Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.959
Filtrar
1.
J Cell Mol Med ; 28(10): e18381, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780509

RESUMEN

Peritoneal fibrosis is a common pathological response to long-term peritoneal dialysis (PD) and a major cause for PD discontinuation. Understanding the cellular and molecular mechanisms underlying the induction and progression of peritoneal fibrosis is of great interest. In our study, in vitro study revealed that signal transducer and activator of transcription 3 (STAT3) is a key factor in fibroblast activation and extracellular matrix (ECM) synthesis. Furthermore, STAT3 induced by IL-6 trans-signalling pathway mediate the fibroblasts of the peritoneal stroma contributed to peritoneal fibrosis. Inhibition of STAT3 exerts an antifibrotic effect by attenuating fibroblast activation and ECM production with an in vitro co-culture model. Moreover, STAT3 plays an important role in the peritoneal fibrosis in an animal model of peritoneal fibrosis developed in mice. Blocking STAT3 can reduce the peritoneal morphological changes induced by chlorhexidine gluconate. In conclusion, our findings suggested STAT3 signalling played an important role in peritoneal fibrosis. Therefore, blocking STAT3 might become a potential treatment strategy in peritoneal fibrosis.


Asunto(s)
Ácidos Aminosalicílicos , Fibroblastos , Fibrosis Peritoneal , Fenotipo , Factor de Transcripción STAT3 , Transducción de Señal , Fibrosis Peritoneal/metabolismo , Fibrosis Peritoneal/patología , Fibrosis Peritoneal/etiología , Fibrosis Peritoneal/genética , Factor de Transcripción STAT3/metabolismo , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Ratones , Ácidos Aminosalicílicos/farmacología , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Peritoneo/patología , Peritoneo/metabolismo , Interleucina-6/metabolismo , Matriz Extracelular/metabolismo , Masculino , Ratones Endogámicos C57BL , Humanos , Clorhexidina/análogos & derivados , Clorhexidina/farmacología , Diálisis Peritoneal/efectos adversos , Bencenosulfonatos
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38612737

RESUMEN

Endotoxins are toxic lipopolysaccharides (LPSs), extending from the outer membrane of Gram-negative bacteria and notorious for their toxicity and deleterious effects. The comparison of different LPSs, isolated from various Gram-negative bacteria, shows a global similar architecture corresponding to a glycolipid lipid A moiety, a core oligosaccharide, and outermost long O-chain polysaccharides with molecular weights from 2 to 20 kDa. LPSs display high diversity and specificity among genera and species, and each bacterium contains a unique set of LPS structures, constituting its protective external barrier. Some LPSs are not toxic due to their particular structures. Different, well-characterized, and highly purified LPSs were used in this work to determine endotoxin detection rules and identify their impact on the host. Endotoxin detection is a major task to ensure the safety of human health, especially in the pharma and food sectors. Here, we describe the impact of different LPS structures obtained under different bacterial growth conditions on selective LPS detection methods such as LAL, HEK-blue TLR-4, LC-MS2, and MALDI-MS. In these various assays, LPSs were shown to respond differently, mainly attributable to their lipid A structures, their fatty acid numbers and chain lengths, the presence of phosphate groups, and their possible substitutions.


Asunto(s)
Bencenosulfonatos , Lípido A , Lipopolisacáridos , Humanos , Bacterias , Endotoxinas , Glucolípidos
3.
J Hazard Mater ; 470: 134154, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581871

RESUMEN

In this work, a multiplexed colorimetric strategy was initiated for simultaneous and fast visualization of dyes using low-cost and easy-to-prepare indicator papers as sorbents. Response surface methodology (RSM) was employed to model statistically and optimize the process variables for dyes extraction and colorimetric assays. Multiplexed colorimetry was realized by virtue of synchronous color alignments from different dimensions of multiple dyes co-stained colorimetric cards under RSM-optimized conditions, and smartphone-based image analysis was subsequently performed from different modes to double-check the credibility of colorimetric assays. As concept-to-proof trials, simultaneous visualization of dyes in both beverages and simulated dye effluents was experimentally proved with results highly matched to HPLC or spiked amounts at RSM-predicted staining time as short as 50 s ∼3 min, giving LODs as low as 0.97 ± 0.22/0.18 ± 0.08 µg/mL (tartrazine/brilliant blue) for multiplexed colorimetry, which much lower than those obtained by single colorimetry. Since this is the first case to propose such a RSM-guided multiplexed colorimetric concept, it will provide a reference for engineering of other all-in-one devices which can realize synchronous visualization applications within limited experimental steps.


Asunto(s)
Colorimetría , Colorantes , Teléfono Inteligente , Colorimetría/métodos , Colorantes/química , Colorantes/análisis , Contaminación de Alimentos/análisis , Tartrazina/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Procesamiento de Imagen Asistido por Computador/métodos , Bencenosulfonatos/química , Bebidas/análisis
4.
Bioorg Med Chem Lett ; 105: 129745, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614151

RESUMEN

A series of 8 novel pyridinyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PYRIB-SOs) were designed, prepared and evaluated for their mechanism of action. PYRIB-SOs were found to have antiproliferative activity in the nanomolar to submicromolar range on several breast cancer cell lines. Moreover, subsequent biofunctional assays indicated that the most potent PYRIB-SOs 1-3 act as antimitotics binding to the colchicine-binding site (C-BS) of α, ß-tubulin and that they arrest the cell cycle progression in the G2/M phase. Microtubule immunofluorescence and tubulin polymerisation assay confirm that they disrupt the cytoskeleton through inhibition of tubulin polymerisation as observed with microtubule-destabilising agents. They also show good overall theoretical physicochemical, pharmacokinetic and druglike properties. Overall, these results show that PYRIB-SOs is a new family of promising antimitotics to be further studied in vivo for biopharmaceutical and pharmacodynamic evaluations.


Asunto(s)
Antimitóticos , Proliferación Celular , Colchicina , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Colchicina/química , Colchicina/metabolismo , Colchicina/farmacología , Sitios de Unión , Antimitóticos/farmacología , Antimitóticos/química , Antimitóticos/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Bencenosulfonatos/química , Bencenosulfonatos/farmacología , Bencenosulfonatos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Tubulina (Proteína)/metabolismo , Estructura Molecular , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Moduladores de Tubulina/síntesis química , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Relación Dosis-Respuesta a Droga
5.
Environ Sci Pollut Res Int ; 31(19): 28525-28537, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38558348

RESUMEN

Herein, novel catalysts of Fe-containing zeolite-A (Fe/zeolite-A) were synthesized by exchanging iron ions into zeolite-A framework, and short-chain organic acids (SCOAs) were employed as chelating agents. Reactive Brilliant Blue KN-R (KN-R) was used as a model pollutant to evaluate the performance of these catalysts based on the heterogeneous Fenton reaction. The results showed that Fe-OA/3A, which applied zeolite-3A as the supporter and oxalic as the chelating agent, presented the most prominent KN-R decolorization efficiency. Under the initial pH of 2.5, 0.4 mM KN-R could be totally decolorized within 20 min. However, the mineralization efficiency of KN-R was only 58.2%. Therefore, anthraquinone dyes were introduced to modify zeolite-3A. As a result, the mineralization efficiency of KN-R was elevated to 92.7% when using Alizarin Violet (AV) as the modifier. Moreover, the modified catalysts exhibited excellent stability, the KN-R decolorization efficiency could be maintained above 95.0% within 20 min after operating for nine cycles. The mechanism revealed that the Fe(II)/Fe(III) cycle was accelerated by AV-modified catalyst thus prompting the KN-R decolorization in Fenton-like system. These findings provide new insights for preparing catalysts with excellent activity and stability for dye wastewater treatment.


Asunto(s)
Hierro , Zeolitas , Zeolitas/química , Hierro/química , Colorantes/química , Contaminantes Químicos del Agua/química , Catálisis , Antraquinonas/química , Bencenosulfonatos/química , Peróxido de Hidrógeno/química
6.
J Chromatogr A ; 1722: 464856, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38579610

RESUMEN

Complex mixture analysis requires high-efficiency chromatography columns. Although reversed phase liquid chromatography (RPLC) is the dominant approach for such mixtures, hydrophilic interaction liquid chromatography (HILIC) is an important complement to RPLC by enabling the separation of polar compounds. Chromatography theory predicts that small particles and long columns will yield high efficiency; however, little work has been done to prepare HILIC columns longer than 25 cm packed with sub-2 µm particles. In this work, we tested the slurry packing of 75 cm long HILIC columns with 1.7 µm bridged-ethyl-hybrid amide HILIC particles at 2,100 bar (30,000 PSI). Acetonitrile, methanol, acetone, and water were tested as slurry solvents, with acetonitrile providing the best columns. Slurry concentrations of 50-200 mg/mL were assessed, and while 50-150 mg/mL provided comparable results, the 150 mg/mL columns provided the shortest packing times (9 min). Columns prepared using 150 mg/mL slurries in acetonitrile yielded a reduced minimum plate height (hmin) of 3.3 and an efficiency of 120,000 theoretical plates for acenaphthene, an unretained solute. Para-toluenesulfonic acid produced the lowest hmin of 1.9 and the highest efficiency of 210,000 theoretical plates. These results identify conditions for producing high-efficiency HILIC columns with potential applications to complex mixture analysis.


Asunto(s)
Acetonitrilos , Bencenosulfonatos , Interacciones Hidrofóbicas e Hidrofílicas , Acetonitrilos/química , Cromatografía Liquida/métodos , Cromatografía de Fase Inversa/métodos , Cromatografía de Fase Inversa/instrumentación , Metanol/química , Solventes/química , Acetona/química , Tamaño de la Partícula , Presión , Agua/química
7.
Bioorg Chem ; 146: 107299, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38547722

RESUMEN

We previously discovered a novel family of antimicrotubule agents designated as phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs). In this study, we evaluated the effect of the difluorination of the aromatic ring bearing the imidazolidin-2-one moiety (ring A) at positions 3, 5 and 2, 6 on their antiproliferative activity on four cancer cell lines, their ability to disrupt the microtubules and their toxicity toward chick embryos. We thus synthesized, characterized and biologically evaluated 24 new difluorinated PIB-SO derivatives designated as phenyl 3,5-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (3,5-PFB-SOs, 4-15) and phenyl 2,6-difluoro-4-(2-oxoimidazolidin-1-yl)benzenesulfonates (2,6-PFB-SOs, 16-27). The concentration of the drug required to inhibit cell growth by 50% (IC50) of 3,5-PFB-SOs is over 1000 nM while most of 2,6-PFB-SOs exhibit IC50 in the nanomolar range (23-900 nM). Furthermore, the most potent 2,6-PFB-SOs 19, 26 and 27 arrest the cell cycle progression in G2/M phase, induce cytoskeleton disruption and impair microtubule polymerization. Docking studies also show that the most potent 2,6-PFB-SOs 19, 21, 24, 26 and 27 have binding affinity toward the colchicine-binding site (C-BS). Moreover, their antiproliferative activity is not affected by antimicrotubule- and multidrug-resistant cell lines. Besides, they exhibit improved in vitro hepatic stability in the mouse, rat and human microsomes compared to their non-fluorinated counterparts. They also showed theoretical pharmacokinetic, physicochemical and drug-like properties suited for further in vivo assays. In addition, they exhibit low to no systemic toxicity toward chick embryos. Finally, our study evidences that PIB-SOs must be fluorinated in specific positions on ring A to maintain both their antiproliferative activity and their biological activity toward microtubules.


Asunto(s)
Antineoplásicos , Neoplasias , Embrión de Pollo , Humanos , Ratas , Ratones , Animales , Bencenosulfonatos , Colchicina/metabolismo , Proliferación Celular , Sitios de Unión , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Relación Estructura-Actividad , Tubulina (Proteína)/metabolismo , Línea Celular Tumoral , Moduladores de Tubulina/farmacología
8.
Water Environ Res ; 96(3): e11011, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38477462

RESUMEN

The current study focuses on the degradation of Procion brilliant yellow H-E6G, an azo dye, using ultrasonic and hydrodynamic cavitation (HC), evaluating the impact of various parameters on the extent of degradation. The use of only ultrasound showed less oxidation capacity as indicated by only 19.1% degradation at an optimized power of 140 W, pH of 2.5, temperature of 40°C, and initial dye concentration of 15 ppm. The effectiveness of hybrid approaches involving US + H2 O2 , US + Fenton, and US + H2 O2 + potassium persulfate (KPS) was subsequently evaluated under optimized conditions. A notable enhancement in decolorization extent was observed for combined operations, including US + H2 O2 , US + Fenton, and US + H2 O2 + KPS (dual oxidant scheme) with the actual decolorization extents as 80.6%, 85%, and 92.2% respectively. An optimized scheme of US + H2 O2 + KPS was also utilized to decolorize the dye at a pilot scale using a US flow cell and also an HC reactor that yielded 91.8% and 88% reductions in initial concentration. The dye decolorization was elucidated to follow first-order kinetics for all the individual and combination approaches. The obtained values of the rate constants were also utilized for the evaluation of the synergistic index. A toxicity analysis was also performed on the dye, both before and following treatment, utilizing two bacterial strains. A comparative analysis of various treatment approaches has been presented focusing on factors such as cavitational yield, operational expenses, and energy requirements. The study elucidated that the combination of US + H2 O2 + KPS effectively removes Procion brilliant yellow H-E6G giving 92.2% as the maximum degradation at an operating cost of 0.1862 $/L. PRACTITIONER POINTS: First depiction of cavitative degradation of Procion brilliant yellow H-E6G Optimizing the equipment operating parameters and chemical oxidants Demonstration of optimized treatment scheme at pilot scale Evaluation of various approaches based on synergy and costs of treatment US + H2 O2  + KPS is the best approach for dye degradation.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Peróxido de Hidrógeno , Oxidantes , Hidrodinámica , Ultrasonido
9.
J Oleo Sci ; 73(4): 593-601, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38556292

RESUMEN

Infiltration of binary solution of hexane and ethanol into chromatography paper associated with their evaporation was found to generate unexpected initial rapid advancement of wicking front followed by its receding and readvancing in our previous research. In the present study, paper chromatography development of hydrophobic dye, Sudan III, and hydrophilic dye, Acid Blue 9, was carried out using binary solutions of hexane and ethanol in open environment, allowing the developing solvent been evaporated. Sudan III was developed with initial rapid advancing wicking front, while Acid Blue 9 was scarcely developed. On the other hand, Acid Blue 9 was developed with the readvancing second wicking front, while the spot of Sudan III scarcely migrated. Thus, the unexpected illusional phenomenon, overtaking the spot of Sudan III by the spot of Acid Blue 9, was observed. The readvancement of the second wicking front was found to be enhanced as increasing the relative humidity in the environment. Surface temperature of the chromatography paper was measured during the chromatographic development in open environment to show that it became lower than the dew point when the experiments were carried out in relatively high humidity. Solubility of Sudan III in a binary solution of ethanol and water remarkably decreased as increasing the content of water. It was thus suggested that the water vapor condensation to induce water mixing into the mobile phase to decrease the solubility of Sudan III to inhibit its chromatographic development to realize the illusional spot overtaking of dyes of their chromatographic development associated with solvent evaporation.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Colorantes , Hexanos , Colorantes/análisis , Solventes , Cromatografía Líquida de Alta Presión/métodos , Etanol
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124118, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461562

RESUMEN

As the most universally used anionic surfactant, ubiquitous existence and accumulation of sodium dodecyl benzene sulfonate (SDBS) in the environment has inevitably imposed the associated harmful impacts to plants due to producing excessive reactive oxygen species. However, the underlying hazardous mechanism of the SDBS-induced oxidative stress to plants at molecular level has never been reported. Here, the molecular interaction of AtPrxQ with SDBS was explored for the first time. The intrinsic fluorescence of AtPrxQ was quenched based on static quenching, and a single binding site of AtPrxQ towards SDBS and the potential interaction forces driven by hydrophobic interactions were predicted from thermodynamic parameters and molecular docking results. Besides, the interaction pattern of AtPrxQ and SDBS was also confirmed by the bio-layer interferometry with moderate binding affinity. Moreover, the structural changes of AtPrxQ along with the destructions of the protein framework and the hydrophobic enhancement around aromatic amino acids were observed upon binding with SDBS. At last, the toxic effects produced by SDBS on peroxidase activities and Arabidopsis seedlings growth were also characterized. Thus this work may provide insights on the molecular interactions of AtPrxQ with SDBS and assessments on the biological hazards of SDBS to plants even for the agriculture.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Simulación del Acoplamiento Molecular , Tensoactivos/química , Estrés Oxidativo , Antioxidantes/farmacología , Bencenosulfonatos/química
11.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38542183

RESUMEN

Inflammatory bowel conditions can involve nearly all organ systems and induce pathological processes through increased oxidative stress, lipid peroxidation and disruption of the immune response. Patients with inflammatory bowel disease (IBD) are at high risk of having extra-intestinal manifestations, for example, in the hepatobiliary system. In 30% of patients with IBD, the blood values of liver enzymes, such as AST and ALT, are increased. Moreover, treatments for inflammatory bowel diseases may cause liver toxicity. Apple polyphenol extracts are widely acknowledged for their potential antioxidant effects, which help prevent damage from oxidative stress, reduce inflammation, provide protection to the liver, and enhance lipid metabolism. The aim of this study was to investigate whether the polyphenol apple extract from Malus domestica cv. 'Limoncella' (LAPE) may be an effective intervention for the treatment of IBD-induced hepatotoxicity. The LAPE was administrated in vivo by oral gavage (3-300 mg/kg) once a day for 3 consecutive days, starting 24 h after the induction of dinitro-benzenesulfonic acid (DNBS) colitis in mice. The results showed that LAPE significantly attenuated histological bowel injury, myeloperoxidase activity, tumor necrosis factor and interleukin (IL-1ß) expressions. Furthermore, LAPE significantly improved the serum lipid peroxidation and liver injury in DNBS-induced colitis, as well as reduced the nuclear transcription factor-kappaB activation. In conclusion, these results suggest that LAPE, through its antioxidant and anti-inflammatory properties, could prevent liver damage induced by inflammatory bowel disease.


Asunto(s)
Bencenosulfonatos , Colitis , Dinitrofluorobenceno/análogos & derivados , Enfermedades Inflamatorias del Intestino , Humanos , Ratones , Animales , Dinitrobencenos , Polifenoles/efectos adversos , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Antioxidantes/efectos adversos , Hígado/metabolismo
12.
Mar Pollut Bull ; 201: 116204, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38430678

RESUMEN

Protozoan ciliates represent a common biological contaminant during microalgae cultivation, which will lead to a decline in microalgae productivity. This study investigated the effectiveness of sodium dodecyl benzene sulfonate (SDBS) in controlling ciliate populations within microalgae cultures. SDBS concentrations of 160 mg/L and 100 mg/L were found to effectively manage the representative species of ciliates contamination by Euplotes vannus and Uronema marinum during the cultivation of Synechococcus and Chlorella, and the growth vitality of microalgae has been restored. Additionally, SDBS at these concentrations reduced oxidative stress resistance and induced membrane damage to remove biological pollutants by modulating enzyme activity, affecting lipid, energy, amino acid metabolism pathways, and processes such as translation and protein folding. This research provides insights into the mechanisms through which SDBS effectively combats protozoan ciliates during the microalgal cultivation. This contributes to reduce biological pollution, ensure the overall productivity and healthy and sustainable management of microalgae ecosystems.


Asunto(s)
Bencenosulfonatos , Chlorella , Cilióforos , Microalgas , Plaguicidas , Ecosistema , Biomasa
13.
Environ Sci Pollut Res Int ; 31(19): 27817-27828, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38517631

RESUMEN

Water and several chemicals, including dyestuffs, surfactants, acids, and salts, are required during textile dyeing processes. Surfactants are harmful to the aquatic environment and induce several negative biological effects in exposed biota. In this context, the present study aimed to assess acute effects of five surfactants, comprising anionic and nonionic classes, and other auxiliary products used in fiber dyeing processes to aquatic organisms Vibrio fischeri (bacteria) and Daphnia similis (cladocerans). The toxicities of binary surfactant mixtures containing the anionic surfactant dodecylbenzene sulfonate + nonionic fatty alcohol ethoxylate and dodecylbenzene sulfonate + nonionic alkylene oxide were also evaluated. Nonionic surfactants were more toxic than anionic compounds for both organisms. Acute nonionic toxicity ranged from 1.3 mg/L (fatty alcohol ethoxylate surfactant) to 2.6 mg/L (ethoxylate surfactant) for V. fischeri and from 1.9 mg/L (alkylene oxide surfactant) to 12.5 mg/L (alkyl aryl ethoxylated and aromatic sulfonate surfactant) for D. similis, while the anionic dodecylbenzene sulfonate EC50s were determined as 66.2 mg/L and 19.7 mg/L, respectively. Both mixtures were very toxic for the exposed organisms: the EC50 average in the anionic + fatty alcohol ethoxylate mixture was of 1.0 mg/L ± 0.11 for V. fischeri and 4.09 mg/L ± 0.69 for D. similis. While the anionic + alkylene oxide mixture, EC50 of 3.34 mg/L for D. similis and 3.60 mg/L for V. fischeri. These toxicity data suggested that the concentration addition was the best model to explain the action that is more likely to occur for mixture for the dodecylbenzene sulfonate and alkylene oxide mixtures in both organisms. Our findings also suggest that textile wastewater surfactants may interact and produce different responses in aquatic organisms, such as synergism and antagonism. Ecotoxicological assays provide relevant information concerning hazardous pollutants, which may then be adequately treated and suitably managed to reduce toxic loads, associated to suitable management plans.


Asunto(s)
Aliivibrio fischeri , Bencenosulfonatos , Daphnia , Tensoactivos , Aguas Residuales , Contaminantes Químicos del Agua , Tensoactivos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Aguas Residuales/química , Aliivibrio fischeri/efectos de los fármacos , Animales , Daphnia/efectos de los fármacos , Ecotoxicología , Textiles
14.
Chemosphere ; 356: 141747, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38556178

RESUMEN

The present study aims to establish NaOCl as a potential oxidant in the COD removal of Acid Orange 8 using UVC light (λ = 254 nm) and Fe2+ as catalysts. The different systems used in this study are NaOCl, Fe2+/NaOCl, UV/NaOCl, and Fe2+/NaOCl/UV. All these process were found to be operative in acidic, neutral and basic medium. The initial decolorisation and COD removal efficiency (CODeff) for different systems follow the order: Fe2+/NaOCl/UV > UV/NaOCl > Fe2+/NaOCl > NaOCl. Nevertheless, NaOCl can alone be used in the treatment process considering its CODeff to the extent of 95% in 90 min. The change in pH of the solutions after treatment is an important observation - for non-UV systems it remained around 11.0 and 7.0 in other systems. Thus, UV systems are environmental benign. The effect of various anions on CODeff was tested in Fe2+ systems. Presence of F- ions were found to accelerate CODeff in both the systems. However, the effect is more pronounced in Fe2+/ NaOCl/UV, where complete CODeff was observed in the presence of 9.0 gl-1 of F-. The COD removal kinetics for all systems was studied using zero-order, first-order, second-order, and BMG kinetic models. BMG model was found to be more suitable among all and is in good agreement with CODeff of all systems. It is, therefore, established that NaOCl can serve as a powerful oxidant in the advanced oxidation process.


Asunto(s)
Compuestos Azo , Hierro , Oxidantes , Hipoclorito de Sodio , Rayos Ultravioleta , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Catálisis , Oxidantes/química , Hipoclorito de Sodio/química , Hierro/química , Compuestos Azo/química , Cinética , Análisis de la Demanda Biológica de Oxígeno , Bencenosulfonatos/química , Concentración de Iones de Hidrógeno , Eliminación de Residuos Líquidos/métodos , Oxidación-Reducción
15.
Int J Biol Macromol ; 262(Pt 2): 129946, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340936

RESUMEN

Organic dye pollution from textiles and other industries presents a substantial risk to people and aquatic life. The use of photocatalysis to decolorize water using the strength of UV light is one of the most important remediation techniques. In the present study, a novel nanocomposites hydrogel including carboxymethyl cellulose (CMC), acrylic acid (AAc), Zinc oxide (ZnO), and silver (Ag) nanoparticles was produced using an eco-friendly γ-irradiation technique for photocatalytic decolorization applications. ZnO and Ag nanoparticles were distributed in the CMC/AAc hydrogel matrix without significant aggregation. SEM, XRD, EDX, TEM, and FTIR analyses were used to assess the physicochemical characteristics of the nanocomposite samples. Carboxymethyl cellulose/acrylic acid/Zinc oxide doped silver (CMC/PAAc/ZnO@Ag) nanocomposite hydrogels were developed and utilized in the photocatalytic decolorization of the lerui acid brilliant blue dye (LABB) when exposed to ultraviolet (UV) radiation. UV- Vis spectrophotometry was utilized to analyze the optical properties of the produced nanostructure. Regarding the decolorization of the LABB, the impacts of operational variables were investigated. The optimum conditions for decolorization (93 %) were an initial concentration of 50 mg/L, pH = 4, catalyst dosage of 50 g/L, and exposure time of 90 min. The results illustrated that the LABB acidic dye from wastewater was remarkably decolored.


Asunto(s)
Acrilatos , Bencenosulfonatos , Nanopartículas del Metal , Nanocompuestos , Óxido de Zinc , Humanos , Óxido de Zinc/química , Hidrogeles/química , Plata/química , Carboximetilcelulosa de Sodio/química , Nanopartículas del Metal/química , Colorantes/química , Nanocompuestos/química
16.
Bioresour Technol ; 396: 130454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360218

RESUMEN

The comprehensive separation and utilization of whole components of lignocellulosic materials has received extensive attention in present research. This study focused on the efficacy of alkali treatment for enzymatic saccharification of cellulose based on p-toluenesulfonic acid (p-TsOH) pretreated bamboo substrate. The results showed that the cellulose to glucose conversion yield was 94.69 % under optimized conditions of 0.4 g NaOH/g, 160 °C and 4 h (soaked), which after only 6 h enzymatic hydrolysis time. Alkali lignin recovery was 88.51 %, with potential for conversion to lignin derivatives. The yield of hemicellulose in the pretreated filtrate was 51.85 % after the 4th cycling reuse of p-TsOH. This work has borrowed the advantages of p-TsOH pretreatment of depolymerized hemicellulose from bamboo, combined with a low-priced weak alkali secondary treatment method, which can be effectively applied to the co-production of lignin, xylooligosaccharide, xylose and glucose, and the whole process is green and economically sustainable.


Asunto(s)
Álcalis , Bencenosulfonatos , Lignina , Biomasa , Celulosa , Glucosa , Hidrólisis , Xilosa/química , Oligosacáridos/química
17.
BMC Anesthesiol ; 24(1): 75, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38408901

RESUMEN

OBJECTIVE: The objective of this study was to assess the efficacy and safety of Remimazolam in the context of combined spinal-epidural anesthesia for sedation during orthopedic surgery. METHODS: This randomized controlled trial enrolled patients scheduled for orthopedic surgery under combined spinal-epidural anesthesia (N = 80), who were randomly allocated to receive either dexmedetomidine (Group-D) or remimazolam (Group-R). The target sedation range aimed for a Ramsay score of 2-5 or a BIS value of 60-80 to evaluate the effectiveness and safety of remimazolam during sedation. RESULTS: The time taken to achieve the desired level of sedation was significantly shorter in the remimazolam group compared to the dexmedetomidine group (3.69 ± 0.75 vs. 9.59 ± 1.03; P < 0.0001). Patients in the remimazolam group exhibited quicker recovery, fewer intraoperative adverse events, more consistent vital signs, and greater satisfaction at various time points throughout the surgery. CONCLUSION: This preliminary study demonstrates that remimazolam tosilate serves as a safe and effective sedative for orthopedic surgery performed under combined spinal-epidural anesthesia, in comparison with dexmedetomidine.


Asunto(s)
Bencenosulfonatos , Benzodiazepinas , Hipnóticos y Sedantes , Humanos , Anestesia Epidural , Bencenosulfonatos/efectos adversos , Benzodiazepinas/efectos adversos , Dexmedetomidina/efectos adversos , Hipnóticos y Sedantes/efectos adversos , Procedimientos Ortopédicos
18.
Environ Sci Pollut Res Int ; 31(12): 18614-18624, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38349493

RESUMEN

In this study, cobalt etched graphite felt electrodes were produced using a simple etching technique. It was used in combination with a solid polymer electrolyte (SPE) for the degradation of the target contaminant Orange II by Electro-Fenton (EF) technique in low conductivity water. In this method, 94% of Orange II in low conductivity water was removed in 90 min. The characterization analysis substantiates the hypothesis that the electrodes produced exhibit a three-dimensional porous structure, augmented defect concentration, and enhanced electron transfer capability. In addition, the potential reaction mechanism was inferred from the radical quenching experiments, and hydroxyl radicals (·OH) were deemed the main reactive substances. The combination of cobalt etched graphite felt electrodes with SPE demonstrates remarkable efficacy in the treatment of organic wastewater characterized by low electrical conductivity.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Grafito , Contaminantes Químicos del Agua , Grafito/química , Cobalto , Polímeros , Electrodos , Agua , Contaminantes Químicos del Agua/química , Peróxido de Hidrógeno/química , Oxidación-Reducción
19.
Chemosphere ; 352: 141471, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38373445

RESUMEN

The bio-reduction of azo dyes is significantly dependent on the availability of electron donors and external redox mediators. In this study, the natural henna plant biomass was supplemented to promote the biological reduction of an azo dye of Acid Orange 7 (AO7). Besides, the machine learning (ML) approach was applied to decipher the intricate process of henna-assisted azo dye removal. The experimental results indicated that the hydrolysis and fermentation of henna plant biomass provided both electron donors such as volatile fatty acid (VFA) and redox mediator of lawsone to drive the bio-reduction of AO7 to sulfanilic acid (SA). The high henna dosage selectively enriched certain bacteria, such as Firmicutes phylum, Levilinea and Paludibacter genera, functioning in both the henna fermentation and AO7 reduction processes simultaneously. Among the three tested ML algorithms, eXtreme Gradient Boosting (XGBoost) presented exceptional accuracy and generalization ability in predicting the effluent AO7 concentrations with pH, oxidation-reduction potential (ORP), soluble chemical oxygen demand (SCOD), VFA, lawsone, henna dosage, and cumulative henna as input variables. The validating experiments with tailored optimal operating conditions and henna dosage (pH 7.5, henna dosage of 2 g/L, and cumulative henna of 14 g/L) confirmed that XGBoost was an effective ML model to predict the efficient AO7 removal (91.6%), with a negligible calculating error of 3.95%. Overall, henna plant biomass addition was a cost-effective and robust method to improve the bio-reduction of AO7, which had been demonstrated by long-term operation, ML modeling, and experimental validation.


Asunto(s)
Lawsonia (Planta) , Microbiota , Naftoquinonas , Colorantes , Biomasa , Compuestos Azo , Oxidación-Reducción , Bencenosulfonatos
20.
Water Res ; 253: 121343, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422888

RESUMEN

A dye-sensitized photocatalysis system was developed for degrading persistent organic contaminants using solid waste (i.e., red mud, RM) and peroxymonosulfate (PMS) under visible light. Complete degradation of acid orange 7 (AO7) was achieved in RM suspension with PMS, where the co-existence of amorphous FeO(OH)/α-Fe2O3 was the key factor for PMS activation. The experimental results obtained from photochemical and electrochemical observations confirmed the enhanced PMS activation due to the Fe-OH phase in RM. DFT calculations verified the acceleration of PMS activation due to the high adsorption energy of PMS on FeO(OH) and low energy barrier for generating reactive radicals. Compared to the control experiment without AO7 showing almost no degradation of other organic contaminants (phenol, bisphenol A, 4-chlorophenol, 4-nitrophenol, and benzoic acid), photo-sensitized AO7* enhanced electron transfer in the FeIII/FeII cycle, dramatically enhancing the degradation of organic contaminants via radical (•OH, SO4•-, and O2•-) and non-radical (dye*+ and 1O2) pathways. Therefore, the novel finding of this study can provide new insights for unique PMS activation by heterogeneous Fe(III) containing solid wastes and highlight the importance of sensitized dye on the interaction of PMS with Fe charge carrier for the photo-oxidation of organic contaminants under visible light.


Asunto(s)
Compuestos Azo , Bencenosulfonatos , Compuestos Férricos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Peróxidos , Luz
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...