Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.395
Filtrar
1.
Chem Biol Drug Des ; 103(5): e14530, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38725091

RESUMEN

Feline immunodeficiency virus (FIV) is a common infection found in domesticated and wild cats worldwide. Despite the wealth of therapeutic understanding of the disease in humans, considerably less information exists regarding the treatment of the disease in felines. Current treatment relies on drugs developed for the related human immunodeficiency virus (HIV) and includes compounds of the popular non-nucleotide reverse transcriptase (NNRTI) class. This is despite FIV-RT being only 67% similar to HIV-1 RT at the enzyme level, increasing to 88% for the allosteric pocket targeted by NNRTIs. The goal of this project was to try to quantify how well the more extensive pharmacological knowledge available for human disease translates to felines. To this end we screened known NNRTIs and 10 diverse pyrimidine analogs identified virtually. We use this chemo-centric probe approach to (a) assess the similarity between the two related RT targets based on the observed experimental inhibition values, (b) try to identify more potent inhibitors at FIV, and (c) gain a better appreciation of the structure-activity relationships (SAR). We found the correlation between IC50s at the two targets to be strong (r2 = 0.87) and identified compound 1 as the most potent inhibitor of FIV with IC50 of 0.030 µM ± 0.009. This compared to FIV IC50 values of 0.22 ± 0.17 µM, 0.040 ± 0.010 µM and >160 µM for known anti HIV-1 RT drugs Efavirenz, Rilpivirine, and Nevirapine, respectively. This knowledge, along with an understanding of the structural origin that give rise to any differences could improve the way HIV drugs are repurposed for FIV.


Asunto(s)
Transcriptasa Inversa del VIH , Virus de la Inmunodeficiencia Felina , Inhibidores de la Transcriptasa Inversa , Animales , Inhibidores de la Transcriptasa Inversa/farmacología , Inhibidores de la Transcriptasa Inversa/química , Gatos , Virus de la Inmunodeficiencia Felina/efectos de los fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/metabolismo , Humanos , Relación Estructura-Actividad , Pirimidinas/química , Pirimidinas/farmacología , Alquinos/química , Alquinos/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Ciclopropanos/farmacología , Ciclopropanos/química , Simulación del Acoplamiento Molecular , Benzoxazinas/química , Benzoxazinas/farmacología
2.
Bioorg Med Chem Lett ; 106: 129735, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38588785

RESUMEN

A series of 1,4-benzoxazin-3-one analogs were investigated to discover mode-selective TRPV1 antagonists, since such antagonists are predicted to minimize target-based adverse effects. Using the high-affinity antagonist 2 as the lead structure, the structure activity relationship was studied by modifying the A-region through incorporation of a polar side chain on the benzoxazine and then by changing the C-region with a variety of substituted pyridine, pyrazole and thiazole moieties. The t-butyl pyrazole and thiazole C-region analogs provided high potency as well as mode-selectivity. Among them, antagonist 36 displayed potent and capsaicin-selective antagonism with IC50 = 2.31 nM for blocking capsaicin activation and only 47.5 % inhibition at 3 µM concentration toward proton activation, indicating that more than a 1000-fold higher concentration of 36 was required to inhibit proton activation than was required to inhibit capsaicin activation. The molecular modeling study of 36 with our homology model indicated that two π-π interactions with the Tyr511 and Phe591 residues by the A- and C-region and hydrogen bonding with the Thr550 residue by the B-region were critical for maintaining balanced and stable binding. Systemic optimization of antagonist 2, which has high-affinity but full antagonism for activators of all modes, led to the mode-selective antagonist 36 which represents a promising step in the development of clinical TRPV1 antagonists minimizing side effects such as hyperthermia and impaired heat sensation.


Asunto(s)
Benzoxazinas , Canales Catiónicos TRPV , Urea , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/metabolismo , Relación Estructura-Actividad , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , Urea/análogos & derivados , Urea/química , Urea/farmacología , Urea/síntesis química , Humanos , Estructura Molecular , Animales , Capsaicina/farmacología , Capsaicina/química , Descubrimiento de Drogas , Relación Dosis-Respuesta a Droga
3.
Biomolecules ; 14(4)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38672512

RESUMEN

In our previous study, we demonstrated the impact of overexpression of CB1 and CB2 cannabinoid receptors and the inhibitory effect of endocannabinoids (2-arachidonoylglycerol (2-AG) and Anandamide (AEA)) on canine (Canis lupus familiaris) and human (Homo sapiens) non-Hodgkin lymphoma (NHL) cell lines' viability compared to cells treated with a vehicle. The purpose of this study was to demonstrate the anti-cancer effects of the phytocannabinoids, cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC), and the synthetic cannabinoid WIN 55-212-22 (WIN) in canine and human lymphoma cell lines and to compare their inhibitory effect to that of endocannabinoids. We used malignant canine B-cell lymphoma (BCL) (1771 and CLB-L1) and T-cell lymphoma (TCL) (CL-1) cell lines, and human BCL cell line (RAMOS). Our cell viability assay results demonstrated, compared to the controls, a biphasic effect (concentration range from 0.5 µM to 50 µM) with a significant reduction in cancer viability for both phytocannabinoids and the synthetic cannabinoid. However, the decrease in cell viability in the TCL CL-1 line was limited to CBD. The results of the biochemical analysis using the 1771 BCL cell line revealed a significant increase in markers of oxidative stress, inflammation, and apoptosis, and a decrease in markers of mitochondrial function in cells treated with the exogenous cannabinoids compared to the control. Based on the IC50 values, CBD was the most potent phytocannabinoid in reducing lymphoma cell viability in 1771, Ramos, and CL-1. Previously, we demonstrated the endocannabinoid AEA to be more potent than 2-AG. Our study suggests that future studies should use CBD and AEA for further cannabinoid testing as they might reduce tumor burden in malignant NHL of canines and humans.


Asunto(s)
Benzoxazinas , Cannabidiol , Supervivencia Celular , Dronabinol , Linfoma no Hodgkin , Morfolinas , Naftalenos , Humanos , Perros , Cannabidiol/farmacología , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dronabinol/farmacología , Linfoma no Hodgkin/tratamiento farmacológico , Linfoma no Hodgkin/metabolismo , Linfoma no Hodgkin/patología , Benzoxazinas/farmacología , Naftalenos/farmacología , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Endocannabinoides/farmacología , Endocannabinoides/metabolismo
4.
Plant Cell Rep ; 43(4): 109, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564014

RESUMEN

KEY MESSAGE: The regulatory action of BXs secreted by wheat on the pathogenicity of FOF causing Fusarium wilt in faba bean were analyzed. DIMBOA and MBOA weakened the pathogenicity of FOF. A large number of pathogenic bacteria in continuous cropping soil infect faba bean plants, leading to the occurrence of wilt disease, which restricts their production. Faba bean-wheat intercropping is often used to alleviate this disease. This study investigates the effect of benzoxazinoids (BXs) secreted by wheat root on the pathogenicity of Fusarium oxysporum f. sp. Fabae (FOF) and underlying molecular mechanisms. The effects of DIMBOA(2,4-dihydroxy-7-methoxy-1,4-benzoxazine-4-one) and MBOA(6-methoxybenzoxazolin-2-one) on the activity of cell-wall-degrading enzymes in FOF(cellulase, pectinase, amylase, and protease), FOF Toxin (fusaric acid, FA) content were investigated through indoor culture experiments. The effect of BXs on the metabolic level of FOF was analyzed by metabonomics to explore the ecological function of benzoxazines intercropping control of Fusarium wilt in faba bean. The results show that the Exogenous addition of DIMBOA and MBOA decreased the activity of plant-cell-wall-degrading enzymes and fusaric acid content and significantly weakened the pathogenicity of FOF. DIMBOA and MBOA significantly inhibited the pathogenicity of FOF, and metabolome analysis showed that DIMBOA and MBOA reduced the pathogenicity of FOF by down-regulating related pathways such as nucleotide metabolism and linoleic acid metabolism, thus effectively controlling the occurrence of Fusarium wilt in faba bean.


Asunto(s)
Benzoxazinas , Fusarium , Triticum , Benzoxazinas/farmacología , Ácido Linoleico , Virulencia , Ácido Fusárico , Nucleótidos
5.
Am J Physiol Renal Physiol ; 326(6): F917-F930, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634131

RESUMEN

Cannabis and synthetic cannabinoid consumption are increasing worldwide. Cannabis contains numerous phytocannabinoids that act on the G protein-coupled cannabinoid receptor type 1 (CB1R) and cannabinoid receptor type 2 expressed throughout the body, including the kidney. Essentially every organ, including the kidney, produces endocannabinoids, which are endogenous ligands to these receptors. Cannabinoids acutely increase urine output in rodents and humans, thus potentially influencing total body water and electrolyte homeostasis. As the kidney collecting duct (CD) regulates total body water, acid/base, and electrolyte balance through specific functions of principal cells (PCs) and intercalated cells (ICs), we examined the cell-specific immunolocalization of CB1R in the mouse CD. Antibodies against either the C-terminus or N-terminus of CB1R consistently labeled aquaporin 2 (AQP2)-negative cells in the cortical and medullary CD and thus presumably ICs. Given the well-established role of ICs in urinary acidification, we used a clearance approach in mice that were acid loaded with 280 mM NH4Cl for 7 days and nonacid-loaded mice treated with the cannabinoid receptor agonist WIN55,212-2 (WIN) or a vehicle control. Although WIN had no effect on urinary acidification, these WIN-treated mice had less apical + subapical AQP2 expression in PCs compared with controls and developed acute diabetes insipidus associated with the excretion of large volumes of dilute urine. Mice maximally concentrated their urine when WIN and 1-desamino-8-d-arginine vasopressin [desmopressin (DDAVP)] were coadministered, consistent with central rather than nephrogenic diabetes insipidus. Although ICs express CB1R, the physiological role of CB1R in this cell type remains to be determined.NEW & NOTEWORTHY The CB1R agonist WIN55,212-2 induces central diabetes insipidus in mice. This research integrates existing knowledge regarding the diuretic effects of cannabinoids and the influence of CB1R on vasopressin secretion while adding new mechanistic insights about total body water homeostasis. Our findings provide a deeper understanding about the potential clinical impact of cannabinoids on human physiology and may help identify targets for novel therapeutics to treat water and electrolyte disorders such as hyponatremia and volume overload.


Asunto(s)
Acuaporina 2 , Benzoxazinas , Diuresis , Túbulos Renales Colectores , Morfolinas , Naftalenos , Receptor Cannabinoide CB1 , Animales , Receptor Cannabinoide CB1/metabolismo , Diuresis/efectos de los fármacos , Benzoxazinas/farmacología , Túbulos Renales Colectores/metabolismo , Túbulos Renales Colectores/efectos de los fármacos , Acuaporina 2/metabolismo , Morfolinas/farmacología , Naftalenos/farmacología , Masculino , Diabetes Insípida Neurogénica/metabolismo , Diabetes Insípida Neurogénica/fisiopatología , Ratones Endogámicos C57BL , Agonistas de Receptores de Cannabinoides/farmacología , Ratones , Modelos Animales de Enfermedad
6.
Antimicrob Agents Chemother ; 68(4): e0166823, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38483175

RESUMEN

Ainuovirine (ANV), a novel non-nucleoside reverse-transcriptase inhibitor (NNRTI), was approved in China in 2021. In a previous randomized phase 3 trial, ANV demonstrated non-inferior efficacy relative to efavirenz (EFV) and was associated with lower rates of dyslipidemia. In this study, we aimed to explore lipid changes in treatment-experienced people with human immunodeficiency virus (HIV)-1 (PWH) switching to ANV from EFV in real world. At week 24, 96.65% of patients in the ANV group and 93.25% in the EFV group had HIV-1 RNA levels below the limit of quantification (LOQ). Median changes from baseline in CD4 +T cell counts (37.0 vs 36.0 cells/µL, P = 0.886) and CD4+/CD8 +ratio (0.03 vs 0.10, P = 0.360) were similar between the two groups. The ANV group was superior to the EFV group in mean changes in total cholesterol (TC, -0.06 vs 0.26 mmol/L, P = 0.006), triglyceride (TG, -0.6 vs 0.14 mmol/L, P < 0.001), high-density lipoprotein cholesterol (HDL-C, 0.09 vs 0.08 mmol/L, P = 0.006), and low-density lipoprotein cholesterol (LDL-C, -0.18 vs 0.29 mmol/L, P < 0.001) at week 24. We also observed that a higher proportion of patients demonstrated improved TC (13.55% vs 4.45%, P = 0.015) or LDL-C (12.93% vs 6.89%, P = 0.017), and a lower proportion of patients showed worsened LDL-C (5.57% vs 13.52%, P = 0.017) with ANV than with EFV at week 24. In conclusion, we observed good efficacy and favorable changes in lipids in switching to ANV from EFV in treatment-experienced PWH in real world, indicating a promising switching option for PWH who may be more prone to metabolic or cardiovascular diseases.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , VIH-1 , Humanos , Infecciones por VIH/tratamiento farmacológico , Estudios Retrospectivos , LDL-Colesterol , Benzoxazinas/uso terapéutico , Benzoxazinas/farmacología , Alquinos/farmacología , Alquinos/uso terapéutico , Ciclopropanos/farmacología , Fármacos Anti-VIH/uso terapéutico , Fármacos Anti-VIH/farmacología
7.
Biomed Pharmacother ; 174: 116442, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513596

RESUMEN

Parkinson's disease (PD) is a complex neurodegenerative disorder with an unclear etiology. Despite significant research efforts, developing disease-modifying treatments for PD remains a major unmet medical need. Notably, drug repositioning is becoming an increasingly attractive direction in drug discovery, and computational approaches offer a relatively quick and resource-saving method for identifying testable hypotheses that promote drug repositioning. We used an artificial intelligence (AI)-based drug repositioning strategy to screen an extensive compound library and identify potential therapeutic agents for PD. Our AI-driven analysis revealed that efavirenz and nevirapine, approved for treating human immunodeficiency virus infection, had distinct profiles, suggesting their potential effects on PD pathophysiology. Among these, efavirenz attenuated α-synuclein (α-syn) propagation and associated neuroinflammation in the brain of preformed α-syn fibrils-injected A53T α-syn Tg mice and α-syn propagation and associated behavioral changes in the C. elegans BiFC model. Through in-depth molecular investigations, we found that efavirenz can modulate cholesterol metabolism and mitigate α-syn propagation, a key pathological feature implicated in PD progression by regulating CYP46A1. This study opens new avenues for further investigation into the mechanisms underlying PD pathology and the exploration of additional drug candidates using advanced computational methodologies.


Asunto(s)
Alquinos , Inteligencia Artificial , Benzoxazinas , Ciclopropanos , Reposicionamiento de Medicamentos , Enfermedad de Parkinson , alfa-Sinucleína , Ciclopropanos/farmacología , Ciclopropanos/uso terapéutico , Alquinos/farmacología , Benzoxazinas/farmacología , Reposicionamiento de Medicamentos/métodos , Animales , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Ratones , Caenorhabditis elegans/efectos de los fármacos , Ratones Transgénicos , Humanos , Nevirapina/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
8.
Angew Chem Int Ed Engl ; 63(21): e202401189, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38506220

RESUMEN

This study introduces a novel approach for synthesizing Benzoxazine-centered Polychiral Polyheterocycles (BPCPHCs) via an innovative asymmetric carbene-alkyne metathesis-triggered cascade. Overcoming challenges associated with intricate stereochemistry and multiple chiral centers, the catalytic asymmetric Carbene Alkyne Metathesis-mediated Cascade (CAMC) is employed using dirhodium catalyst/Brønsted acid co-catalysis, ensuring precise stereo control as validated by X-ray crystallography. Systematic substrate scope evaluation establishes exceptional diastereo- and enantioselectivities, creating a unique library of BPCPHCs. Pharmacological exploration identifies twelve BPCPHCs as potent Nav ion channel blockers, notably compound 8 g. In vivo studies demonstrate that intrathecal injection of 8 g effectively reverses mechanical hyperalgesia associated with chemotherapy-induced peripheral neuropathy (CIPN), suggesting a promising therapeutic avenue. Electrophysiological investigations unveil the inhibitory effects of 8 g on Nav1.7 currents. Molecular docking, dynamics simulations and surface plasmon resonance (SPR) assay provide insights into the stable complex formation and favorable binding free energy of 8 g with C5aR1. This research represents a significant advancement in asymmetric CAMC for BPCPHCs and unveils BPCPHC 8 g as a promising, uniquely acting pain blocker, establishing a C5aR1-Nav1.7 connection in the context of CIPN.


Asunto(s)
Alquinos , Benzoxazinas , Metano , Metano/análogos & derivados , Metano/química , Metano/farmacología , Alquinos/química , Benzoxazinas/química , Benzoxazinas/farmacología , Benzoxazinas/síntesis química , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/síntesis química , Humanos , Estereoisomerismo , Analgésicos/química , Analgésicos/farmacología , Analgésicos/síntesis química , Estructura Molecular , Catálisis , Descubrimiento de Drogas , Animales
9.
Physiol Plant ; 176(2): e14243, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38467539

RESUMEN

Seed priming with beneficial endophytic fungi is an emerging sustainable strategy for enhancing plant resistance against insect pests. This study examined the effects of Beauvaria bassiana Bb20091317 and Metarhizium rileyi MrCDTLJ1 fungal colonization on maize growth, defence signalling, benzoxazinoid levels and gene expression. The colonization did not adversely affect plant growth but reduced larval weights of Spodoptera frugiperda. Maize leaves treated with M. rileyi exhibited higher levels of jasmonic acid, jasmonoyl-Isoleucine, salicylic acid, and indole acetic acid compared to control. B. bassiana and M. rileyi accelerated phytohormone increase upon S. frugiperda herbivory. Gene expression analysis revealed modulation of benzoxazinoid biosynthesis genes. We further elucidated the immune regulatory role of the transcription factor zmWRKY36 using virus-induced gene silencing (VIGS) in maize. zmWRKY36 positively regulates maize immunity against S. frugiperda, likely by interacting with defense-related proteins. Transient overexpression of zmWRKY36 in tobacco-induced cell death, while silencing in maize reduced chitin-triggered reactive oxygen species burst, confirming its immune function. Overall, B. bassiana and M. rileyi successfully colonized maize, impacting larval growth, defense signalling, and zmWRKY36-mediated resistance. This sheds light on maize-endophyte-insect interactions for sustainable plant protection.


Asunto(s)
Benzoxazinas , Zea mays , Animales , Spodoptera/fisiología , Zea mays/genética , Zea mays/metabolismo , Benzoxazinas/metabolismo , Benzoxazinas/farmacología , Herbivoria , Larva/fisiología , Hongos
11.
Fitoterapia ; 173: 105812, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168568

RESUMEN

A series of myricetin derivatives containing benzoxazinone were designed and synthesized. The structures of all compounds were characterized by NMR and HRMS. The structure of Y4 had been confirmed by single-crystal X-ray diffraction analysis. The test results of EC50 values of tobacco mosaic virus (TMV) suggested that Y8 had the best curative and protective effects, with EC50 values of 236.8, 206.0 µg/mL, respectively, which were higher than that of ningnanmycin (372.4, 360.6 µg/mL). Microscale thermophoresis (MST) experiments demonstrated that Y8 possessed a strong binding affinity for tobacco mosaic virus coat protein (TMV-CP), with a dissociation constant (Kd) value of 0.045 µM, which was superior to the ningnanmycin (0.700 µM). The findings of molecular docking studies revealed that Y8 interacted with multiple amino acid residues of TMV-CP through the formation of non-covalent bonds, which had an effect on the self-assembly of TMV particles. The malondialdehyde (MDA) and superoxide dismutase assay (SOD) content assays also fully verified that Y8 could stimulate the plant immune system and enhance disease resistance by reducing MDA content and increasing SOD content. In summary, myricetin derivatives containing benzoxazinone could be considered to further research and development as novel antiviral agents.


Asunto(s)
Flavonoides , Virus del Mosaico del Tabaco , Relación Estructura-Actividad , Estructura Molecular , Benzoxazinas/farmacología , Simulación del Acoplamiento Molecular , Pruebas de Sensibilidad Microbiana , Antivirales/farmacología , Antivirales/química , Superóxido Dismutasa , Diseño de Fármacos
12.
New Phytol ; 241(6): 2575-2588, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087806

RESUMEN

Plants can suppress the growth of other plants by modifying soil properties. These negative plant-soil feedbacks are often species-specific, suggesting that some plants possess resistance strategies. However, the underlying mechanisms remain largely unknown. Here, we investigated whether benzoxazinoids, a class of dominant secondary metabolites that are exuded into the soil by maize and other cereals, allow maize plants to cope with plant-soil feedbacks. We find that three out of five tested crop species reduce maize (Zea mays L.) performance via negative plant-soil feedbacks relative to the mean across species. This effect is partially alleviated by the capacity of maize plants to produce benzoxazinoids. Soil complementation with purified benzoxazinoids restores the protective effect for benzoxazinoid-deficient mutants. Sterilization and reinoculation experiments suggest that benzoxazinoid-mediated protection acts via changes in soil biota. Substantial variation of the protective effect between experiments and soil types illustrates context dependency. In conclusion, exuded plant secondary metabolites allow plants to cope with plant-soil feedbacks. These findings expand the functional repertoire of plant secondary metabolites and reveal a mechanism by which plants can resist negative effects of soil feedbacks. The uncovered phenomenon may represent a promising avenue to stabilize plant performance in crop rotations.


Asunto(s)
Benzoxazinas , Suelo , Benzoxazinas/farmacología , Benzoxazinas/metabolismo , Retroalimentación , Plantas/metabolismo , Zea mays/metabolismo
13.
Curr Opin HIV AIDS ; 19(1): 14-20, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38078606

RESUMEN

PURPOSE OF REVIEW: Antiretroviral therapy (ART) has long been implicated in fat alterations and weight variations leading to cardiometabolic consequences. Recent largely prescribed antiretrovirals (ARVs) from the integrase-strand-transfer-inhibitor (INSTI) class have been associated with excessive weight gain/obesity in a minority of persons with HIV (PWH). As well, in the nucleoside reverse transcriptase inhibitors (NRTI) class, tenofovir-alafenamide (TAF), often replacing tenofovir-disoproxil-fumarate (TDF), has been associated with weight gain, a worrying concern in the present worldwide obesogenic environment. The respective role of the different ARV, the risk factors and the mechanisms remain questionable. RECENT FINDINGS: The INSTIs dolutegravir (DTG) and bictegravir (BIC) and TAF have a proper effect on weight gain, while efavirenz (EFV) and TDF inhibit it. These effects are reported in ART-naïve PWH, in addition to weight gain resulting from the return to health process, and in ART-controlled PWH. Also, INSTIs induce weight gain in adolescents and excessive weight gain during pregnancy. The effects of INSTIs and TAF are additive. Their trajectory differs. Most of the weight gain is observed during the initial 12-month period.The main risk factors are low CD4+ and high viral load (VL) in ART-naïve PWH, Black race or originating from some African countries and female gender. The role of age and BMI differs between studies. The reversibility of the effect of INSTI and TAF appears limited.Regarding the mechanisms, the INSTIs can directly alter adipose tissue in particular through inhibition of fat beiging, resulting in fat fibrosis and hypertrophy. Macrophage infiltration is decreased. The mechanisms explaining the opposite effects of TDF and TAF remain elusive. SUMMARY: The specific impact of DTG, BIC and TAF on weight gain/obesity in PWH is confirmed in different populations independently of the weight limiting effect of EFV and TDF. ART-linked excessive weight gain is uncommon. African origin and female sex are risk factors that need to be considered. The mechanisms are better understood for INSTIs but unknown for TDF/TAF. The reversibility of weight gain/obesity when stopping INSTI or TAF remains limited.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Aumento de Peso , Adolescente , Femenino , Humanos , Embarazo , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/farmacología , Benzoxazinas/farmacología , Infecciones por VIH/tratamiento farmacológico , Obesidad , Tenofovir/farmacología , Aumento de Peso/efectos de los fármacos , Masculino
14.
Int J Mol Sci ; 24(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37833878

RESUMEN

5-fluorouracil (5-FU) is an antineoplastic drug used to treat colorectal cancer, but it causes, among other adverse effects, diarrhea and mucositis, as well as enteric neuropathy, as shown in experimental animals. It might also cause neuropathic pain and alterations in visceral sensitivity, but this has not been studied in either patients or experimental animals. Cannabinoids have antimotility and analgesic effects and may alleviate 5-FU-induced adverse effects. Our aim was to evaluate the effects of the cannabinoid agonist WIN 55,212-2 on neuropathic and visceral pain induced by a non-diarrheagenic dose of 5-FU. Male Wistar rats received a dose of 5-FU (150 mg/kg, ip) and gastrointestinal motility, colonic sensitivity, gut wall structure and tactile sensitivity were evaluated. WIN 55,212-2 (WIN) was administered to evaluate its effect on somatic (50-100 µg ipl; 1 mg/kg, ip) and visceral (1 mg/kg, ip) sensitivity. The cannabinoid tetrad was used to assess the central effects of WIN (1 mg/kg, ip). 5-FU decreased food intake and body weight gain, produced mucositis and thermal hyperalgesia, but these effects were reduced afterwards, and were not accompanied by diarrhea. Tactile mechanical allodynia was also evident and persisted for 15 days. Interestingly, it was alleviated by WIN. 5-FU tended to increase colonic sensitivity whereas WIN reduced the abdominal contractions induced by increasing intracolonic pressure in both control and 5-FU-treated animals. Importantly, the alleviating effects of WIN against those induced by 5-FU were not accompanied by any effect in the cannabinoid tetrad. The activation of the peripheral cannabinoid system may be useful to alleviate neuropathic and visceral pain associated with antitumoral treatment.


Asunto(s)
Cannabinoides , Mucositis , Neuralgia , Dolor Visceral , Humanos , Ratas , Masculino , Animales , Ratas Wistar , Agonistas de Receptores de Cannabinoides/uso terapéutico , Dolor Visceral/tratamiento farmacológico , Dolor Visceral/etiología , Mucositis/tratamiento farmacológico , Fluorouracilo/efectos adversos , Benzoxazinas/farmacología , Benzoxazinas/uso terapéutico , Neuralgia/tratamiento farmacológico , Neuralgia/inducido químicamente , Cannabinoides/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/inducido químicamente , Diarrea/tratamiento farmacológico
15.
Environ Sci Pollut Res Int ; 30(54): 116004-116017, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37897577

RESUMEN

Effectively controlling target organisms while reducing the adverse effects of pesticides on non-target organisms is a crucial scientific inquiry and challenge in pesticide ecotoxicology research. Here, we studied the alleviation of herbicide (R)-imazethapyr [(R)-IM] to non-target plant wheat by active regulation between auxin and secondary metabolite 2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazine-3(4H)-one (DIMBOA). We found (R)-IM reduced 32.4% auxin content in wheat leaves and induced 40.7% DIMBOA accumulation compared to the control group, which effortlessly disrupted the balance between wheat growth and defense. Transcriptomic results indicated that restoration of the auxin level in plants promoted the up-regulation of growth-related genes and the accumulation of DIMBOA up-regulated the expression of defense-related genes. Auxin and DIMBOA alleviated herbicide stress primarily through effects in the two directions of wheat growth and defense, respectively. Additionally, as a common precursor of auxin and DIMBOA, indole adopted a combined growth and defense strategy in response to (R)-IM toxicity, i.e., restoring growth development and enhancing the defense system. Future regulation of auxin and DIMBOA levels in plants may be possible through appropriate methods, thus regulating the plant growth-defense balance under herbicide stress. Our insight into the interference mechanism of herbicides to the plant growth-defense system will facilitate the design of improved strategies for herbicide detoxification.


Asunto(s)
Benzoxazinas , Herbicidas , Benzoxazinas/metabolismo , Benzoxazinas/farmacología , Triticum/metabolismo , Ácidos Indolacéticos/metabolismo , Plantas/metabolismo , Herbicidas/metabolismo
16.
Proc Natl Acad Sci U S A ; 120(44): e2310134120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37878725

RESUMEN

Plants exude specialized metabolites from their roots, and these compounds are known to structure the root microbiome. However, the underlying mechanisms are poorly understood. We established a representative collection of maize root bacteria and tested their tolerance against benzoxazinoids (BXs), the dominant specialized and bioactive metabolites in the root exudates of maize plants. In vitro experiments revealed that BXs inhibited bacterial growth in a strain- and compound-dependent manner. Tolerance against these selective antimicrobial compounds depended on bacterial cell wall structure. Further, we found that native root bacteria isolated from maize tolerated the BXs better compared to nonhost Arabidopsis bacteria. This finding suggests the adaptation of the root bacteria to the specialized metabolites of their host plant. Bacterial tolerance to 6-methoxy-benzoxazolin-2-one (MBOA), the most abundant and selective antimicrobial metabolite in the maize rhizosphere, correlated significantly with the abundance of these bacteria on BX-exuding maize roots. Thus, strain-dependent tolerance to BXs largely explained the abundance pattern of bacteria on maize roots. Abundant bacteria generally tolerated MBOA, while low abundant root microbiome members were sensitive to this compound. Our findings reveal that tolerance to plant specialized metabolites is an important competence determinant for root colonization. We propose that bacterial tolerance to root-derived antimicrobial compounds is an underlying mechanism determining the structure of host-specific microbial communities.


Asunto(s)
Antiinfecciosos , Arabidopsis , Microbiota , Zea mays/metabolismo , Raíces de Plantas/metabolismo , Bacterias/metabolismo , Plantas/metabolismo , Rizosfera , Benzoxazinas/farmacología , Benzoxazinas/metabolismo , Arabidopsis/metabolismo , Antiinfecciosos/metabolismo , Microbiología del Suelo
17.
J Agric Food Chem ; 71(39): 14221-14231, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37729497

RESUMEN

Protoporphyrinogen IX oxidase (PPO/Protox, E.C. 1.3.3.4) is recognized as one of the most important targets for herbicide discovery. In this study, we report our ongoing research efforts toward the discovery of novel PPO inhibitors. Specifically, we identified a highly potent new compound series containing a pyrimidinedione moiety and bearing a versatile building block-benzoxazinone scaffold. Systematic bioassays resulted in the discovery of compound 7af, ethyl 4-(7-fluoro-6-(3-methyl-2,6-dioxo-4-(trifluoromethyl)-3,6-dihydropyrimidin-1(2H)-yl)-3-oxo-2,3-dihydro-4H-benzo[b][1,4]oxazin-4-yl)butanoate, which exhibited broad-spectrum and excellent herbicidal activity at the dosage of 37.5 g a.i./ha through postemergence application. The inhibition constant (Ki) value of 7af to Nicotiana tabacum PPO (NtPPO) was 14 nM, while to human PPO (hPPO), it was 44.8 µM, indicating a selective factor of 3200, making it the most selective PPO inhibitor to date. Moreover, molecular simulations further demonstrated the selectivity and the binding mechanism of 7af to NtPPO and hPPO. This study not only identifies a candidate that showed excellent in vivo bioactivity and high safety toward humans but also provides a paradigm for discovering PPO inhibitors with improved performance through molecular simulation and structure-guided optimization.


Asunto(s)
Benzoxazinas , Herbicidas , Humanos , Benzoxazinas/farmacología , Benzoxazinas/química , Protoporfirinógeno-Oxidasa , Inhibidores Enzimáticos/química , Herbicidas/química , Nicotiana/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-37442332

RESUMEN

Co-use of marijuana and tobacco products is the second most common drug combination among adolescents. Nicotine (NIC) and cannabinoid use during adolescence induce similar detrimental changes, raising the hypothesis that simultaneous exposure could result in even more severe outcomes. Thus, we investigated whether the co-exposure to NIC and the synthetic cannabinoid WIN 55,212-2 (WIN) in adolescent mice causes behavioral outcomes different from those observed after exposure to a single drug. Male Swiss mice were exposed twice daily to NIC, WIN, or NIC + WIN during adolescence (PND28-47) or adulthood (PND70-89). Drug combination led to a greater reduction in weight gain in adolescent mice, while NIC-induced weight loss was observed in adults. During administration, NIC provoked hypothermia, and WIN produced hyperlocomotion in adolescent and adult mice. Animals exposed to NIC + WIN presented a profile of changes similar to those exposed to NIC. After drug exposure, changes in locomotion, thigmotaxis, social preference, prepulse inhibition, and working and recognition memory were evaluated. Adolescent but not adult mice exposed to NIC showed withdrawal-related hyperlocomotion unaffected by WIN co-administration. An age-specific impairment in object recognition memory was induced only by drug co-exposure during adolescence, which resolved spontaneously before reaching early adulthood. A transient decrease in hippocampal α7 nAChR subunit and CB1 receptor mRNA levels was induced by NIC exposure, which may be involved but is not enough to explain the memory impairment. Our work confirms the potential of NIC and cannabinoids association to aggravate some of the individual drug effects during critical neurodevelopmental periods.


Asunto(s)
Cannabinoides , Nicotina , Ratones , Masculino , Animales , Nicotina/farmacología , Trastornos de la Memoria , Cannabinoides/farmacología , Reconocimiento en Psicología , Combinación de Medicamentos , Benzoxazinas/farmacología
19.
Eur J Med Chem ; 259: 115647, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37478557

RESUMEN

The discovery of selective agonists of cannabinoid receptor 2 (CB2) is strongly pursued to successfully tuning endocannabinoid signaling for therapeutic purposes. However, the design of selective CB2 agonists is still challenging because of the high homology with the cannabinoid receptor 1 (CB1) and for the yet unclear molecular basis of the agonist/antagonist switch. Here, the 1,3-benzoxazine scaffold is presented as a versatile chemotype for the design of CB2 agonists from which 25 derivatives were synthesized. Among these, compound 7b5 (CB2 EC50 = 110 nM, CB1 EC50 > 10 µM) demonstrated to impair proliferation of triple negative breast cancer BT549 cells and to attenuate the release of pro-inflammatory cytokines in a CB2-dependent manner. Furthermore, 7b5 abrogated the activation of extracellular signal-regulated kinase (ERK) 1/2, a key pro-inflammatory and oncogenic enzyme. Finally, molecular dynamics studies suggested a new rationale for the in vitro measured selectivity and for the observed agonist behavior.


Asunto(s)
Benzoxazinas , Neoplasias , Humanos , Benzoxazinas/farmacología , Neoplasias/tratamiento farmacológico , Transducción de Señal , Simulación de Dinámica Molecular , Receptores de Cannabinoides , Receptor Cannabinoide CB2 , Receptor Cannabinoide CB1 , Agonistas de Receptores de Cannabinoides
20.
Chemosphere ; 328: 138587, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019400

RESUMEN

Synthesis and fabrication of naturally sourced biopolymers, especially chitosan, grafted with renewable small molecules have recently attracted attention as efficient antimicrobial agents and are highly desired for sustainable material development. Advantageous inherent functionalities in biobased benzoxazine extend the possibility of crosslinking with chitosan which holds immense potential. Herein, a low-temperature, greener facile methodology is adopted for the covalent confinement of benzoxazine monomers bearing aldehyde and disulfide linkages within chitosan to form benzoxazine-grafted-chitosan copolymer films. The association of benzoxazine as Schiff base, hydrogen bonding, and ring-opened structures enabled the exfoliation of chitosan galleries, and such host-guest mediated interactions demonstrated outstanding properties like hydrophobicity, good thermal, and solution stability due to the synergistic effects. Furthermore, the structures empowered excellent bactericidal properties against both E. coli and S. aureus as investigated by GSH loss, live/dead fluorescence microscopy, and morphological alteration on the cell surface by SEM. The work provides the benefits of disulfide-linked benzoxazines on chitosan, offering a promising avenue for general and eco-friendly usage in wound-healing and packaging material.


Asunto(s)
Antiinfecciosos , Quitosano , Benzoxazinas/farmacología , Quitosano/farmacología , Quitosano/química , Staphylococcus aureus , Escherichia coli , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Biopolímeros/farmacología , Biopolímeros/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...