successfully applied to a metabolomics case study which included 18 Begonia samples that showed excellent peak extractions. In summary, our study has provided a practical new 2D NMR data extraction method for use in future metabolomics studies.


Asunto(s)
Metabolómica , Resonancia Magnética Nuclear Biomolecular/métodos , Extractos Vegetales/metabolismo , Begoniaceae/química , Begoniaceae/metabolismo , Extractos Vegetales/química
6.
Mol Biol Rep ; 46(6): 6027-6037, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31471731

RESUMEN

Begonia semperflorens (B. semperflorens), belonging to the family Begoniaceae, has now been widely cultivated worldwide and is famous for its ornamental plants with colourful flowers and distinctive leaves. The selection of appropriate internal reference genes is very important to accurately determine target gene expression via quantitative real-time PCR. However, internal reference gene selection has never been conducted in B. semperflorens. In this study, seven candidate reference genes of B. semperflorens, including 18S ribosomal RNA (Bs18S), pentatricopeptide repeat-containing protein (BsPPR), actin-related protein 5 isoform X2 (BsACT), DNAJ homologue subfamily C member 17 (BsDNAJ), glyceraldehyde-3-phosphate dehydrogenase (BsGAPDH), NAD-dependent malic enzyme 59 kDa isoform, mitochondria (BsNAD-ME), and peptidyl-prolyl cis-trans isomerase CYP26-2, chloroplast (BsCYP), which were obtained from our previous studies, were selected. The stabilities of these genes under stress conditions were analysed using geNorm and NormFinder. Validation of target gene expressions, including phenylalanine ammonia-lyase (BsPAL) and respiratory burst oxidase homologue D (BsRBOHD) under biotic and abiotic conditions, phenylalanine ammonia-lyase (BsPAL), anthocyanidin synthase (BsANS), chalcone synthase (BsCHS), and flavanone-3-hydroxylase (BsF3H) under low temperature, using these seven internal reference genes for normalisation further confirmed the stabilities of the selected genes and indicated the need for reference gene selection for normalising gene expressions in B. semperflorens. Of the seven candidate reference genes, the combination of BsACT, BsDNAJ, and BsNAD-ME was the ideal reference gene set for normalising gene expression in samples under biotic conditions. BsCYP combined with BsACT or BsGAPDH was the best reference gene pair under abiotic conditions. BsACT and BsPPR could be combined to normalise gene expression under low temperature. Our results will benefit future studies on gene expression in plants of Begoniaceae.


Asunto(s)
Begoniaceae/genética , Perfilación de la Expresión Génica/normas , Estándares de Referencia , Begoniaceae/metabolismo , Frío , Expresión Génica/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Estrés Fisiológico/genética
7.
J Plant Physiol ; 204: 1-7, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27497739

RESUMEN

The leaves of Begonia semperflorens accumulate anthocyanins and turn red in autumn in sub-temperate areas. This induction of anthocyanin biosynthesis in autumn has been attributed to the effects of low temperature, but the effects of different light regimes on this process are still being debated. In the present work, short days were found to be necessary for anthocyanin biosynthesis at low temperature. Under the same low-temperature conditions, Begonia seedlings grown under the short-day condition accumulated more carbohydrates and abscisic acid (ABA), which both induce anthocyanin biosynthesis. However, fewer carbohydrates and more gibberellin (GA) accumulated under the long-day conditions to maintain growth, which blocked anthocyanin biosynthesis and resulted in a lack of increases in the activities of dihydroflavonol 4-reductase (DFR) and flavonoid-3-O-glucosyl transferase (UFGT). Consequently, carbon flux, which was altered due to the blockade of anthocyanin synthesis, was channelled into the production of quercetin and phenolic acids but not lignin.


Asunto(s)
Antocianinas/biosíntesis , Begoniaceae/metabolismo , Frío , Fotoperiodo , Ácido Abscísico/análisis , Begoniaceae/enzimología , Begoniaceae/fisiología , Carbohidratos/análisis , Giberelinas/análisis , Lignina/análisis , Fenoles/análisis , Quercetina/análisis
8.
Anal Chem ; 88(4): 2406-12, 2016 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-26814403

RESUMEN

We have deployed an efficient secondary electrospray ionization source coupled to an Orbitrap mass analyzer (SESI-MS) to investigate the emissions of a Begonia semperflorens. We document how hundreds of species can be tracked with an unparalleled time resolution of 2 min during day-night cycles. To further illustrate the capabilities of this system for volatile organic compounds (VOCs) analysis, we subjected the plant to mechanical damage and monitored its response. As a result, ∼1200 VOCs were monitored displaying different kinetics. To validate the soundness of our in vivo measurements, we fully characterized some key compounds via tandem mass spectrometry (MS/MS) and confirmed their expected behavior based on prior gas chromatography/mass spectrometry (GC/MS) studies. For example, ß-caryophyllene, which is directly related to photosynthesis, was found to show a periodic day-night pattern with highest concentrations during the day. We conclude that the capability of SESI-MS to capture highly dynamic VOC emissions and wide analyte coverage makes it an attractive tool to complement GC/MS in plant studies.


Asunto(s)
Begoniaceae/química , Begoniaceae/metabolismo , Compuestos Orgánicos Volátiles/análisis , Luz , Peso Molecular , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Factores de Tiempo , Compuestos Orgánicos Volátiles/metabolismo
9.
Plant Biol (Stuttg) ; 15(6): 991-1000, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23578316

RESUMEN

Many plant leaves appear red in the autumn, and many papers have focused on the environmental factors and role of anthocyanin in this process. However few papers have examined the substances that are induced during this process. We hypothesised that excess sugar accumulation directly induces anthocyanin accumulation under autumn conditions. Using two methods (restricting phloem movement and exogenous sucrose feeding), we found that both surplus photosynthate and exogenous sucrose could induce anthocyanin biosynthesis, corresponding to up-regulation of several enzymes involved in anthocyanin biosynthesis (phenylalanine ammonia lyase, chalcone isomerase, dihydroflavonol 4-reductase and flavonoid 3-O-glucosyl transferase) and in transport (glutathione S-transferase). Our results suggest that excess carbohydrate may be the proximate trigger for induction of anthocyanin biosynthesis in autumn, but only when carbohydrates are accumulated for storage.


Asunto(s)
Antocianinas/metabolismo , Begoniaceae/metabolismo , Metabolismo de los Hidratos de Carbono , Regulación de la Expresión Génica de las Plantas , Antocianinas/análisis , Begoniaceae/fisiología , Glucanos/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/fisiología , Transpiración de Plantas , Estaciones del Año , Almidón/metabolismo , Sacarosa/metabolismo , Xilema/metabolismo , Xilema/fisiología
10.
Ann Bot ; 109(6): 1065-74, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22362664

RESUMEN

BACKGROUND AND AIMS: Foliar variegation is recognized as arising from two major mechanisms: leaf structure and pigment-related variegation. Begonia has species with a variety of natural foliar variegation patterns, providing diverse examples of this phenomenon. The aims of this work are to elucidate the mechanisms underlying different foliar variegation patterns in Begonia and to determine their physiological consequences. METHODS: Six species and one cultivar of Begonia were investigated. Light and electron microscopy revealed the leaf structure and ultrastructure of chloroplasts in green and light areas of variegated leaves. Maximum quantum yields of photosystem II were measured by chlorophyll fluorescence. Comparison with a cultivar of Ficus revealed key features distinguishing variegation mechanisms. KEY RESULTS: Intercellular space above the chlorenchyma is the mechanism of variegation in these Begonia. This intercellular space can be located (a) below the adaxial epidermis or (b) below the adaxial water storage tissue (the first report for any taxa), creating light areas on a leaf. In addition, chlorenchyma cell shape and chloroplast distribution within chlorenchyma cells differ between light and green areas. Chloroplasts from both areas showed dense stacking of grana and stroma thylakoid membranes. The maximum quantum yield did not differ significantly between these areas, suggesting minimal loss of function with variegation. However, the absence of chloroplasts in light areas of leaves in the Ficus cultivar led to an extremely low quantum yield. CONCLUSIONS: Variegation in these Begonia is structural, where light areas are created by internal reflection between air spaces and cells in a leaf. Two forms of air space structural variegation occur, distinguished by the location of the air spaces. Both forms may have a common origin in development where dermal tissue becomes loosely connected to mesophyll. Photosynthetic functioning is retained in light areas, and these areas do not include primary veins, potentially limiting the costs of variegation.


Asunto(s)
Begoniaceae/anatomía & histología , Begoniaceae/metabolismo , Cloroplastos/ultraestructura , Pigmentación/fisiología , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Begoniaceae/genética , Espacio Extracelular , Ficus/anatomía & histología , Ficus/metabolismo , Variación Genética , Genotipo , Fotosíntesis , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Especificidad de la Especie
11.
Ann Bot ; 91(7): 783-94, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12730064

RESUMEN

This study examined the influence of high light levels on antioxidant metabolism and the photosynthetic properties of Begonia x erythrophylla leaves. The pigment composition of shaded leaves and those developing in full sunlight was typical of shade- and sun-leaves, respectively. After 28 d in full sunlight, the preformed leaves of shade plants transferred to full sunlight (transferred-leaves) showed photo-bleaching with lower Chl (a + b) content and Chl a : Chl b ratios than shade-leaves, with Chl (a + b) : carotenoid ratios not significantly different. The variable/maximal fluorescence (Fv/Fm) of sun-leaves was not significantly different from that of shade-leaves, but transferred-leaves had reduced Fv : Fm ratios. Light response curves for the electron transport rate (ETR), the oxidation state of photosystem II (qP) and non-photochemical quenching (NPQ) showed significant differences between the three leaf types, with transferred-leaves not able to acclimate completely to full sunlight, having lower ETR, qP and NPQ values at high light levels than sun-leaves. Transfer to full sunlight caused a rapid increase in H2O2 and lipid hyperoxides, and a slight increase in protein oxidation. Ascorbate and glutathione levels decreased rapidly, as did the size of the total glutathione pool and, in addition to the general oxidation of proteins, rapid decreases in both the initial and total activities of chloroplastic fructose-1,6-bisphosphatase and glyceraldehyde-3-phosphate dehydrogenase were observed. These results suggest that a more oxidizing cellular environment is the likely cause of the photo-bleaching observed upon transfer of shade-leaves to full sunlight. Acclimation of transferred-leaves to full sunlight involved gradual increases in the activities of enzymes involved in antioxidant metabolism, including superoxide dismutase, catalase, glutathione reductase, ascorbate peroxidase, dehydroascorbate reductase and monodehydroascorbate reductase, but the levels of these enzymes still remained at levels lower than those found in sun-leaves.


Asunto(s)
Aclimatación/fisiología , Antioxidantes/metabolismo , Begoniaceae/fisiología , Aclimatación/efectos de la radiación , Begoniaceae/metabolismo , Begoniaceae/efectos de la radiación , Clorofila/metabolismo , Cloroplastos/fisiología , Cloroplastos/efectos de la radiación , Fluorescencia , Fructosa-Bifosfatasa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (NADP+)(Fosforilante)/metabolismo , Hibridación Genética/efectos de la radiación , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido/efectos de la radiación , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...