Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 463
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-34369861

RESUMEN

Denitrification is a vital link in the global bio-nitrogen cycle. Here, we isolated a strain (M9-3-2T) that is a novel benzo[a]pyrene (BaP)-tolerant, anaerobic and aerobic denitrifying bacterium from a continuous BaP-enrichment cultured mangrove sediment. In silico comparative genomics and taxonomic analysis clearly revealed that strain M9-3-2T (=MCCC 1K03313T=JCM 32045T) represents a novel species of a novel genus named as Nitrogeniibacter mangrovi gen. nov., sp. nov., belonging to family Zoogloeaceae, order Rhodocyclales. In addition, the species Azoarcus pumilus is transferred into genus Aromatoleum and named Aromatoleum pumilum comb. nov. The predominant respiratory quinone of strain M9-3-2T was ubiquinone-8 and the major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, three unidentified phospholipids and three unidentified aminophospholipids. In this study, the capacity of strain M9-3-2T to eliminate nitrate was detected under anaerobic and aerobic conditions, and the removal rates of nitrate were 6.1×10-6 µg N/l/h/cell and 3×10-7 µg N/l/h/cell, respectively. Our results suggested that strain M9-3-2T could play an important role in the nitrogen removal regardless of the presence of oxygen in natural or/and man-made ecosystems.


Asunto(s)
Azoarcus , Betaproteobacteria/clasificación , Sedimentos Geológicos/microbiología , Filogenia , Anaerobiosis , Azoarcus/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química , Humedales
2.
Artículo en Inglés | MEDLINE | ID: mdl-34309506

RESUMEN

A novel Gram-stain-negative and rod-shaped bacterial strain, designated as 4Y14T, was isolated from aquaculture water and characterized by using a polyphasic taxonomic approach. Strain 4Y14T was found to grow at 10-40 °C (optimum, 28 °C), at pH 7.0-9.0 (optimum, 7.0-8.0) and with 0-2 % NaCl (optimum, 1 %, w/v). Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 4Y14T belonged to the genus Chitinilyticum with high levels of similarity to Chitinilyticum litopenaei c1T (97.8 %) and Chitinilyticum aquatile c14T (97.2 %). Phylogenomic analysis indicated that strain 4Y14T formed an independent branch distinct from the two type strains above. Digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between strain 4Y14T and the two type strains were, respectively, 25.3 and 25.0 %, and 81.2 and 80.3 %, which were well below the thresholds of 70 % DDH and 95-96 % ANI for species definition, implying that strain 4Y14T should represent a novel genospecies. The predominant cellular fatty acids of strain 4Y14T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C16 : 0; the major polar lipids were diphosphatidylglycerol, phosphatidylcholine and phosphatidylethanolamine; and the sole respiratory quinone was Q-8. The genomic DNA G+C content was 60.1 mol%. Based on the phenotypic and genotypic analyses, strain 4Y14T is concluded to represent a novel species of the genus Chitinilyticum, for which the name Chitinilyticum piscinae sp. nov. is proposed. The type strain of the species is 4Y14T (=GDMCC 1.1934T=KACC 22080T).


Asunto(s)
Acuicultura , Betaproteobacteria/clasificación , Filogenia , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , China , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
3.
Artículo en Inglés | MEDLINE | ID: mdl-34296988

RESUMEN

A novel Gram-stain-negative, aerobic, rod-shaped bacterium with a single polar flagellum, designated strain 2T18T, was isolated from the gut of the freshwater mussel Anodonta arcaeformis collected in the Republic of Korea. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain belonged to the genus Chitinibacter. Strain 2T18T formed a monophyletic clade with Chitinibacter fontanus KCTC 42982T, C. tainanensis KACC 11706T and C. alvei KCTC 23839T, with sequence similarities of 98.5, 98.4 and 95.9 %, respectively. Strain 2T18T exhibited optimal growth at 30 °C, at pH 8 and with 0.5 % (w/v) NaCl. The major isoprenoid quinone was ubiquinone-8 (Q-8). The predominant fatty acids were summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c) and C16 : 0. The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unidentified lipid, three unidentified phospholipids and two unidentified aminophospholipids. The G+C content of the genomic DNA was 50.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strains 2T18T and C. fontanus KCTC 42982T were below the thresholds used for the delineation of a novel species. Based on the phylogenetic, phenotypic, chemotaxonomic and genotypic characteristics, strain 2T18T represents a novel species of the genus Chitinibacter, for which the name Chitinibacter bivalviorum sp. nov. is proposed. The type strain is 2T18T (=KCTC 72821T=CCUG 74764T).


Asunto(s)
Anodonta/microbiología , Betaproteobacteria/clasificación , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Agua Dulce , Tracto Gastrointestinal/microbiología , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
4.
Int J Food Microbiol ; 346: 109153, 2021 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-33744818

RESUMEN

Laribacter hongkongensis is a foodborne organism that is associated with gastroenteritis and diarrhea in humans. Here we describe the structural characteristics and potential function of CRISPR systems to obtain insight into the genotypic diversity of L. hongkongensis. Specifically, we analyzed the genomic content of six L. hongkongensis genomes and identified two CRISPR loci (CRISPR1 and CRISPR2) belonging to the I-F subtype of CRISPR systems. CRISPR1 was flanked on one side by cas genes and a 170 bp-long putative leader sequence, while CRISPR2 arrays located further and processed by the same cas genes. Then a combination of PCR and sequencing was used to determine the prevalence and distribution of the two CRISPR arrays in 112 L. hongkongensis strains isolated from patients, animals, and water reservoirs. In total, the CRISPR1-Cas system of complete subtype I-F was detected in 91.5% (108/118) of the isolates, whereas CRISPR2 locus existed in 72.0% (85/118). Ten strains only possessed part of the cas genes of subtype I-F and four of them with CRISPR2 array. The two loci contained highly conserved and identical direct repeat sequences which were stable in their RNA secondary structure. Additionally, 2564 total spacers including 980 unique spacers arranged in 59 alleles were identified. Homology analysis showed only 1.8% (18/980) of the spacers matched with plasmid or phage. CRISPR polymorphism present in human isolates and frog isolates was more closely related and more extensive than that of fish isolates based on spacer polymorphism. The elucidation of the structural characteristics of the CRISPR-Cas system may be helpful for further studying the specific mechanism of adaptive immunity and other biological functions mediated by CRISPR in L. hongkongensis. The conservation of CRISPR loci and hypervariable repeat-spacer arrays imply the potential for molecular typing of L. hongkongensis.


Asunto(s)
Anuros/microbiología , Betaproteobacteria/genética , Sistemas CRISPR-Cas , Diarrea/microbiología , Peces/microbiología , Enfermedades Transmitidas por los Alimentos/microbiología , Gastroenteritis/microbiología , Alelos , Animales , Betaproteobacteria/clasificación , Betaproteobacteria/aislamiento & purificación , Genómica , Genotipo , Humanos , Plásmidos/genética
5.
Artículo en Inglés | MEDLINE | ID: mdl-33433313

RESUMEN

Members of the metabolically diverse order Nitrosomonadales inhabit a wide range of environments. Two strains affiliated with this order were isolated from soils in Germany and characterized by a polyphasic approach. Cells of strains 0125_3T and Swamp67T are Gram-negative rods, non-motile, non-spore-forming, non-capsulated and divide by binary fission. They tested catalase-negative, but positive for cytochrome c-oxidase. Both strains form small white colonies on agar plates and grow aerobically and chemoorganotrophically on SSE/HD 1 : 10 medium, preferably utilizing organic acids and proteinaceous substrates. Strains 0125_3T and Swamp67T are mesophilic and grow optimally without NaCl addition at slightly alkaline conditions. Major fatty acids are C16 : 1 ω7c, C16 : 0 and C14 : 0. The major polar lipids are diphosphatidylglycerol, phosphatidylethanolamine and phosphatidyglycerol. The predominant respiratory quinone is Q-8. The G+C content for 0125_3T and Swamp67T was 67 and 66.1 %, respectively. The 16S rRNA gene analysis indicated that the closest relatives (<91 % sequence similarity) of strain 0125_3T were Nitrosospira multiformis ATCC 25196T, Methyloversatilis universalis FAM5T and Denitratisoma oestradiolicum AcBE2-1T, while Nitrosospira multiformis ATCC 25196T, Nitrosospira tenuis Nv1T and Nitrosospira lacus APG3T were closest to strain Swamp67T. The two novel strains shared 97.4 % 16S rRNA gene sequence similarity with one another and show low average nucleotide identity of their genomes (83.8 %). Based on the phenotypic, chemotaxonomic, genomic and phylogenetic analysis, we propose the two novel species Usitatibacter rugosus sp. nov (type strain 0125_3T=DSM 104443T=LMG 29998T=CECT 9241T) and Usitatibacter palustris sp. nov. (type strain Swamp67T=DSM 104440T=LMG 29997T=CECT 9242T) of the novel genus Usitatibacter gen. nov., within the novel family Usitatibacteraceae fam. nov.


Asunto(s)
Betaproteobacteria/clasificación , Filogenia , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Alemania , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
6.
Artículo en Inglés | MEDLINE | ID: mdl-33502294

RESUMEN

A novel sulfur-oxidizing bacterium, designated strain LSR1T, was enriched and isolated from a freshwater sediment sample collected from the Pearl River in Guangzhou, PR China. The strain was an obligate chemolithoautotroph, using thiosulfate or sulfide as an electron donor and energy source. Growth of strain LSR1T was observed at 15-40 °C, pH 6.0-7.5 and NaCl concentrations of 0-1.5 %. Strain LSR1T was microaerophilic, with growth only at oxygen content less than 10 %. Anaerobic growth was also observed when using nitrate as the sole electron acceptor. The major cellular fatty acids were C16 : 0 and summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c). The DNA G+C content of the draft genome sequence was 67.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain LSR1T formed a lineage within the family Thiobacillaceae, showing sequence identities of 92.87, 92.33 and 90.80 % with its closest relative genera Sulfuritortus, Annwoodia and Thiobacillus, respectively. The genome of strain LSR1T contained multiple genes encoding sulfur-oxidizing enzymes that catalyse thiosulfate and sulfide oxidation, and the gene encoding cbb 3-type cytochrome c oxidase and bd-type quinol oxidase, which enables strain LSR1T to perform sulphur oxidation under microaerophilic conditions. On the basis of phenotypic, genotypic and phylogenetic results, strain LSR1T is considered to represent a novel species of a new genus Parasulfuritortus within the family Thiobacillaceae, for which the name Parasulfuritortus cantonensis gen. nov., sp. nov. is proposed. The type strain is LSR1T (=GDMCC 1.1549=JCM 33645).


Asunto(s)
Betaproteobacteria/clasificación , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Filogenia , Bacterias Reductoras del Azufre/clasificación , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , China , ADN Bacteriano/genética , Ácidos Grasos/química , Oxidación-Reducción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Bacterias Reductoras del Azufre/aislamiento & purificación
7.
Microb Genom ; 7(2)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33502308

RESUMEN

Poly(A) polymerases (PAPs) and tRNA nucleotidyltransferases belong to a superfamily of nucleotidyltransferases and modify RNA 3'-ends. The product of the pcnB gene, PAP I, has been characterized in a few ß-, γ- and δ-Proteobacteria. Using the PAP I signature sequence, putative PAPs were identified in bacterial species from the α- and ε-Proteobacteria and from four other bacterial phyla (Firmicutes, Actinobacteria, Bacteroidetes and Aquificae). Phylogenetic analysis, alien index and G+C content calculations strongly suggest that the PAPs in the species identified in this study arose by horizontal gene transfer from the ß- and γ-Proteobacteria.


Asunto(s)
Betaproteobacteria/enzimología , Gammaproteobacteria/enzimología , Polinucleotido Adenililtransferasa/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Composición de Base , Betaproteobacteria/clasificación , Betaproteobacteria/genética , Evolución Molecular , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Transferencia de Gen Horizontal , Filogenia
8.
Arch Microbiol ; 203(1): 317-323, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32926197

RESUMEN

A facultatively anaerobic sulfur-oxidizing bacterium, strain skT11T, was isolated from anoxic lake water of a stratified freshwater lake. As electron donor for chemolithoautotrophic growth, strain skT11T oxidized thiosulfate, tetrathionate, and elemental sulfur under nitrate-reducing conditions. Oxygen-dependent growth was observed under microoxic conditions, but not under fully oxygenated conditions. Growth was observed at a temperature range of 5-37 °C, with optimum growth at 28 °C. Strain skT11T grew at a pH range of 5.1-7.5, with optimum growth at pH 6.5-6.9. Heterotrophic growth was not observed. Major components in the cellular fatty acid profile were C16:1 and C16:0. The complete genome of strain skT11T consisted of a circular chromosome with a size of 3.8 Mbp and G + C content of 60.2 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that the strain skT11T is related to sulfur-oxidizing bacteria of the genera Sulfuricella, Sulfurirhabdus, and Sulfuriferula, with sequence identities of 95.4% or lower. The analysis also indicated that these three genera should be excluded from the family Gallionellaceae, as members of another family. On the basis of its genomic and phenotypic properties, strain skT11T (= DSM 110711 T = NBRC 114323 T) is proposed as the type strain of a new species in a new genus, Sulfurimicrobium lacus gen. nov., sp. nov. In addition, emended descriptions of the families Gallionellaceae and Sulfuricellaceae are proposed to declare that Sulfuricellaceae is not a later synonym of Gallionellaceae.


Asunto(s)
Betaproteobacteria/clasificación , Lagos/microbiología , Filogenia , Betaproteobacteria/aislamiento & purificación , Crecimiento Quimioautotrófico , Ácidos Grasos/química , Gallionellaceae/clasificación , Gallionellaceae/genética , Genoma Bacteriano/genética , Oxidación-Reducción , ARN Ribosómico 16S/genética , Especificidad de la Especie , Azufre/metabolismo
9.
Int J Syst Evol Microbiol ; 70(11): 5848-5853, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32985969

RESUMEN

A Gram-stain-negative, rod-shaped, obligately aerobic, motile by a single polar flagellum, chemoheterotrophic bacterium, designated strain IMCC25680T, was isolated from surface water in Chungju Lake, Republic of Korea. 16S rRNA gene sequence analysis revealed that strain IMCC25680T was most closely related to Leeia oryzae HW7T with 95.5% sequence similarity and formed a robust clade with L. oryzae HW7T. Whole genome sequencing showed that strain IMCC25680T had a genome 3.6 Mbp long with 60.7 mol% DNA G+C content. Average nucleotide identity and digital DNA-DNA hybridization values between strain IMCC25680T and L. oryzae HW7T were 72.4% and 18.5%, respectively, indicating that the novel strain represents a novel species of the genus Leeia. The major cellular fatty acids of strain IMCC25680T were iso-C16:0 and summed feature 3 (comprising C16:1 ω6c and/or C16:1 ω7c). The respiratory quinone detected in the strain was ubiquinone-8. The major polar lipids were found to be phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified polar lipids. On the basis of the phylogenetic and phenotypic characterization, strain IMCC25680T was considered to represent a novel species within the genus Leeia, for which the name Leeia aquatica sp. nov. is proposed. The type strain is IMCC25680T (=KACC 19487T =NBRC 113132T).


Asunto(s)
Betaproteobacteria/clasificación , Lagos/microbiología , Filogenia , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
10.
Int J Syst Evol Microbiol ; 70(10): 5551-5560, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32915122

RESUMEN

Three aerobic, Gram-stain-negative, non-motile, rod-shaped bacteria, designated as strains SHINM1T, ICHIJ1 and ICHIAU1, were isolated from surface river water (Saitama Prefecture, Japan). Phylogenetic analyses based on 16S rRNA and 40 marker gene sequences revealed that the strains formed a distinct phylogenetic lineage within the order Rhodocyclales. The three strains shared 100 % 16S rRNA gene similarity. Growth occurred at 15-30 °C and pH 6.0-9.5, but not in the presence of ≥1.0 % (w/v) NaCl. The isolates stained positive for intracellular polyphosphate granules. The major cellular fatty acids were C16 : 0, summed feature 2 (C12 : 1 aldehyde and/or iso-C16 : 1 I and/or C14 : 0 3-OH), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine and an unidentified phospholipid. The predominant quinone system of strain SHINM1T was ubiquinone-8 and its DNA G+C content was 56.7 mol%. Genome sequencing of the three isolates revealed a genome size of 2.29-2.43 Mbp and average nucleotide identity by orthology values of ≥98.9 %. Based on the results of phenotypic and phylogenetic analyses, strains SHINM1T, ICHIJ1 and ICHIAU1 represent a novel species of a new genus, for which the name Fluviibacter phosphoraccumulans gen. nov., sp. nov. is proposed, within a new family, Fluviibacteraceae fam. nov. of the order Rhodocyclales. The type strain is SHINM1T (=JCM 32071T=NCIMB 15105T).


Asunto(s)
Betaproteobacteria/clasificación , Filogenia , Ríos/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Japón , Fosfolípidos/química , Polifosfatos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
11.
BMC Infect Dis ; 20(1): 687, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32948147

RESUMEN

BACKGROUND: Vogesella species are common aquatic, Gram-negative rod-shaped bacteria, originally described in 1997. Vogesella perlucida was first isolated from spring water in 2008. Furthermore, bacterial pathogenicity of Vogesella perlucida has never been reported. Here, we report the first case of rare Vogesella perlucida-induced bacteremia in an advanced-age patient with many basic diseases and history of dexamethasone abuse. CASE PRESENTATION: A 71-year-old female was admitted with inflamed upper and lower limbs, rubefaction, pain and fever (about 40 °C). She had been injured in a fall at a vegetable market and then touched river snails with her injury hands. A few days later, soft tissue infection of the patient developed and worsened. Non-pigmented colonies were isolated from blood cultures of the patient. Initially, Vogesella perlucida was wrongly identified as Sphingomonas paucimobilis by Vitek-2 system with GN card. Besides, we failed to obtain an acceptable identification by the MALDI-TOF analysis. Finally, the isolated strain was identified as Vogesella perlucida by 16S rRNA gene sequences. In addition, the patient recovered well after a continuous treatment of levofloxacin for 12 days. CONCLUSION: Traditional microbiological testing system may be inadequate in the diagnosis of rare pathogenic bacteria. Applications of molecular diagnostics techniques have great advantages in clinical microbiology laboratory. By using 16S rRNA gene sequence analysis, we report the the first case of rare Vogesella perlucida-induced bacteremia.


Asunto(s)
Bacteriemia/microbiología , Betaproteobacteria/patogenicidad , Infecciones de los Tejidos Blandos/microbiología , Anciano , Antibacterianos/uso terapéutico , Bacteriemia/tratamiento farmacológico , Técnicas de Tipificación Bacteriana , Betaproteobacteria/clasificación , Betaproteobacteria/genética , Betaproteobacteria/aislamiento & purificación , Femenino , Humanos , Levofloxacino/uso terapéutico , ARN Ribosómico 16S/genética , Infecciones de los Tejidos Blandos/tratamiento farmacológico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Vancomicina/uso terapéutico
12.
Int J Syst Evol Microbiol ; 70(9): 4903-4907, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32821034

RESUMEN

A Gram-stain-negative, facultative anaerobic, motile, short rods and yellow-pigmented bacterium, designated strain THG-DN7.12T, was isolated from water collected at Jungwon waterfall on Yongmun mountain, Republic of Korea. According to 16S rRNA gene sequence comparisons, strain THG-DN7.12T was found to be most closely related to Aquitalea denitrificans 5YN1-3T (98.9 % sequence similarity), Aquitalea magnusonii TRO-001DR8T (98.7 %) and Aquitalea pelogenes P1297T (98.0 %). The DNA-DNA relatedness between strain THG-DN7.12T and its phylogenetically closest neighbours was below 70.0 %. The strain's DNA G+C content was 59.7 mol%. The major polar lipid was found to be phosphatidylethanolamine. Summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0 were identified as the major fatty acids. Ubiquinone Q-8 was detected as the only respiratory quinone. These data supported the affiliation of strain THG-DN7.12T to the genus Aquitalea. Strain THG-DN7.12T was distinguished from related Aquitalea species by physiological and biochemical tests. Therefore, the novel isolate represents a novel species, for which the name Aquitalea aquatilis sp. nov. is proposed, with THG-DN7.12T as the type strain (=KACC 18847T=CCTCC AB 2016185T).


Asunto(s)
Betaproteobacteria/clasificación , Agua Dulce , Filogenia , Microbiología del Agua , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Hibridación de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentación , ARN Ribosómico 16S/genética , República de Corea , Análisis de Secuencia de ADN , Ubiquinona/química
13.
Int J Syst Evol Microbiol ; 70(8): 4831-4837, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32701427

RESUMEN

Two bacterial strains, designated B2N2-7T and B2N2-12, were isolated from Buteha crater lake in the Greater Khingan Mountain of China. The two strains were Gram-stain-negative, non-spore-forming, motile with a single polar flagellum, short rod-shaped bacteria. They were catalase- and oxidase-positive. Optimal growth occurred at 20-25 ℃, at pH 7.5-8.0 and with 0-1.0 % (w/v) NaCl. Based on phylogenomic analysis, strains B2N2-7T and B2N2-12 were assigned to the family Neisseriaceae, and their 16S rRNA gene sequences showed the highest similarities to that of Aquitalea denitrificans 5YN1-3T (<94.2 %). The predominant cellular fatty acids were C16 : 0 and summed feature 3 (comprising C16 : 1ω7c/C16 : 1 ω6c). The major respiratory quinone was ubiquinone 8 (Q-8). The polar lipids were phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), two unidentified aminophospholipids (APL) and some unidentified lipids (L). The genomic DNA G+C content of strain B2N2-7T was 59.4 mol% according to the genomic sequencing result. Based on the phylogenetic, genotypic and chemotaxonomic analyses, the two strains are proposed to represent a novel species of a new genus in the family Neisseriaceae, named Craterilacuibacter sinensis gen. nov., sp. nov. The type strain of Craterilacuibacter sinensis is B2N2-7T (=CGMCC 1.17189T=KCTC 73735T); B2N2-12 (=CGMCC 1.17190=KCTC 72734) is a second strain of the species.


Asunto(s)
Betaproteobacteria/clasificación , Lagos/microbiología , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , China , ADN Bacteriano/genética , Ácidos Grasos/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Ubiquinona/química
14.
BMC Microbiol ; 20(1): 119, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32423375

RESUMEN

BACKGROUND: Ferrovum spp. are abundant in acid mine drainage sites globally where they play an important role in biogeochemical cycling. All known taxa in this genus are Fe(II) oxidizers. Thus, co-occurring members of the genus could be competitors within the same environment. However, we found multiple, co-occurring Ferrovum spp. in Cabin Branch, an acid mine drainage site in the Daniel Boone National Forest, KY. RESULTS: Here we describe the distribution of Ferrovum spp. within the Cabin Branch communities and metagenome assembled genomes (MAGs) of two new Ferrovum spp. In contrast to previous studies, we recovered multiple 16S rRNA gene sequence variants suggesting the commonly used 97% cutoff may not be appropriate to differentiate Ferrovum spp. We also retrieved two nearly-complete Ferrovum spp. genomes from metagenomic data. The genomes of these taxa differ in several key ways relating to nutrient cycling, motility, and chemotaxis. CONCLUSIONS: Previously reported Ferrovum genomes are also diverse with respect to these categories suggesting that the genus Ferrovum contains substantial metabolic diversity. This diversity likely explains how the members of this genus successfully co-occur in Cabin Branch and why Ferrovum spp. are abundant across geochemical gradients.


Asunto(s)
Ácidos/análisis , Betaproteobacteria/clasificación , Metagenómica/métodos , ARN Ribosómico 16S/genética , Betaproteobacteria/aislamiento & purificación , Betaproteobacteria/fisiología , Ciclo del Carbono , ADN Bacteriano/genética , ADN Ribosómico/genética , Bases de Datos Genéticas , Compuestos Férricos/metabolismo , Kentucky , Minería , Filogenia
15.
Sci Rep ; 10(1): 6746, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317769

RESUMEN

With the increase in iron/steel production, the higher volume of by-products (slag) generated necessitates its efficient recycling. Because the Linz-Donawitz (LD) slag is rich in silicon (Si) and other fertilizer components, we aim to evaluate the impact of the LD slag amendment on soil quality (by measuring soil physicochemical and biological properties), plant nutrient uptake, and strengthens correlations between nutrient uptake and soil bacterial communities. We used 16 S rRNA illumine sequencing to study soil bacterial community and APIZYM assay to study soil enzymes involved in C, N, and P cycling. The LD slag was applied at 2 Mg ha-1 to Japonica and Indica rice cultivated under flooded conditions. The LD slag amendment significantly improved soil pH, plant photosynthesis, soil nutrient availability, and the crop yield, irrespective of cultivars. It significantly increased N, P, and Si uptake of rice straw. The slag amendment enhanced soil microbial biomass, soil enzyme activities and enriched certain bacterial taxa featuring copiotrophic lifestyles and having the potential role for ecosystem services provided to the benefit of the plant. The study evidenced that the short-term LD slag amendment in rice cropping systems is useful to improve soil physicochemical and biological status, and the crop yield.


Asunto(s)
Fertilizantes/análisis , Consorcios Microbianos/efectos de los fármacos , Oryza/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Residuos/análisis , Actinobacteria/clasificación , Actinobacteria/genética , Actinobacteria/aislamiento & purificación , Alphaproteobacteria/clasificación , Alphaproteobacteria/genética , Alphaproteobacteria/aislamiento & purificación , Betaproteobacteria/clasificación , Betaproteobacteria/genética , Betaproteobacteria/aislamiento & purificación , Ciclo del Carbono/fisiología , Deltaproteobacteria/clasificación , Deltaproteobacteria/genética , Deltaproteobacteria/aislamiento & purificación , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Gammaproteobacteria/clasificación , Gammaproteobacteria/genética , Gammaproteobacteria/aislamiento & purificación , Humanos , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Hierro/farmacología , Metalurgia/métodos , Consorcios Microbianos/fisiología , Ciclo del Nitrógeno/fisiología , Oryza/microbiología , Oryza/fisiología , Fósforo/fisiología , Fotosíntesis/fisiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , ARN Ribosómico 16S/genética , Silicio/metabolismo , Silicio/farmacología , Suelo/química , Microbiología del Suelo , Acero/química
16.
Microbiologyopen ; 9(5): e1011, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32126588

RESUMEN

Aerobic ammonia oxidation to nitrite has been established as an important ecosystem process in regulating the level of nitrogen in marine ecosystems. This process is carried out by ammonia-oxidizing bacteria (AOB) within the classes Betaproteobacteria and Gammaproteobacteria and ammonia-oxidizing Archaea (AOA) from the phylum Thaumarchaeota, and the latter of which has been established as more prevalent in marine systems. This study investigated the presence, abundance, and activity of these groups of microbes at a beach near Springmaid Pier in Myrtle Beach, South Carolina, through the implementation of next generation sequencing, quantitative PCR (qPCR), and microcosm experiments to monitor activity. Sequencing analysis revealed a diverse community of ammonia-oxidizing microbes dominated by AOA classified within the family Nitrosopumilaceae, and qPCR revealed the abundance of AOA amoA genes over AOB by at least an order of magnitude in most samples. Microcosm studies indicate that the rates of potential ammonia oxidation in these communities satisfy Michaelis-Menten substrate kinetics and this process is more active at temperatures corresponding to summer months than winter. Potential rates in AOA medium were higher than that of AOB medium, indicating a potentially greater contribution of AOA to this process in this environment. In conclusion, this study provides further evidence of the dominance of AOA in these environments compared with AOB and highlights the overall efficiency of this process at turning over excess ammonium that may be present in these environments.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Oxidorreductasas/genética , Arena/microbiología , Microbiología del Suelo , Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Betaproteobacteria/clasificación , Biodiversidad , ADN de Archaea/genética , ADN Bacteriano/genética , Gammaproteobacteria/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , South Carolina
17.
Int J Syst Evol Microbiol ; 70(3): 2016-2025, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32003711

RESUMEN

The taxonomic position of an unknown bacterial strain designated CNM695-12, isolated from the blood of an immunocompromised subject, was investigated via phenotypic, chemotaxonomic, genotypic and genomic analyses. Bacterial cells were determined to be Gram-stain-negative bacilli, aerobic, non-motile and non-spore-forming. The strain showed catalase activity but no oxidase activity. Optimal growth occurred at 37 °C, pH 7 and with 0-1 % NaCl. C16 : 0, summed feature 8 (comprising C18 : 1ω7c /C18:1 ω6c), and C18 : 1ω9c were the most abundant fatty acids, and ubiquinone 8 was the major respiratory quinone. The polar lipids present included phosphatidylglycerol, phosphatidylethanolamine and other aminophospholipids. The 16S rRNA gene sequence showed approximately 93.5 % similarity to those of different species with validly published names within the order Burkholderiales (e.g. Leptothrix mobilis Feox-1T, Aquabacterium commune B8T , Aquabacterium citratiphilum B4T and Schlegelella thermodepolymerans K14T). Phylogenetic analyses based on 16S rRNA gene sequences and concatenated alignments including the sequences for 107 essential proteins, revealed the strain to form a novel lineage close to members of the family Comamonadaceae. The highest average nucleotide identity and average amino acid identity values were obtained with Schlegelella thermodepolymerans K14T (69.6 and 55.7 % respectively). The genome, with a size of 3.35 Mb, had a DNA G+C content of 52.4 mol% and encoded 3056 predicted genes, 3 rRNA, 1 transfer-messengerRNA and 51 tRNA. Strain CNM695-12 thus represents a novel species belonging to a novel genus within the order Burkholderiales, for which the name Saezia sanguinis gen. nov., sp. nov. is proposed. The type strain is CNM695-12T (=DSM 104959T=CECT 9208T).


Asunto(s)
Betaproteobacteria/clasificación , Sangre/microbiología , Filogenia , Anciano de 80 o más Años , Técnicas de Tipificación Bacteriana , Composición de Base , Betaproteobacteria/aislamiento & purificación , ADN Bacteriano/genética , Ácidos Grasos/química , Humanos , Masculino , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , España , Ubiquinona/química
18.
Res Microbiol ; 171(1): 37-43, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31606487

RESUMEN

Amongst iron-oxidizing bacteria playing a key role in the natural attenuation of arsenic in acid mine drainages (AMDs), members of the Ferrovum genus were identified in mine effluent or water treatment plants, and were shown to dominate biogenic precipitates in field pilot experiments. In order to address the question of the in situ activity of the uncultivated Ferrovum sp. CARN8 strain in the Carnoulès AMD, we assembled its genome using metagenomic and metatranscriptomic sequences and we determined standardized expression values for protein-encoding genes. Our results showed that this microorganism was indeed metabolically active and allowed us to sketch out its metabolic activity in its natural environment. Expression of genes related to the respiratory chain and carbon fixation suggests aerobic energy production coupled to ferrous iron oxidation and chemolithoautotrophic growth. Notwithstanding the presence of nitrogenase genes in its genome, expression data also indicated that Ferrovum sp. CARN8 relied on ammonium import rather than nitrogen fixation. The expression of flagellum and chemotaxis genes hints that at least a proportion of this strain population was motile. Finally, apart from some genes related to metal resistance showing surprisingly low expression values, genes involved in stress response were well expressed as expected in AMDs.


Asunto(s)
Betaproteobacteria/genética , Aguas del Alcantarillado/microbiología , Compuestos de Amonio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Betaproteobacteria/clasificación , Betaproteobacteria/aislamiento & purificación , Betaproteobacteria/metabolismo , Regulación Bacteriana de la Expresión Génica , Metagenómica , Transcriptoma
19.
ISME J ; 14(3): 714-726, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796935

RESUMEN

Copper-containing membrane monooxygenases (CuMMOs) are encoded by xmoCAB(D) gene clusters and catalyze the oxidation of methane, ammonia, or some short-chain alkanes and alkenes. In a metagenome constructed from an oilsands tailings pond we detected an xmoCABD gene cluster with <59% derived protein sequence identity to genes from known bacteria. Stable isotope probing experiments combined with a specific xmoA qPCR assay demonstrated that the bacteria possessing these genes were incapable of methane assimilation, but did grow on ethane and propane. Single-cell amplified genomes (SAGs) from propane-enriched samples were screened with the specific PCR assay to identify bacteria possessing the target gene cluster. Multiple SAGs of Betaproteobacteria belonging to the genera Rhodoferax and Polaromonas possessed homologues of the metagenomic xmoCABD gene cluster. Unexpectedly, each of these two genera also possessed other xmoCABD paralogs, representing two additional lineages in phylogenetic analyses. Metabolic reconstructions from SAGs predicted that neither bacterium encoded enzymes with the potential to support catabolic methane or ammonia oxidation, but that both were capable of higher n-alkane degradation. The involvement of the encoded CuMMOs in alkane oxidation was further suggested by reverse transcription PCR analyses, which detected elevated transcription of the xmoA genes upon enrichment of water samples with propane as the sole energy source. Enrichments, isotope incorporation studies, genome reconstructions, and gene expression studies therefore all agreed that the unknown xmoCABD operons did not encode methane or ammonia monooxygenases, but rather n-alkane monooxygenases. This study broadens the known diversity of CuMMOs and identifies these enzymes in non-nitrifying Betaproteobacteria.


Asunto(s)
Alcanos/metabolismo , Proteínas Bacterianas/metabolismo , Betaproteobacteria/enzimología , Oxigenasas de Función Mixta/metabolismo , Amoníaco/metabolismo , Proteínas Bacterianas/genética , Betaproteobacteria/clasificación , Betaproteobacteria/genética , Betaproteobacteria/metabolismo , Cobre/metabolismo , Metagenoma , Metano/metabolismo , Oxigenasas de Función Mixta/genética , Familia de Multigenes , Oxidación-Reducción , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Filogenia , Estanques/microbiología
20.
Appl Environ Microbiol ; 86(4)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31811031

RESUMEN

Microorganisms in wastewater treatment plants (WWTPs) play a key role in the removal of pollutants from municipal and industrial wastewaters. A recent study estimated that activated sludge from global municipal WWTPs harbors 1 × 109 to 2 × 109 microbial species, the majority of which have not yet been cultivated, and 28 core taxa were identified as "most-wanted" ones (L. Wu, D. Ning, B. Zhang, Y. Li, et al., Nat Microbiol 4:1183-1195, 2019, https://doi.org/10.1038/s41564-019-0426-5). Cultivation and characterization of the "most-wanted" core bacteria are critical to understand their genetic, physiological, phylogenetic, and ecological traits, as well as to improve the performance of WWTPs. In this study, we isolated a bacterial strain, designated SJ-1, that represents a novel cluster within Betaproteobacteria and corresponds to OTU_16 within the 28 core taxa in the "most-wanted" list. Strain SJ-1 was identified and nominated as Casimicrobium huifangae gen. nov., sp. nov., of a novel family, Casimicrobiaceae. C. huifangae is ubiquitously distributed and is metabolically versatile. In addition to mineralizing various carbon sources (including carbohydrates, aromatic compounds, and short-chain fatty acids), C. huifangae is capable of nitrate reduction and phosphorus accumulation. The population of C. huifangae accounted for more than 1% of the bacterial population of the activated sludge microbiome from the Qinghe WWTP, which showed seasonal dynamic changes. Cooccurrence analysis suggested that C. huifangae was an important module hub in the bacterial network of Qinghe WWTP.IMPORTANCE The activated sludge process is the most widely applied biotechnology and is one of the best ecosystems to address microbial ecological principles. Yet, the cultivation of core bacteria and the exploration of their physiology and ecology are limited. In this study, the core and novel bacterial taxon C. huifangae was cultivated and characterized. This study revealed that C. huifangae functioned as an important module hub in the activated sludge microbiome, and it potentially plays an important role in municipal wastewater treatment plants.


Asunto(s)
Betaproteobacteria/clasificación , Betaproteobacteria/fisiología , Aguas del Alcantarillado/microbiología , Betaproteobacteria/genética , Microbiota , Filogenia , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...