Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
J Neurochem ; 160(2): 218-233, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34816436

RESUMEN

N-ethyl-pentylone (NEP), also known as 'ephylone' and N-ethylnorpentylone, has been identified as one of the most recent novel psychostimulants to emerge into the illicit drug market and it has been associated with some intoxications and even fatalities. However, little is known about the consequences of its repeated consumption as well as the role of the monoaminergic system in such consequences. Thus, the aim of our study was to investigate the neurochemical profile and the behavioural effects after both acute and repeated NEP exposure. Male OF1 mice were acutely (1, 3, 10 mg/kg, i.p.) or repeatedly (1, 3, 10 mg/kg, i.p., 5 days, twice/day) exposed to NEP, and anxiety-like behaviour, aggressiveness, social interaction, depressive-like symptoms, body temperature, changes in monoaminergic enzymes and neurotransmitters levels as well as ΔFosB in striatum and prefrontal cortex (PFC) from post-mortem tissue were analysed short after drug-exposure or during drug-withdrawal. Acute administration of NEP induced anxiolytic effects but also an aggressive behaviour and social exploration deficits in mice, which persist during NEP-withdrawal. Moreover, NEP induced hyperthermia as well as depressive-like symptoms after repeated administrations that may be related to the decrease in serotonin and noradrenaline levels observed in striatum and PFC. Finally, the long-term increase in ΔFosB levels in striatum after NEP chronic exposure points to a high risk of dependence. Altogether indicates that NEP consumption induces different neurological and neuropsychiatric disorders accompanied by changes in the monoaminergic system, posing a threat to public health.


Asunto(s)
Conducta Animal/efectos de los fármacos , Benzodioxoles/toxicidad , Butilaminas/toxicidad , Estimulantes del Sistema Nervioso Central/toxicidad , Animales , Masculino , Ratones
2.
An Acad Bras Cienc ; 93(suppl 3): e20201772, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34550203

RESUMEN

Piperine and capsaicin are important molecules with biological and pharmacological activities. This study aimed to evaluate the cytogenotoxic and protective effect of piperine and capsaicin on Allium cepa cells. A. cepa roots were exposed to negative (2% Dimethylsulfoxide) and positive (Methylmethanesulfonate, MMS, 10 µg/mL) controls, and four concentrations (25-200 µM) of piperine or capsaicin (alone) or associated before, simultaneously or after with the MMS. Only the lowest concentration of piperine (25 µM) showed a protective effect because it was not genotoxic. Piperine and capsaicin were cytotoxic (50, 100 and 200 µM). Piperine (50 to 200 µM) caused a significant increase in the total average of chromosomal alterations of in A. cepa cells. For capsaicin, the genotoxic effect was dose-dependent with a significant increase for all concentrations, highlighting the significant presence of micronuclei and nuclear buds for the two isolates. In general, bioactive compounds reduced the total average of chromosomal alterations against damage caused by MMS, mainly micronuclei and/or nuclear buds. Therefore, the two molecules were cytotoxic and genotoxic at the highest concentrations, and did not have cytoprotective action, and the lowest concentration of piperine demonstrated important chemopreventive activity.


Asunto(s)
Capsaicina , Cebollas , Alcaloides , Benzodioxoles/toxicidad , Capsaicina/toxicidad , Daño del ADN , Piperidinas , Raíces de Plantas , Alcamidas Poliinsaturadas/farmacología
3.
Int J Mol Sci ; 22(15)2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-34361071

RESUMEN

3,4-Methylenedioxypyrovalerone (MDPV) is a new psychoactive substance (NPS) and the most widespread and life-threatening synthetic cathinone of the "bath salts". Preclinical research has proven the cocaine-like psychostimulant effects of MDPV and its potential for abuse. Cannabidiol (CBD) is a non-psychotropic phytocannabinoid that has emerged as a new potential treatment for drug addiction. Here, we tested the effects of CBD (20 mg/kg) on MDPV (2 mg/kg)-induced conditioned place preference and MDPV (0.05 and 0.075 mg/kg/infusion) self-administration paradigms. In addition, we assessed the effects of the co-administration of CBD and MDPV (3 and 4 mg/kg) on anxiety-like behaviour using the elevated plus maze (EPM). CBD mitigated the MDPV-induced conditioned place preference. On the contrary, CBD administration throughout the MDPV (0.075 mg/kg/infusion) self-administration increased drug-seeking and taking behaviours, but only in the high-responders group of mice. Furthermore, CBD exerted anxiolytic-like effects, exclusively in MDPV-treated mice. Taken together, our results indicate that CBD modulation of MDPV-induced motivational responses in mice varies depending on the requirements of the learning task, resulting in a complex response. Therefore, further research attempting to decipher the behavioural and molecular interactions between CBD and MDPV is needed.


Asunto(s)
Ansiedad/tratamiento farmacológico , Conducta Animal/efectos de los fármacos , Benzodioxoles/toxicidad , Cannabidiol/farmacología , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Pirrolidinas/toxicidad , Inhibidores de Captación Adrenérgica/toxicidad , Animales , Anticonvulsivantes/farmacología , Ansiedad/inducido químicamente , Ansiedad/patología , Condicionamiento Clásico/efectos de los fármacos , Masculino , Ratones , Cathinona Sintética
4.
Toxicol Appl Pharmacol ; 417: 115477, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33667508

RESUMEN

N-Ethylpentylone (NEP) is one of the most recent novel stimulants, and there is limited understanding of its toxicity. Here we employed zebrafish model for analyzing the effects of NEP on early embryos and cardiovascular and nervous systems at late developmental stages. We first observed multi-malformations in early embryos and larvae after NEP administration, together with significant deregulations of brain and heart development-associated genes (neurog1, her6, elavl3, nkx2.5, nppa, nppb, tnnt2a) at transcriptional level. Low-dosed NEP treatment induced an anxiety-like phenotype in zebrafish larvae, while higher doses of NEP exerted an inhibitory effect on locomotion and heart rate. Besides, the expression of th (tyrosine hydroxylase) and th2 (tyrosine hydroxylase 2), identifying dopamine (DA) release, were significantly increased during one-hour free swimming after effective low-dosed NEP administration, along with the upregulation of gene fosab and fosb related to stress and anxiety response. D1R antagonist SCH23390 and D2R antagonist sulpiride partially alleviated the aberrances of locomotion and heart rate, indicating dopaminergic receptors were involved in the bidirectional dosage-dependent pattern of NEP-induced performance. Meanwhile, sulpiride offset the upregulated expression of th, th2 and fosab in the group of 1.5 µM NEP, which highlighted the significant role of D2R in NEP-induced locomotive effects. This study systematically described the developmental, neuronal and cardiac toxicity of NEP in zebrafish, and identified the dopaminergic receptors as one of the downstream effectors of NEP administration.


Asunto(s)
Benzodioxoles/toxicidad , Butilaminas/toxicidad , Sistema Cardiovascular/efectos de los fármacos , Agonistas de Dopamina/toxicidad , Dopamina/metabolismo , Sistema Nervioso/efectos de los fármacos , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D2/agonistas , Proteínas de Pez Cebra/agonistas , Animales , Animales Modificados Genéticamente , Sistema Cardiovascular/embriología , Sistema Cardiovascular/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Frecuencia Cardíaca/efectos de los fármacos , Larva/efectos de los fármacos , Larva/metabolismo , Locomoción/efectos de los fármacos , Masculino , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Transcripción Genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Phytother Res ; 35(2): 680-700, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32929825

RESUMEN

Medicinal plants have been used for years as a source of food, spices, and, in traditional medicine, as a remedy to numerous diseases. Piper nigrum, belonging to the family Piperaceae is one of the most widely used spices all over the world. It has a distinct sharp flavor attributed to the presence of the phytochemical, piperine. Apart from its use as a spice, P. nigrum is frequently used for medicinal, preservation, and perfumery purposes. Black pepper contains 2-7.4% of piperine, varying in content is associated with the pepper plant. Piperine displays numerous pharmacological effects such as antiproliferative, antitumor, antiangiogenesis, antioxidant, antidiabetic, anti-obesity, cardioprotective, antimicrobial, antiaging, and immunomodulatory effects in various in vitro and in vivo experimental trials. Furthermore, piperine has also been documented for its hepatoprotective, anti-allergic, anti-inflammatory, and neuroprotective properties. This review highlights and discusses the medicinal and health-promoting effects of piperine, along with possible mechanisms of its action in health promotion and disease prevention. In addition, the present review summarizes the recent literature related to piperine as a therapeutic agent against several diseases.


Asunto(s)
Alcaloides , Benzodioxoles , Piperidinas , Alcamidas Poliinsaturadas , Alcaloides/farmacocinética , Alcaloides/uso terapéutico , Alcaloides/toxicidad , Animales , Benzodioxoles/farmacocinética , Benzodioxoles/uso terapéutico , Benzodioxoles/toxicidad , Quimioterapia Combinada , Humanos , Piperidinas/farmacocinética , Piperidinas/uso terapéutico , Piperidinas/toxicidad , Alcamidas Poliinsaturadas/farmacocinética , Alcamidas Poliinsaturadas/uso terapéutico , Alcamidas Poliinsaturadas/toxicidad
6.
Arch Toxicol ; 95(2): 509-527, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33215236

RESUMEN

3,4-Methylenedioxypyrovalerone (MDPV) is consumed worldwide, despite its potential to cause toxicity in several organs and even death. There is a recognized need to clarify the biological pathways through which MDPV elicits general and target-organ toxicity. In this work, a comprehensive untargeted GC-MS-based metabolomics analysis was performed, aiming to detect metabolic changes in putative target organs (brain, heart, kidneys and liver) but also in urine of mice after acute exposure to human-relevant doses of MDPV. Male CD-1 mice received binge intraperitoneal administrations of saline or MDPV (2.5 mg/kg or 5 mg/kg) every 2 h, for a total of three injections. Twenty-four hours after the first administration, target organs, urine and blood samples were collected for metabolomics, biochemical and histological analysis. Hepatic and renal tissues of MDPV-treated mice showed moderate histopathological changes but no significant differences were found in plasma and tissue biochemical markers of organ injury. In contrast, the multivariate analysis significantly discriminated the organs and urine of MDPV-treated mice from the control (except for the lowest dose in the brain), allowing the identification of a panoply of metabolites. Those levels were significantly deviated in relation to physiological conditions and showed an organ specific response towards the drug. Kidneys and liver showed the greatest metabolic changes. Metabolites related with energetic metabolism, antioxidant defenses and inflammatory response were significantly changed in the liver of MDPV-dosed animals, while the kidneys seem to have developed an adaptive response against oxidative stress caused by MDPV. On the other hand, the dysregulation of metabolites that contribute to metabolic acidosis was also observed in this organ. The heart showed an increase of fatty acid biosynthesis, possibly as an adaptation to maintain the cardiac energy homeostasis. In the brain, changes in 3-hydroxybutyric acid levels may reflect the activation of a neurotoxic pathway. However, the increase in metabolites with neuroprotective properties seems to counteract this change. Metabolic profiling of urine from MDPV-treated mice suggested that glutathione-dependent antioxidant pathways may be particularly involved in the compensatory mechanism to counteract oxidative stress induced by MDPV. Overall, this study reports, for the first time, the metabolic profile of liver, kidneys, heart, brain, and urine of MDPV-dosed mice, providing unique insights into the biological pathways of toxicity. Our findings also underline the value of toxicometabolomics as a robust and sensitive tool for detecting adaptive/toxic cellular responses upon exposure to a physiologically relevant dose of a toxic agent, earlier than conventional toxicity tests.


Asunto(s)
Benzodioxoles/metabolismo , Benzodioxoles/toxicidad , Encéfalo/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Miocardio/metabolismo , Pirrolidinas/metabolismo , Pirrolidinas/toxicidad , Ácido 3-Hidroxibutírico/biosíntesis , Animales , Biomarcadores , Análisis Químico de la Sangre , Relación Dosis-Respuesta a Droga , Ácidos Grasos/biosíntesis , Cromatografía de Gases y Espectrometría de Masas , Homeostasis/efectos de los fármacos , Humanos , Riñón/patología , Hígado/patología , Masculino , Metaboloma , Ratones , Orina/química , Cathinona Sintética
7.
Exp Parasitol ; 219: 108018, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33049224

RESUMEN

Nanoencapsulation is the promising approach to enhance the therapeutic potential of a drug. In the present investigation, piperine-loaded nanocapsules (NCs) was prepared and evaluated for antitrypanosomal activity against the parasite Trypanosoma evansi, a causative agent of trypanosomiasis. Piperine, a bioactive compound was selected as an alternative for drugs that have been used for the treatment of the disease from decades to overcome the toxic effects or drug resistance effect. Moreover, piperine has reported to possess therapeutic potential against other Trypanosoma spp. and has also been reported to cause reactive oxygen species (ROS) mediated effect in cancer cells that was the other reason for the selection. To date, piperine and its nanoformulations have not been evaluated for their growth inhibitory effect against T. evansi. Piperine-loaded NCs exhibited more significant antitrypanosomal effect at approximately three-times less IC50 value 5.04 µM as compared to piperine (IC50-14.45 µM). Moreover, increased production of reactive oxygen species observed in the case of piperine-loaded NCs as that of pure piperine in the axenic culture of T. evansi. Furthermore, different concentrations of piperine-loaded NCs showed less cytotoxicity on horse peripheral blood mononuclear cells as liken to pure piperine. In conclusion, our results demonstrated that piperine-loaded NCs induced more generation of ROS that contributed inhibitory effect on the growth of Trypanosoma evansi as compared to pure drug.


Asunto(s)
Alcaloides/farmacología , Benzodioxoles/farmacología , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Piperidinas/farmacología , Alcamidas Poliinsaturadas/farmacología , Trypanosoma/efectos de los fármacos , Alcaloides/toxicidad , Análisis de Varianza , Animales , Benzodioxoles/toxicidad , Inhibidores Enzimáticos del Citocromo P-450/toxicidad , Caballos , Concentración 50 Inhibidora , Leucocitos Mononucleares/efectos de los fármacos , Nanocápsulas , Piperidinas/toxicidad , Alcamidas Poliinsaturadas/toxicidad , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma/crecimiento & desarrollo
8.
Cell Biol Toxicol ; 36(6): 591-602, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32780246

RESUMEN

Drug toxicity and efficacy are difficult to predict partly because they are both poorly defined, which I aim to remedy here from a transcriptomic perspective. There are two major categories of drugs: (1) restorative drugs aiming to restore an abnormal cell, tissue, or organ to normal function (e.g., restoring normal membrane function of epithelial cells in cystic fibrosis), and (2) disruptive drugs aiming to kill pathogens or malignant cells. These two types of drugs require different definition of efficacy and toxicity. I outlined rationales for defining transcriptomic efficacy and toxicity and illustrated numerically their application with two sets of transcriptomic data, one for restorative drugs (treating cystic fibrosis with lumacaftor/ivacaftor aiming to restore the cellular function of epithelial cells) and the other for disruptive drugs (treating acute myeloid leukemia with prexasertib). The conceptual framework presented will help and sensitize researchers to collect data required for determining drug toxicity.


Asunto(s)
Aminofenoles/farmacología , Aminopiridinas/farmacología , Antineoplásicos/farmacología , Benzodioxoles/farmacología , Desarrollo de Medicamentos , Perfilación de la Expresión Génica , Quinolonas/farmacología , Pruebas de Toxicidad , Transcriptoma/efectos de los fármacos , Aminofenoles/toxicidad , Aminopiridinas/toxicidad , Animales , Antineoplásicos/toxicidad , Benzodioxoles/toxicidad , Muerte Celular/efectos de los fármacos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Relación Dosis-Respuesta a Droga , Combinación de Medicamentos , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Redes Reguladoras de Genes/efectos de los fármacos , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Pirazinas/uso terapéutico , Pirazoles/uso terapéutico , Quinolonas/toxicidad
9.
Lab Invest ; 100(11): 1425-1435, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32681026

RESUMEN

Exposure to environmental toxins may be responsible for biliary atresia. The focus of this study was to investigate the effect of biliatresone on the development of the hepatobiliary system in mice. We successfully synthesized biliatresone with a purity of 98% and confirmed its biliary toxicity. Exposure to high doses of biliatresone caused abortion or death in pregnant mice. Neonatal mice injected with biliatresone developed clinical signs of biliary obstruction, and dysplasia or the absence of extrahepatic biliary tract lumen, which confirmed the occurrence of biliary atresia. In the portal tract of biliary atresia mice, signs of infiltration of inflammatory cells and liver fibrosis were observed. The signature of extrahepatic biliary gene expression in these mice mainly involved the cell adhesion process, and hepatic RNA-seq was highly linked to transcriptional evidence of oxidative stress. When compared with the control group, hepatic glutathione levels were markedly reduced after biliatresone injection. Taken together, these data confirm that biliatresone causes severe developmental abnormalities of the hepatobiliary system in mice. Furthermore, decreased levels of glutathione may play a mechanistic role in the pathogenesis of liver fibrosis in biliatresone-induced experimental biliary atresia.


Asunto(s)
Benzodioxoles/toxicidad , Atresia Biliar/inducido químicamente , Hígado/efectos de los fármacos , Aborto Inducido , Animales , Animales Recién Nacidos , Benzodioxoles/síntesis química , Femenino , Glutatión/metabolismo , Hígado/inmunología , Hígado/metabolismo , Masculino , Ratones Endogámicos BALB C , Embarazo , Transcriptoma , Pez Cebra
10.
Gastroenterology ; 159(3): 1068-1084.e2, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32505743

RESUMEN

BACKGROUND & AIMS: Extrahepatic biliary atresia (BA) is a pediatric liver disease with no approved medical therapy. Recent studies using human samples and experimental modeling suggest that glutathione redox metabolism and heterogeneity play a role in disease pathogenesis. We sought to dissect the mechanistic basis of liver redox variation and explore how other stress responses affect cholangiocyte injury in BA. METHODS: We performed quantitative in situ hepatic glutathione redox mapping in zebrafish larvae carrying targeted mutations in glutathione metabolism genes and correlated these findings with sensitivity to the plant-derived BA-linked toxin biliatresone. We also determined whether genetic disruption of HSP90 protein quality control pathway genes implicated in human BA altered biliatresone toxicity in zebrafish and human cholangiocytes. An in vivo screening of a known drug library was performed to identify novel modifiers of cholangiocyte injury in the zebrafish experimental BA model, with subsequent validation. RESULTS: Glutathione metabolism gene mutations caused regionally distinct changes in the redox potential of cholangiocytes that differentially sensitized them to biliatresone. Disruption of human BA-implicated HSP90 pathway genes sensitized zebrafish and human cholangiocytes to biliatresone-induced injury independent of glutathione. Phosphodiesterase-5 inhibitors and other cyclic guanosine monophosphate signaling activators worked synergistically with the glutathione precursor N-acetylcysteine in preventing biliatresone-induced injury in zebrafish and human cholangiocytes. Phosphodiesterase-5 inhibitors enhanced proteasomal degradation and required intact HSP90 chaperone. CONCLUSION: Regional variation in glutathione metabolism underlies sensitivity to the biliary toxin biliatresone and may account for the reported association between BA transplant-free survival and glutathione metabolism gene expression. Human BA can be causatively linked to genetic modulation of protein quality control. Combined treatment with N-acetylcysteine and cyclic guanosine monophosphate signaling enhancers warrants further investigation as therapy for BA.


Asunto(s)
Conductos Biliares/patología , Atresia Biliar/tratamiento farmacológico , Depuradores de Radicales Libres/farmacología , Oxidación-Reducción/efectos de los fármacos , Proteostasis/efectos de los fármacos , Acetilcisteína/farmacología , Acetilcisteína/uso terapéutico , Animales , Animales Modificados Genéticamente , Benzodioxoles/toxicidad , Conductos Biliares/citología , Conductos Biliares/efectos de los fármacos , Atresia Biliar/inducido químicamente , Atresia Biliar/genética , Atresia Biliar/patología , Línea Celular , GMP Cíclico/agonistas , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Depuradores de Radicales Libres/uso terapéutico , Glutatión/metabolismo , Humanos , Proteostasis/genética , Transducción de Señal/efectos de los fármacos , Pez Cebra
11.
Toxicol Lett ; 331: 42-52, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464236

RESUMEN

Synthetic cathinones abuse remains a serious public health problem. Kidney injury has been reported in intoxications associated with synthetic cathinones, but the molecular mechanisms involved have not been explored yet. In this study, the potential in vitro nephrotoxic effects of four commonly abused cathinone derivatives, namely pentedrone, 3,4-dimethylmethcatinone (3,4-DMMC), methylone and 3,4-methylenedioxypyrovalerone (MDPV), were assessed in the human kidney HK-2 cell line. All four derivatives elicited cell death in a concentration- and time-dependent manner, in the following order of potency: 3,4-DMMC >> MDPV > methylone ≈ pentedrone. 3,4-DMMC and methylone were selected to further elucidate the mechanisms behind synthetic cathinones-induced cell death. Both drugs elicited apoptotic cell death and prompted the formation of acidic vesicular organelles and autophagosomes in HK-2 cells. Moreover, the autophagy inhibitor 3-methyladenine significantly potentiated cell death, indicating that autophagy may serve as a cell survival mechanism that protects renal cells against synthetic cathinones toxicity. Both drugs triggered a rise in reactive oxygen and nitrogen species formation, which was completely prevented by antioxidant treatment with N­acetyl­L­cysteine or ascorbic acid. Importantly, these antioxidant agents significantly aggravated renal cell death induced by cathinone derivatives, most likely due to their autophagy-blocking properties. Taken together, our results support an intricate control of cell survival/death modulated by oxidative stress, apoptosis and autophagy in synthetic cathinones-induced renal injury.


Asunto(s)
Alcaloides/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Drogas Ilícitas/toxicidad , Riñón/efectos de los fármacos , Alcaloides/química , Benzodioxoles/química , Benzodioxoles/toxicidad , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Riñón/metabolismo , Riñón/patología , Metanfetamina/análogos & derivados , Metanfetamina/química , Metanfetamina/toxicidad , Metilaminas/química , Metilaminas/toxicidad , Pentanonas/química , Pentanonas/toxicidad , Pirrolidinas/química , Pirrolidinas/toxicidad , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Cathinona Sintética
12.
Toxicology ; 441: 152503, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32470494

RESUMEN

3,4-Methylenedioxypyrovalerone (MDPV) is one of the most popular cathinone derivatives worldwide and has recently been associated with several intoxications and deaths, in which, similarly to amphetamines, hyperthermia appears to play a prominent role. However, there remains a huge information gap underlying the mechanisms associated with its hepatotoxicity, namely under hyperthermic conditions. Here, we use a sensitive untargeted metabolomic approach based on gas chromatography-mass spectrometry (GC-MS) to investigate the effect of subtoxic and toxic concentrations of MDPV on the metabolic profile of primary mouse hepatocytes (PMH), under normothermic and hyperthermic conditions. For this purpose, hepatocytes were exposed to increasing concentrations of MDPV (LC01, LC10 and LC30) for 24 h, at 37 °C or 40.5 °C, and alterations on both intracellular metabolome and extracellular volatilome were evaluated. Multivariate analysis showed a clear separation between MDPV exposed cells and control cells in normothermic conditions, even at subtoxic concentrations (LC01 and LC10). In normothermia, there was a significant dysregulation of pathways associated with ascorbate metabolism, tricarboxylic acid (TCA) cycle and pyruvate metabolism. These metabolic changes were significantly increased at 40.5 °C, and several other pathways appear to be affected with the evolution of toxicity caused by MDPV under hyperthermic conditions, namely aspartate and glutamate metabolism, phenylalanine and tyrosine biosynthesis, aminoacyl-tRNA biosynthesis, butanoate metabolism, among others. Overall, our findings provide novel insights into the mechanism of hepatotoxicity triggered by MDPV and highlight the higher risks that may occur under hyperthermic conditions.


Asunto(s)
Benzodioxoles/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Hígado/efectos de los fármacos , Metaboloma/efectos de los fármacos , Pirrolidinas/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Hepatocitos/efectos de los fármacos , Calor , Hígado/citología , Redes y Vías Metabólicas/efectos de los fármacos , Ratones , Temperatura , Cathinona Sintética
13.
Neurotoxicology ; 79: 200-208, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32360092

RESUMEN

In recent years, piperine has attracted much attention due to its various biological effects as a neuroprotective agent. Therefore, clarification of the possible side effects of piperine is important to identify its potential pharmacological action. Thus, the effects of piperine on the long-term plasticity of perforant pathway to dentate gyrus synapses were studied in hippocampus of an animal model of Alzheimer's disease (AD). Adult male rats were injected with intracerebroventricular (ICV) streptozotocin (STZ) bilaterally, on days 1 and 3 (3 mg/kg). The STZ-injected rats were treated with different doses of piperine for 4 weeks before being used in behavioral, electrophysiological and histopathological experiments. The passive-avoidance test was conducted on all animals in order to determine the cognitive performance. Rats were placed in a stereotaxic frame to implant a recording electrode in the hippocampal dentate gyrus and a stimulating electrode in the perforant path. Additionally, we assessed the density of survived neurons stained by cresyl violet. In this study, chronic administration of piperine low dose improved the ICV-STZ induced learning and long-term potentiation (LTP) impairments with no significant effect on baseline synaptic activity. In contrast, remarkable learning and long-term plasticity impairments were observed in rats treated by high dose of piperine in comparison to the other groups. Interestingly, this impaired hippocampal LTP was accompanied by an obvious alteration in baseline activity and significantly decreased neuronal numbers within the hippocampus. Therefore, our data provides a new understanding of the piperine supplementation effects on hippocampal electrophysiological profile although the consequences may be either beneficial or detrimental.


Asunto(s)
Alcaloides/toxicidad , Conducta Animal/efectos de los fármacos , Benzodioxoles/toxicidad , Hipocampo/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Memoria/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Fármacos Neuroprotectores/toxicidad , Síndromes de Neurotoxicidad/etiología , Piperidinas/toxicidad , Alcamidas Poliinsaturadas/toxicidad , Animales , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/psicología , Síndromes de Neurotoxicidad/fisiopatología , Síndromes de Neurotoxicidad/psicología , Ratas Wistar , Estreptozocina , Factores de Tiempo
14.
Int J Legal Med ; 133(6): 1797-1808, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31154497

RESUMEN

MDPV is a synthetic cathinone illegally marketed and consumed for its psychostimulant effects, which are similar to those produced by cocaine, amphetamines, and MDMA. Clinical reports indicate that MDPV produces euphoria, increases alertness, and at high doses causes agitation, psychosis, tachycardia and hypertension, hallucinations, delirium, hyperthermia, rhabdomyolysis, and even death. In rodents, MDPV reproduces the typical physiological effects of psychostimulant drugs, demonstrating greater potency than cocaine. Nevertheless, its role in aggressive behavior has been reported but not yet experimentally confirmed. Therefore, the aim of this study was to evaluate the effects of acute and repeated MDPV (0.01-10 mg/kg i.p.) administration on aggressive behavior in mice and to compare them with those of cocaine (0.01-10 mg/kg i.p.) administration. To this purpose, the resident-intruder test in isolated mice and the spontaneous and stimulated aggressiveness tests for group-housed mice were employed. The present study shows for the first time that MDPV enhances aggressive behavior and locomotion in mice with greater potency and efficacy than cocaine treatment. Moreover, the aggressive and locomotor responses are enhanced after repeated administration, indicating that a sensitization mechanism comes into play. These results, although from preclinical investigation, are suggestive that human MDPV intake could be a problem for public health and the criminal justice system. Thus, investigation by police officers and medical staff is needed to prevent interpersonal violence induced by the consumption of synthetic cathinones.


Asunto(s)
Agresión , Benzodioxoles/toxicidad , Psicotrópicos/toxicidad , Pirrolidinas/toxicidad , Animales , Cocaína/toxicidad , Toxicología Forense , Locomoción/efectos de los fármacos , Masculino , Ratones Endogámicos ICR , Modelos Animales , Narcóticos/toxicidad , Drogas Sintéticas/toxicidad , Cathinona Sintética
15.
Int J Mol Sci ; 20(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925718

RESUMEN

Synthetic cathinones are popular psychoactive substances that may cause skeletal muscle damage. In addition to indirect sympathomimetic myotoxicity, these substances could be directly myotoxic. Since studies in myocytes are currently lacking, the aim of the present study was to investigate potential toxicological effects by synthetic cathinones on C2C12 myoblasts (mouse skeletal muscle cell line). We exposed C2C12 myoblasts to 3-methylmethcathinone, 4-methylmethcathinone (mephedrone), 3,4-methylenedioxymethcathinone (methylone), 3,4-methylenedioxypyrovalerone (MDPV), alpha-pyrrolidinovalerophenone (α-PVP), and naphthylpyrovalerone (naphyrone) for 1 or 24 h before cell membrane integrity, ATP content, mitochondrial oxygen consumption, and mitochondrial superoxide production was measured. 3,4-Methylenedioxymethamphetamine (MDMA) was included as a reference compound. All investigated synthetic cathinones, as well as MDMA, impaired cell membrane integrity, depleted ATP levels, and increased mitochondrial superoxide concentrations in a concentration-dependent manner in the range of 50⁻2000 µM. The two pyrovalerone derivatives α-PVP and naphyrone, and MDMA, additionally impaired basal and maximal cellular respiration, suggesting mitochondrial dysfunction. Alpha-PVP inhibited complex I, naphyrone complex II, and MDMA complex I and III, whereas complex IV was not affected. We conclude that, in addition to sympathetic nervous system effects and strenuous muscle exercise, direct effects of some cathinones on skeletal muscle mitochondria may contribute to myotoxicity in susceptible synthetic cathinone drugs users.


Asunto(s)
Benzodioxoles/toxicidad , Metanfetamina/análogos & derivados , Mioblastos/efectos de los fármacos , Pentanonas/toxicidad , Psicotrópicos/toxicidad , Pirrolidinas/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Metanfetamina/toxicidad , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Mioblastos/metabolismo , Mioblastos/patología , Consumo de Oxígeno/efectos de los fármacos , Superóxidos/metabolismo , Cathinona Sintética
16.
Drug Alcohol Depend ; 195: 140-147, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30634109

RESUMEN

BACKGROUND: 3,4-methylenedioxypyrovalerone (MDPV) toxicity includes intense neurological and cardiovascular events. We examined MDPV-induced cardiovascular, temperature, and locomotor effects following escalating and repeated MDPV administration in adult male and female Sprague-Dawley rats and compared these effects to cocaine in male rats. METHODS: Telemetry devices were surgically implanted to allow continuous measurement of cardiovascular, temperature, and locomotor activity over a 22 h period after dosing. Rats were administered increasing intraperitoneal (IP) MDPV doses (1-5.6 mg/kg) every other day, followed two days later by a binge regimen of four injections of 3 mg/kg MDPV at 2 h intervals. MDPV serum concentrations were measured by LC-MS/MS. Cocaine (3-30 mg/kg) and four injections of 30 mg/kg IP were administered to male rats for comparison with male MDPV data. RESULTS: The duration of MDPV cardiovascular effects was significantly greater (p < 0.05) in male rats than female rats at 3-5.6 mg/kg. The ED50 for MDPV-induced locomotor was significantly lower in males (2.4 ± 0.3) than females (3.4 ± 0.2). Males showed significantly greater variability in MDPV serum concentrations than females after binge dosing. MDPV produced five-fold more potent cardiovascular effects than cocaine in male rats. MDPV did not alter thermoregulation in either sex, but cocaine binge administration decreased temperature. CONCLUSION: Effects of MDPV on temperature were not significantly different between sexes. MDPV-induced cardiovascular and locomotor effects in males lasted significantly longer and were more potent than in females. These differences appeared to be related to pharmacokinetic factors leading to greater variance in MDPV serum concentrations in males.


Asunto(s)
Benzodioxoles/toxicidad , Presión Sanguínea/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Locomoción/efectos de los fármacos , Psicotrópicos/toxicidad , Pirrolidinas/toxicidad , Caracteres Sexuales , Inhibidores de Captación Adrenérgica/toxicidad , Animales , Presión Sanguínea/fisiología , Sistema Cardiovascular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Frecuencia Cardíaca/fisiología , Locomoción/fisiología , Masculino , Ratas , Ratas Sprague-Dawley , Telemetría/métodos , Cathinona Sintética
17.
Toxicology ; 411: 143-153, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30321647

RESUMEN

The health-related effects of ionizing radiation on embryonic development and their underlying mechanisms are still unclear. The aim of this study was to investigate the role of Wnt signaling in mediating the developmental toxicity induced by heavy ion and proton radiation using zebrafish embryos. Zebrafish embryos were radiated with carbon ions or protons. HLY78, an activator of the Wnt signaling pathway, was added immediately after radiation. Carbon ion radiation induced a significant increase of mortality, and activating Wnt signaling using HLY78 after radiation significantly alleviated this stress. Both carbon ion and proton radiation significantly increased malformation rates and decreased hatching rates. Supplementation with HLY78 significantly reduced the effects induced by carbon ion radiation alone. After irradiation with carbon ions, embryos showed a significant decrease in heart rate, spontaneous movement, and locomotive behavior. The expression of apoptotic genes was significantly increased, while the expression of anti-apoptotic and Wnt-related genes was significantly decreased. Supplementation with HLY78 was able to reduce these effects. However, embryos irradiated with proton radiation did not show significant changes in the expression of Wnt-related genes. The results of this study improve our understanding of the mechanisms of carbon ion radiation-induced developmental toxicity, which potentially involves the inhibition of Wnt signaling.


Asunto(s)
Benzodioxoles/toxicidad , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/efectos de la radiación , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/efectos de la radiación , Fenantridinas/toxicidad , Radiación Ionizante , Pez Cebra/fisiología , Anomalías Inducidas por Medicamentos/patología , Anomalías Inducidas por Radiación/patología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/efectos de la radiación , Carbono , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Frecuencia Cardíaca/efectos de los fármacos , Frecuencia Cardíaca/efectos de la radiación , Iones , Actividad Motora/efectos de los fármacos , Actividad Motora/efectos de la radiación , Protones , Vía de Señalización Wnt/efectos de los fármacos , Vía de Señalización Wnt/efectos de la radiación
18.
Drug Test Anal ; 11(3): 461-471, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30207090

RESUMEN

Synthetic cathinones continue to proliferate in clandestine drug markets worldwide. N-ethylnorpentylone (also known as N-ethylpentylone or ephylone) is a popular emergent cathinone, yet little information is available about its toxicology and pharmacology. Here we characterize the analytical quantification, clinical presentation, and pharmacological mechanism of action for N-ethylnorpentylone. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to quantify N-ethylnorpentylone in blood obtained from human cases. Clinical features exhibited by the intoxicated individuals are described. The activity of N-ethylnorpentylone at plasma membrane transporters for dopamine (DAT), norepinephrine (NET) and 5-HT (SERT) was assessed using in vitro assays measuring uptake inhibition and evoked release of [3 H] neurotransmitters in rat brain synaptosomes. Our LC-MS/MS method assayed N-ethylnorpentylone concentrations with limits of detection and quantification of 1 and 5 ng/mL, respectively. Quantitation was linear from 5 to 500 ng/mL, and the method displayed specificity and reproducibility. Circulating concentrations of N-ethylnorpentylone ranged from 7 to 170 ng/mL in clinical cases, and the associated symptoms included palpitations, tachycardia, agitation, hallucinations, coma and death. N-Ethylnorpentylone was a potent inhibitor at DAT (IC50  = 37 nM), NET (IC50  = 105 nM) and SERT (IC50  = 383 nM) but displayed no transporter releasing activity. We present a validated method for quantifying N-ethylnorpentylone in human case work. The drug is a psychomotor stimulant capable of inducing serious cardiovascular and neurological side-effects which can be fatal. In vitro findings indicate that N-ethylnorpentylone exerts its effects by potent blockade of DAT and NET, thereby elevating extracellular levels of dopamine and norepinephrine in the brain and periphery.


Asunto(s)
Benzodioxoles/sangre , Benzodioxoles/farmacología , Butilaminas/sangre , Butilaminas/farmacología , Adolescente , Adulto , Animales , Benzodioxoles/toxicidad , Butilaminas/toxicidad , Estimulantes del Sistema Nervioso Central/sangre , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/toxicidad , Cromatografía Liquida , Inhibidores de Captación de Dopamina/sangre , Inhibidores de Captación de Dopamina/farmacología , Femenino , Humanos , Límite de Detección , Masculino , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/antagonistas & inhibidores , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Inhibidores Selectivos de la Recaptación de Serotonina/sangre , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sinaptosomas/metabolismo , Espectrometría de Masas en Tándem , Adulto Joven
19.
Drug Dev Res ; 79(7): 315-323, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30291750

RESUMEN

Renal ischemia-reperfusion injury (IRI) induces the production of aldehydes which are detoxified by aldehyde dehydrogenases (ALDHs). Alda-1 is a selective ALDH2 agonist and its protective effect was demonstrated in several conditions. The effect of Alda-1 on the kidney or on renal IRI was not investigated. We investigated the effect of Alda-1 on the renal dysfunction following IRI. Wistar rats underwent left IRI for 40 min. Group-Alda (n = 11) received Alda-1 starting 24 h before IRI and continued for 7 days thereafter when renal functions were measured. Group-Vx (n = 11) underwent similar protocol but received the dissolvent. Alda-1 did not affect renal blood flow or glomerular filtration rate in the left ischemic kidney in Group-Alda compared to Group-Vx (3.05 ± 0.50 vs. 3.53 ± 0.70, and 0.40 ± 0.06 vs. 0.51 ± 0.08, respectively, p > .05 for both). However, left renal fractional sodium excretion was higher in Group-Alda (2.80 ± 0.43 vs. 1.37 ± 0.36, p = .02). Alda-1 also adversely affected the gene expressions of kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin (217 ± 38 vs. 99 ± 13 and 49 ± 13 vs. 20 ± 5, respectively, p < .05 for both) and the alterations in tumor necrosis factor-α, transforming growth factor-ß1, plasminogen activator inhibitor-1, fibronectin 1 and p53 (4.4 ± 0.9 vs. 2.1 ± 0.3, 1.5 ± 0.1 vs. 1.1 ± 0.1, 30.0 ± 2.7 vs. 11.7 ± 2.3, 3.6 ± 0.4 vs. 2.1 ± 0.2 and 1.3 ± 0.1 vs. 0.9 ± 0.07, respectively, p ≤ .05 for all). This was associated with intratubular crystal deposition suggestive of crystalline nephropathy. Alda-1 exacerbated the IRI-induced renal tubular dysfunction and alterations in markers of acute kidney injury, biomarkers of inflammation, fibrosis and apoptosis and this was associated with intratubular crystal deposition suggestive of crystalline nephropathy.


Asunto(s)
Aldehído Deshidrogenasa Mitocondrial/metabolismo , Benzamidas/toxicidad , Benzodioxoles/toxicidad , Enfermedades Renales/inducido químicamente , Enfermedades Renales/metabolismo , Daño por Reperfusión/metabolismo , Animales , Cristalinas/metabolismo , Enfermedades Renales/patología , Masculino , Distribución Aleatoria , Ratas , Ratas Wistar , Daño por Reperfusión/patología
20.
Food Chem Toxicol ; 120: 213-221, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29958989

RESUMEN

Piperine (E,E-) is a naturally occurring pungent and spicy constituent of black pepperand is also used as an added flavoring ingredient to foods and beverages. Piperine has been determined safe under conditions of intended use as a flavoring substance by regulatory and scientific expert bodies. While concurring with the Joint FAO/WHO Expert Committee on Food Additives (JECFA) and Flavor and Extract Manufacturers Association (FEMA) Expert Panel on the safety of piperine, the European Food Safety Authority (EFSA) requested additional toxicological data. The results of a 90-day GLPcompliant dietary study, conducted in Sprague-Dawley rats at target doses of 0, 5, 15, or 50 mg/kg bw/day, to respond to this request are presented herein. No adverse effects were found attributable to ingestion of piperine. Statistically significant changes in food consumption, body weight gain, and plasma cholesterol levels were not considered adverse as discussed in this paper. Therefore, the oral no-observed-adverse-effect level (NOAEL) was determined to be the highest dose tested of 50 mg/kg bw/day. EFSA derived a lower NOAEL of 5 mg/kg bw/day based on increased plasma cholesterol levels which still affords an adequate margin of safety of over 48,000 and concluded that piperine is not of safety concern.


Asunto(s)
Alcaloides/toxicidad , Benzodioxoles/toxicidad , Exposición Dietética , Piperidinas/toxicidad , Alcamidas Poliinsaturadas/toxicidad , Animales , Colesterol/sangre , Relación Dosis-Respuesta a Droga , Conducta Alimentaria/efectos de los fármacos , Femenino , Masculino , Nivel sin Efectos Adversos Observados , Ratas , Ratas Sprague-Dawley , Aumento de Peso/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...