Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830251

RESUMEN

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Asunto(s)
Antineoplásicos/farmacología , Apolipoproteínas E/genética , Bexaroteno/farmacología , Leucocitos/efectos de los fármacos , Ácidos Nicotínicos/farmacología , Receptor alfa X Retinoide/agonistas , Animales , Antineoplásicos/síntesis química , Apolipoproteínas E/metabolismo , Bexaroteno/análogos & derivados , Bexaroteno/síntesis química , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Expresión Génica , Humanos , Leucocitos/metabolismo , Leucocitos/patología , Ácidos Nicotínicos/síntesis química , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Relación Estructura-Actividad
2.
Eur J Pharmacol ; 883: 173346, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32659303

RESUMEN

Glioblastoma (GBM) is an aggressive and lethal form of brain cancer with a high invasion capacity and a lack of effective chemotherapeutics. Retinoid bexarotene (BXR) inhibits the neurospheroidal colony formation and migration of primary glioblastoma cells but has side effects. To enhance the BXR glioblastoma selectivity and cytotoxicity, we chemically modified it at the carboxyl group with either nitroethanolamine (NEA) bearing a NO-donating group (a well-known bioactivity enhancer; BXR-NEA) or with a dopamine (DA) moiety (to represent the highly toxic for various tumor cells N-acyldopamine family; BXR-DA). These two novel compounds were tested in the 2D (monolayer culture) and 3D (multicellular tumor spheroids) in vitro models. Both BXR-DA and BXR-NEA were found to be more toxic for rat C6 and human U-87MG glioma cells than the initial BXR. After 24 h incubation of the cells (monolayer culture) with the drugs, the IC50 values were in the range of 28-42, and 122-152 µM for BXR derivatives and BXR, respectively. The cell death occurred via apoptosis according to the annexin staining and caspase activation. The tumor spheroids demonstrated higher resistance to the treatment compared to that one of the monolayer cultures. BXR-DA and BXR-NEA were more specific against tumor cells than the parental drug, in particular the selectivity index was 1.8-2.7 vs. 1.3-1.5, respectively. Moreover, they inhibited cell migration more effectively than parental BXR according to a scratch assay. Cell spreading from the tumor spheroids was also inhibited. Thus, the obtained BXR derivatives could be promising for glioblastoma treatment.


Asunto(s)
Antineoplásicos/farmacología , Bexaroteno/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Animales , Antineoplásicos/síntesis química , Apoptosis/efectos de los fármacos , Bexaroteno/análogos & derivados , Bexaroteno/síntesis química , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Glioma/metabolismo , Glioma/patología , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Invasividad Neoplásica , Ratas , Esferoides Celulares , Relación Estructura-Actividad
3.
J Control Release ; 286: 10-19, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30016732

RESUMEN

The intestinal lymphatic system plays an important role in the pathophysiology of multiple diseases including lymphomas, cancer metastasis, autoimmune diseases, and human immunodeficiency virus (HIV) infection. It is thus an important compartment for delivery of drugs in order to treat diseases associated with the lymphatic system. Lipophilic prodrug approaches have been used in the past to take advantage of the intestinal lymphatic transport processes to deliver drugs to the intestinal lymphatics. Most of the approaches previously adopted were based on very bulky prodrug moieties such as those mimicking triglycerides (TG). We now report a study in which a lipophilic prodrug approach was used to efficiently deliver bexarotene (BEX) and retinoic acid (RA) to the intestinal lymphatic system using activated ester prodrugs. A range of carboxylic ester prodrugs of BEX were designed and synthesised and all of the esters showed improved association with chylomicrons, which indicated an improved potential for delivery to the intestinal lymphatic system. The conversion rate of the prodrugs to BEX was the main determinant in delivery of BEX to the intestinal lymphatics, and activated ester prodrugs were prepared to enhance the conversion rate. As a result, an 4-(hydroxymethyl)-1,3-dioxol-2-one ester prodrug of BEX was able to increase the exposure of the mesenteric lymph nodes (MLNs) to BEX 17-fold compared to when BEX itself was administered. The activated ester prodrug approach was also applied to another drug, RA, where the exposure of the MLNs was increased 2.4-fold through the application of a similar cyclic activated prodrug. Synergism between BEX and RA was also demonstrated in vitro by cell growth inhibition assays using lymphoma cell lines. In conclusion, the activated ester prodrug approach results in efficient delivery of drugs to the intestinal lymphatic system, which could benefit patients affected by a large number of pathological conditions.


Asunto(s)
Antineoplásicos/administración & dosificación , Bexaroteno/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Mucosa Intestinal/metabolismo , Sistema Linfático/metabolismo , Profármacos/administración & dosificación , Tretinoina/administración & dosificación , Animales , Antineoplásicos/química , Antineoplásicos/farmacocinética , Bexaroteno/análogos & derivados , Bexaroteno/farmacocinética , Esterificación , Ganglios Linfáticos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Profármacos/química , Profármacos/farmacocinética , Ratas Sprague-Dawley , Distribución Tisular , Tretinoina/análogos & derivados , Tretinoina/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...