Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 13(6): e0199472, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29924862

RESUMEN

Protein-protein interactions are an important mechanism for the regulation of enzyme function allowing metabolite channeling, crosstalk between pathways or the introduction of post-translational modifications. Therefore, a number of high-throughput studies have been carried out to shed light on the protein networks established under different pathophysiological settings. Surprisingly, this type of information is quite limited for enzymes of intermediary metabolism such as betaine homocysteine S-methyltransferase, despite its high hepatic abundancy and its role in homocysteine metabolism. Here, we have taken advantage of two approaches, affinity purification combined with mass spectrometry and yeast two-hybrid, to further uncover the array of interactions of betaine homocysteine S-methyltransferase in normal liver of Rattus norvegicus. A total of 131 non-redundant putative interaction targets were identified, out of which 20 were selected for further validation by coimmunoprecipitation. Interaction targets validated by two different methods include: S-methylmethionine homocysteine methyltransferase or betaine homocysteine methyltransferase 2, methionine adenosyltransferases α1 and α2, cAMP-dependent protein kinase catalytic subunit alpha, 4-hydroxyphenylpyruvic acid dioxygenase and aldolase b. Network analysis identified 122 nodes and 165 edges, as well as a limited number of KEGG pathways that comprise: the biosynthesis of amino acids, cysteine and methionine metabolism, the spliceosome and metabolic pathways. These results further expand the connections within the hepatic methionine cycle and suggest putative cross-talks with additional metabolic pathways that deserve additional research.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Hígado/metabolismo , Mapeo de Interacción de Proteínas , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Betaína-Homocisteína S-Metiltransferasa/química , Ontología de Genes , Proteína HMGB1/metabolismo , Masculino , Ratones , Sistemas de Lectura Abierta/genética , Unión Proteica , Mapas de Interacción de Proteínas , Ratas Wistar , Reproducibilidad de los Resultados
2.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1165-1182, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28288879

RESUMEN

The paradigm of a cytoplasmic methionine cycle synthesizing/eliminating metabolites that are transported into/out of the nucleus as required has been challenged by detection of significant nuclear levels of several enzymes of this pathway. Here, we show betaine homocysteine S-methyltransferase (BHMT), an enzyme that exerts a dual function in maintenance of methionine levels and osmoregulation, as a new component of the nuclear branch of the cycle. In most tissues, low expression of Bhmt coincides with a preferential nuclear localization of the protein. Conversely, the liver, with very high Bhmt expression levels, presents a main cytoplasmic localization. Nuclear BHMT is an active homotetramer in normal liver, although the total enzyme activity in this fraction is markedly lower than in the cytosol. N-terminal basic residues play a role in cytoplasmic retention and the ratio of glutathione species regulates nucleocytoplasmic distribution. The oxidative stress associated with d-galactosamine (Gal) or buthionine sulfoximine (BSO) treatments induces BHMT nuclear translocation, an effect that is prevented by administration of N-acetylcysteine (NAC) and glutathione ethyl ester (EGSH), respectively. Unexpectedly, the hepatic nuclear accumulation induced by Gal associates with reduced nuclear BHMT activity and a trend towards increased protein homocysteinylation. Overall, our results support the involvement of BHMT in nuclear homocysteine remethylation, although moonlighting roles unrelated to its enzymatic activity in this compartment cannot be excluded.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Núcleo Celular/metabolismo , Metionina/metabolismo , Transporte Activo de Núcleo Celular , Animales , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/genética , Células CHO , Cricetinae , Cricetulus , Citoplasma/metabolismo , Glutatión/metabolismo , Hígado/metabolismo , Masculino , Estrés Oxidativo , Señales de Clasificación de Proteína , Ratas , Ratas Wistar
3.
Proteins ; 82(10): 2552-64, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24895213

RESUMEN

Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K(M) for K⁺ of about 100 µM. The presence of potassium ions lowers the apparent K(M) of the enzyme for homocysteine, but it does not affect the apparent K(M) for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K⁺ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K⁺ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Homocisteína/metabolismo , Modelos Moleculares , Potasio/metabolismo , Betaína/química , Betaína/metabolismo , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Bases de Datos de Proteínas , Activación Enzimática , Homocisteína/química , Humanos , Cinética , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Potasio/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
4.
Gene ; 529(2): 228-37, 2013 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23948084

RESUMEN

Betaine-homocysteine S-methyltransferase (BHMT) activity is only detected in the liver of rodents, but in both the liver and kidney cortex of humans and pigs; therefore, the pig was chosen as a model to define the spatial and temporal expression of BHMT during development. During fetal development, a total of ten splice variants of bhmt were expressed at varying levels across a wide range of porcine tissues. Two variants contained an identical ORF that encoded a C-terminal truncated form of BHMT (tBHMT). The bhmt transcripts were expressed at significant levels in the liver and kidney from day 45 of gestation (G45) onward. The transcripts encoding tBHMT represented 5-13% of the total bhmt transcripts in G30 fetus, G45 liver, and adult liver and kidney cortex. The dominant structural feature of wild type BHMT is an (ßα)8 barrel, however, a modeled structure of tBHMT suggests that this protein would assume a horseshoe fold and lack methyltransferase activity. Low BHMT activity was detected in the G30 fetus, and slightly increased levels of activity were observed in the liver from G45 and G90 fetuses. The bhmt promoter contained three key CpG sites, and methylation of these sites was significantly higher in adult lung compared to adult liver. The data reported herein suggest that genomic DNA methylation and variation of the 5' and 3' UTRs of bhmt transcripts are key regulators for the level of BHMT transcription and translation.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Regulación del Desarrollo de la Expresión Génica , Transcripción Genética , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/genética , Encéfalo/metabolismo , Islas de CpG , Metilación de ADN , Embrión de Mamíferos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Datos de Secuencia Molecular , Especificidad de Órganos , ARN Mensajero/metabolismo , Porcinos
5.
J Med Chem ; 55(15): 6822-31, 2012 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-22775318

RESUMEN

Betaine-homocysteine S-methyltransferase 2 (BHMT-2) catalyzes the transfer of a methyl group from S-methylmethionine to l-homocysteine, yielding two molecules of l-methionine. It is one of three homocysteine methyltransferases in mammals, but its overall contribution to homocysteine remethylation and sulfur amino acid homeostasis is not known. Moreover, recombinant BHMT-2 is highly unstable, which has slowed research on its structural and catalytic properties. In this study, we have prepared the first series of BHMT-2 inhibitors to be described, and we have tested them with human recombinant BHMT-2 that has been stabilized by copurification with human recombinant BHMT. Among the compounds synthesized, (2S,8RS,11RS)-5-thia-2,11-diamino-8-methyldodecanedioic acid (11) was the most potent (K(i)(app) ∼77 nM) and selective inhibitor of BHMT-2. Compound 11 only weakly inhibited human BHMT (IC(50) about 77 µM). This compound (11) may be useful in future in vivo studies to probe the physiological significance of BHMT-2 in sulfur amino acid metabolism.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Homocisteína/análogos & derivados , Sulfuros/síntesis química , Betaína-Homocisteína S-Metiltransferasa/química , Pruebas de Enzimas , Homocisteína/síntesis química , Homocisteína/química , Humanos , Cinética , Proteínas Recombinantes/antagonistas & inhibidores , Estereoisomerismo , Relación Estructura-Actividad , Sulfuros/química
6.
Dongwuxue Yanjiu ; 32(3): 277-84, 2011 Jun.
Artículo en Chino | MEDLINE | ID: mdl-21698793

RESUMEN

Betaine homocysteine methyltransferase (BHMT, EC 2.1.1.5) catalyzes the transfer of a methyl group from betaine to homocysteines (Hcy) to form dimethylglycine and Met, respectively. A full-length cDNA of the BHMT in Lateolabrax japonicus was amplified using RT-PCR and SMART RACE methods. The cDNA of the BHMT in L. japonicus is 1 461 bp in size, with 72 bp 5'-UTR, 183 bp 3'-UTR and 1206 bp ORF, encoding a protein of 401 amino acids with a molecular weight of 44.32 kD and pI 7.21. The sequence analysis indicated that the deduced amino acid sequence of BHMT shared high identity (77%-93%) with nine other species; the highest was 93% with Perca flavescens. Semi-quantitative RT-PCR was used to characterize the expression of BHMT in ten tissues including muscle, heart, eye, brain, gill, liver, intestine, kidney, adipose tissue and spleen. The results showed that BHMT is only expressed in the liver, intestines and kidney. BHMT mRNA in these three tissues declined after the fish were transferred from sea water to a higher salinity environment and induced when transferred to a lower salinity environment. BHMT gene in liver, intestine and kidney can also be induced after intraperitoneal injection of betaine. Our results show that betaine can induce the transcription of BHMT in fish, and BHMT play pivotal roles in adaptation to osmotic change.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Betaína/metabolismo , Proteínas de Peces/metabolismo , Regulación Enzimológica de la Expresión Génica , Perciformes/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/genética , Proteínas de Peces/química , Proteínas de Peces/genética , Humanos , Mamíferos/clasificación , Mamíferos/genética , Ratones , Datos de Secuencia Molecular , Perciformes/clasificación , Perciformes/genética , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Salinidad , Alineación de Secuencia
7.
Arch Biochem Biophys ; 472(1): 26-33, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18262489

RESUMEN

Using a redox-inert methyl acceptor, we show that betaine-homocysteine S-methyltransferase (BHMT) requires a thiol reducing agent for activity. Short-term exposure of BHMT to reducing agent-free buffer inactivates the enzyme without causing any loss of its catalytic zinc. Activity can be completely restored by the re-addition of a thiol reducing agent. The catalytic zinc of BHMT is bound by three thiolates and one hydroxyl group. Thiol modification experiments indicate that a disulfide bond is formed between two of the three zinc-binding ligands when BHMT is inactive in a reducing agent-free buffer, and that this disulfide can be readily reduced with the concomitant restoration of activity by re-establishing reducing conditions. Long-term exposure of BHMT to reducing agent-free buffer results in the slow, irreversible loss of its catalytic Zn and a corresponding loss of activity. Experiments using the glutamate-cysteine ligase modifier subunit knockout mice Gclm(-/-), which are severely impaired in glutathione synthesis, show that BHMT activity is reduced about 75% in Gclm(-/-) compared to Gclm(+/+) mice.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/química , Hígado/enzimología , Compuestos de Sulfhidrilo/química , Zinc/química , Sitios de Unión , Catálisis , Activación Enzimática , Humanos , Oxidación-Reducción , Unión Proteica
8.
J Biol Chem ; 283(14): 8939-45, 2008 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-18230605

RESUMEN

We demonstrate that purified recombinant human betainehomocysteine methyltransferase-2 (BHMT-2) is a zinc metalloenzyme that uses S-methylmethionine (SMM) as a methyl donor for the methylation of homocysteine. Unlike the highly homologous betaine-homocysteine methyltransferase (BHMT), BHMT-2 cannot use betaine. The K(m) of BHMT-2 for SMM was determined to be 0.94 mm, and it has a turnover number similar to BHMT. Several compounds were tested as inhibitors of recombinant human BHMT and BHMT-2. The SMM-specific methyltransferase activity of BHMT-2 is not inhibited by dimethylglycine and betaine, whereas the former is a potent inhibitor of BHMT. Methionine is a stronger inhibitor of BHMT-2 than BHMT, and S-adenosylmethionine does not inhibit BHMT but is a weak inhibitor of BHMT-2. BHMT can use SMM as a methyl donor with a k(cat)/K(m) that is 5-fold lower than the k(cat)/K(m) for betaine. However, SMM does not inhibit BHMT activity when it is presented to the enzyme at concentrations that are 10-fold greater than the subsaturating amounts of betaine used in the assay. Based on these data, it is our current hypothesis that in vivo most if not all of the SMM-dependent methylation of homocysteine occurs via BHMT-2.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/química , Homocisteína S-Metiltransferasa/química , Metaloproteínas/química , Zinc/química , Betaína/química , Betaína/metabolismo , Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Betaína-Homocisteína S-Metiltransferasa/genética , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Homocisteína/química , Homocisteína/metabolismo , Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Homocisteína S-Metiltransferasa/genética , Homocisteína S-Metiltransferasa/metabolismo , Humanos , Metaloproteínas/antagonistas & inhibidores , Metaloproteínas/genética , Metaloproteínas/metabolismo , Metilación , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Sarcosina/química , Sarcosina/metabolismo , Especificidad por Sustrato/fisiología , Vitamina U/química , Vitamina U/metabolismo , Zinc/metabolismo
9.
Evol Dev ; 10(1): 74-88, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18184359

RESUMEN

The origin of marine invertebrate larvae has been an area of controversy in developmental evolution for over a century. Here, we address the question of whether a pelagic "larval" or benthic "adult" morphology originated first in metazoan lineages by testing the hypothesis that particular gene co-option patterns will be associated with the origin of feeding, indirect developing larval forms. Empirical evidence bearing on this hypothesis is derivable from gene expression studies of the sea urchin larval gut of two closely related but differently developing congenerics, Heliocidaris tuberculata (feeding indirect-developing larva) and H. erythrogramma (nonfeeding direct developer), given two subsidiary hypotheses. (1) If larval gut gene expression in H. tuberculata was co-opted from an ancestral adult expression pattern, then the gut expression pattern will remain in adult H. erythrogramma despite its direct development. (2) Genes expressed in the larval gut of H. tuberculata will not have a coordinated expression pattern in H. erythrogramma larvae due to loss of a functional gut. Five structural genes expressed in the invaginating archenteron of H. tuberculata during gastrulation exhibit substantially different expression patterns in H. erythrogramma with only one remaining endoderm specific. Expression of these genes in the adult of H. erythrogramma and larval gut of H. tuberculata, but not in H. erythrogramma larval endoderm, supports the hypothesis that they first played roles in the formation of adult structures and were subsequently recruited into larval ontogeny during the origin and evolution of feeding planktotrophic deuterostome larvae.


Asunto(s)
Evolución Biológica , Tracto Gastrointestinal/crecimiento & desarrollo , Erizos de Mar/crecimiento & desarrollo , Animales , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/genética , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Clonación Molecular , Conducta Alimentaria , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/metabolismo , Gástrula/crecimiento & desarrollo , Expresión Génica , Genes del Desarrollo , Hibridación in Situ , Larva/genética , Larva/crecimiento & desarrollo , Larva/fisiología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , ARN Mensajero/metabolismo , Erizos de Mar/genética , Erizos de Mar/fisiología , Análisis de Secuencia de ADN
10.
Autophagy ; 4(2): 185-94, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18059170

RESUMEN

Cargo-based assays have proven invaluable in the study of macroautophagy in yeast and mammalian cells. Proteomic analysis of autolysosomes identified the metabolic enzyme, betaine homocysteine methyltransferase (BHMT), as a potential cargo-based, end-point marker for mammalian macroautophagy. To test whether degradation of BHMT can be used to measure macroautophagic flux in mammalian cells, we created a BHMT fusion protein (GST-BHMT) that demonstrates starvation-induced, site-specific fragmentation in a variety of cell lines. Subcellular fractionation studies show that the GST-BHMT fragment co-fractionates with vesicles containing lysosomal and autolysosomal markers. Furthermore, both pharmacological inhibitors of macroautophagy and depletion of macroautophagy-specific proteins reduce accumulation of the fragment. In the course of these studies, we observed that fragmentation of GST-BHMT did not occur in forms of the reporter with truncation or point mutations that destabilize oligomerization. Since stable oligomerization of BHMT is essential for its catalytic activity, a point mutation known to ablate BHMT activity was tested. We show that accumulation of the GST-BHMT fragment is not impaired in a catalytically inactive mutant, indicating that selective proteolysis of GST-BHMT requires stable quaternary structure independent of effects on activity. Also, the loss of fragmentation observed in the oligomerization deficient mutants does not seem to be due to a defect of sequestration and lysosomal loading, suggesting that disruption of stable quaternary structure affects the ability of a lysosomal protease to cleave the newly-delivered cargo. Finally, we propose that the cargo-based GST-BHMT assay will be a valuable addition to existing macroautophagy assays in mammalian cells.


Asunto(s)
Autofagia/fisiología , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Lisosomas/metabolismo , Procesamiento Proteico-Postraduccional , Aminoácidos Esenciales/farmacología , Animales , Autofagia/efectos de los fármacos , Betaína-Homocisteína S-Metiltransferasa/química , Células Cultivadas , Técnicas de Laboratorio Clínico , Medio de Cultivo Libre de Suero/farmacología , Dimerización , Estabilidad de Enzimas/fisiología , Glutatión Transferasa/metabolismo , Humanos , Ratones , Células 3T3 NIH , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Ratas , Proteínas Recombinantes de Fusión/metabolismo
11.
J Biochem Mol Biol ; 40(4): 604-9, 2007 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-17669278

RESUMEN

An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/aislamiento & purificación , Carbamoil-Fosfato Sintasa (Amoniaco)/aislamiento & purificación , Hígado/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/aislamiento & purificación , Sefarosa/análogos & derivados , Inhibidor de la Tripsina de Soja de Kunitz/metabolismo , Secuencia de Aminoácidos , Animales , Betaína-Homocisteína S-Metiltransferasa/química , Carbamoil-Fosfato Sintasa (Amoniaco)/química , Cromatografía en Gel , Inmunoprecipitación , Extractos Hepáticos/metabolismo , Masculino , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/química , Unión Proteica , Ratas , Ratas Sprague-Dawley
12.
Cell Mol Life Sci ; 63(23): 2792-803, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17086380

RESUMEN

Betaine homocysteine methyltransferase (BHMT), a Zn(2+)-dependent thiolmethyltransferase, contributes to the regulation of homocysteine levels, increases in which are considered a risk factor for cardiovascular diseases. Most plasma homocysteine is generated through the liver methionine cycle, in which BHMT metabolizes approximately 25% of this non-protein amino acid. This process allows recovery of one of the three methylation equivalents used in phosphatidylcholine synthesis through transmethylation, a major homocysteine-producing pathway. Although BHMT has been known for over 40 years, the difficulties encountered in its isolation precluded detailed studies until very recently. Thus, the last 10 years, since the sequence became available, have yielded extensive structural and functional data. Moreover, recent findings offer clues for potential new functions for BHMT. The purpose of this review is to provide an integrated view of the knowledge available on BHMT, and to analyze its putative roles in other processes through interactions uncover to date.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/metabolismo , Homocisteína/metabolismo , Animales , Betaína/metabolismo , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/genética , Hormonas/metabolismo , Humanos , Hígado/enzimología , Hígado/metabolismo , Metionina/metabolismo , Regiones Promotoras Genéticas , Pliegue de Proteína , Relación Estructura-Actividad
13.
J Bacteriol ; 188(20): 7195-204, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17015658

RESUMEN

Methionine is produced by methylation of homocysteine. Sinorhizobium meliloti 102F34 possesses only one methionine synthase, which catalyzes the transfer of a methyl group from methyl tetrahydrofolate to homocysteine. This vitamin B(12)-dependent enzyme is encoded by the metH gene. Glycine betaine can also serve as an alternative methyl donor for homocysteine. This reaction is catalyzed by betaine-homocysteine methyl transferase (BHMT), an enzyme that has been characterized in humans and rats. An S. meliloti gene whose product is related to the human BHMT enzyme has been identified and named bmt. This enzyme is closely related to mammalian BHMTs but has no homology with previously described bacterial betaine methyl transferases. Glycine betaine inhibits the growth of an S. meliloti bmt mutant in low- and high-osmotic strength media, an effect that correlates with a decrease in the catabolism of glycine betaine. This inhibition was not observed with other betaines, like homobetaine, dimethylsulfoniopropionate, and trigonelline. The addition of methionine to the growth medium allowed a bmt mutant to recover growth despite the presence of glycine betaine. Methionine also stimulated glycine betaine catabolism in a bmt strain, suggesting the existence of another catabolic pathway. Inactivation of metH or bmt did not affect the nodulation efficiency of the mutants in the 102F34 strain background. Nevertheless, a metH strain was severely defective in competing with the wild-type strain in a coinoculation experiment.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/genética , Betaína/metabolismo , Metionina/biosíntesis , Sinorhizobium meliloti/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/genética , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Alcaloides/metabolismo , Secuencia de Aminoácidos , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Eliminación de Gen , Datos de Secuencia Molecular , Alineación de Secuencia , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crecimiento & desarrollo , Compuestos de Sulfonio/metabolismo
14.
J Med Chem ; 49(13): 3982-9, 2006 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-16789755

RESUMEN

A series of S-alkylated derivatives of homocysteine were synthesized and characterized as inhibitors of human recombinant betaine-homocysteine S-methyltransferase (BHMT). Some of these compounds inhibit BHMT with IC50 values in the nanomolar range. BHMT is very sensitive to the structure of substituents on the sulfur atom of homocysteine. The S-carboxybutyl and S-carboxypentyl derivatives make the most potent inhibitors, and an additional sulfur atom in the alkyl chain is well tolerated. The respective (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic, (R,S)-6-(3-amino-3-carboxy-propylsulfanyl)-hexanoic, and (R,S)-2-amino-4-(2-carboxymethylsulfanyl-ethylsulfanyl)-butyric acids are very potent inhibitors and are the strongest ever reported. We determined that (R,S)-5-(3-amino-3-carboxy-propylsulfanyl)-pentanoic acid displays competitive inhibition with respect to betaine binding with a Kappi of 12 nM. Some of these compounds are currently being tested in mice to study the influence of BHMT on the metabolism of sulfur amino acids in vivo.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Butiratos/síntesis química , Caproatos/síntesis química , Homocisteína/análogos & derivados , Homocisteína/síntesis química , Ácidos Pentanoicos/síntesis química , Sulfuros/síntesis química , Betaína-Homocisteína S-Metiltransferasa/química , Butiratos/química , Caproatos/química , Homocisteína/química , Humanos , Ácidos Pentanoicos/química , Estereoisomerismo , Relación Estructura-Actividad , Sulfuros/química
15.
Biochem J ; 392(Pt 3): 443-8, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16038618

RESUMEN

Betaine-homocysteine S-methyltransferase (BHMT) transfers a methyl group from betaine to Hcy to form DMG (dimethylglycine) and Met. The reaction is ordered Bi Bi; Hcy is the first substrate to bind and Met is the last product off. Using intrinsic tryptophan fluorescence [Castro, Gratson, Evans, Jiracek, Collinsova, Ludwig and Garrow (2004) Biochemistry 43, 5341-5351], it was shown that BHMT exists in three steady-state conformations: enzyme alone, enzyme plus occupancy at the first substrate-binding site (Hcy or Met), or enzyme plus occupancy at both substrate-binding sites (Hcy plus betaine, or Hcy plus DMG). Betaine or DMG alone do not bind to the enzyme, indicating that the conformational change associated with Hcy binding creates the betaine-binding site. CBHcy [S-(d-carboxybutyl)-D,L-homocysteine] is a bisubstrate analogue that causes BHMT to adopt the same conformation as the ternary complexes. We report that BHMT is susceptible to conformation-dependent oxidative inactivation. Two oxidants, MMTS (methyl methanethiosulphonate) and hydrogen peroxide (H2O2), cause a loss of the enzyme's catalytic Zn (Zn2+ ion) and a correlative loss of activity. Addition of 2-mercaptoethanol and exogenous Zn after MMTS treatment restores activity, but oxidation due to H2O2 is irreversible. CD and glutaraldehyde cross-linking indicate that H2O2 treatment causes small perturbations in secondary structure but no change in quaternary structure. Oxidation is attenuated when both binding sites are occupied by CBHcy, but Met alone has no effect. Partial digestion of ligand-free BHMT with trypsin produces two large peptides, excising a seven-residue peptide within loop L2. CBHcy but not Met binding slows down proteolysis by trypsin. These findings suggest that L2 is involved in the conformational change associated with occupancy at the betaine-binding site and that this conformational change and/or occupancy at both ligand-binding sites protect the enzyme from oxidative inactivation.


Asunto(s)
Betaína-Homocisteína S-Metiltransferasa/antagonistas & inhibidores , Betaína-Homocisteína S-Metiltransferasa/química , Peróxido de Hidrógeno/farmacología , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Sitios de Unión , Dicroismo Circular , Activación Enzimática/efectos de los fármacos , Glutaral/metabolismo , Homocisteína/análogos & derivados , Homocisteína/metabolismo , Humanos , Mercaptoetanol/química , Metilmetanosulfonato/análogos & derivados , Metilmetanosulfonato/metabolismo , Modelos Moleculares , Oxidación-Reducción , Unión Proteica , Conformación Proteica/efectos de los fármacos , Zinc/metabolismo
16.
Biochem J ; 391(Pt 3): 589-99, 2005 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15943585

RESUMEN

Equilibrium folding of rat liver BHMT (betaine-homocysteine methyltransferase), a TIM (triosephosphate isomerase)-barrel tetrameric protein, has been studied using urea as denaturant. A combination of activity measurements, tryptophan fluorescence, CD and sedimentation-velocity studies suggested a multiphasic process including two intermediates, a tetramer (I4) and a monomer (J). Analysis of denaturation curves for single- and six-tryptophan mutants indicated that the main changes leading to the tetrameric intermediate are related to alterations in the helix alpha4 of the barrel, as well as in the dimerization arm. Further dissociation to intermediate J included changes in the loop connecting the C-terminal alpha-helix of contact between dimers, disruption of helix alpha4, and initial alterations in helix alpha7 of the barrel, as well as in the dimerization arm. Evolution of the monomeric intermediate continued through additional perturbations in helix alpha7 of the barrel and the C-terminal loop. Our data highlight the essential role of the C-terminal helix in dimer-dimer binding through its contribution to the increased stability shown by BHMT as compared with other TIM barrel proteins. The results are discussed in the light of the high sequence conservation shown by betaine-homocysteine methyltransferases and the knowledge available for other TIM-barrel proteins.


Asunto(s)
Sustitución de Aminoácidos/genética , Betaína-Homocisteína S-Metiltransferasa/química , Betaína-Homocisteína S-Metiltransferasa/metabolismo , Hígado/enzimología , Pliegue de Proteína , Triptófano/metabolismo , Animales , Betaína-Homocisteína S-Metiltransferasa/genética , Regulación de la Expresión Génica , Modelos Moleculares , Mutación , Conformación Proteica , Desnaturalización Proteica , Ratas , Triptófano/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA