Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 12(1): 13476, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931689

RESUMEN

Plant species with allelopathic effects against weeds have emerged as a potential strategy for the development of ecologically friendly bioherbicides. In this study, the allelopathic effects of the plant species Dipteryx lacunifera Ducke, Ricinus communis L., Piper tuberculatum Jacq., and Jatropha gossypiifolia L. on the weed Bidens bipinnata L. were investigated. In vitro bioassays revealed that aqueous extracts of selected plant species were able to inhibit seed germination and seedling growth of B. bipinnata, highlighting the strongest allelopathic effect evidenced by R. communis. The phytotoxicity of the aqueous extracts was evaluated in pot experiments, which indicated that the foliar application of R. communis and P. tuberculatum extracts on B. bipinnata plants caused yellowing of leaves, affecting the chlorophyll content and reducing growth. The discrimination of the plant extracts by attenuated total reflectance Fourier transform mid-infrared (ATR FT-MIR) spectroscopy combined with principal component analysis (PCA) indicated the presence of allelochemical compounds, such as phenolics and terpenoids, which may be associated with allelopathic activity. Overall, this study provides valuable information about the substantial allelopathic inhibitory effects of the plant species R. communis and P. tuberculatum on the weed B. bipinnata, which may be used for the development of eco-friendly bioherbicides.


Asunto(s)
Alelopatía , Bidens , Herbicidas , Bidens/efectos de los fármacos , Germinación , Extractos Vegetales/química , Extractos Vegetales/farmacología , Malezas/efectos de los fármacos
2.
Molecules ; 25(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182287

RESUMEN

Plants are considered green resources for thousands of bioactive compounds. Essential oils (EOs) are an important class of secondary compounds with various biological activities, including allelopathic and antimicrobial activities. Herein, the present study aimed to compare the chemical profiles of the EOs of the widely distributed medicinal plant Calotropis procera collected from Saudi Arabia and Egypt. In addition, this study also aimed to assess their allelopathic and antimicrobial activities. The EOs from Egyptian and Saudi ecospecies were extracted by hydrodistillation and analyzed via GC-MS. The correlation between the analyzed EOs and those published from Egypt, India, and Nigeria was assessed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). The allelopathic activity of the extracted EOs was tested against two weeds (Bidens pilosa and Dactyloctenium aegyptium). Moreover, the EOs were tested for antimicrobial activity against seven bacterial and two fungal strains. Ninety compounds were identified from both ecospecies, where 76 compounds were recorded in Saudi ecospecies and 33 in the Egyptian one. Terpenes were recorded as the main components along with hydrocarbons, aromatics, and carotenoids. The sesquiterpenes (54.07%) were the most abundant component of EO of the Saudi sample, while the diterpenes (44.82%) represented the mains of the Egyptian one. Hinesol (13.50%), trans-chrysanthenyl acetate (12.33%), 1,4-trans-1,7-cis-acorenone (7.62%), phytol (8.73%), and myristicin (6.13%) were found as the major constituents of EO of the Saudi sample, while phytol (38.02%), n-docosane (6.86%), linoleic acid (6.36%), n-pentacosane (6.31%), and bicyclogermacrene (4.37%) represented the main compounds of the Egyptian one. It was evident that the EOs of both ecospecies had potent phytotoxic activity against the two tested weeds, while the EO of the Egyptian ecospecies was more effective, particularly on the weed D. aegyptium. Moreover, the EOs showed substantial antibacterial and antifungal activities. The present study revealed that the EOs of Egyptian and Saudi ecospecies were different in quality and quantity, which could be attributed to the variant environmental and climatic conditions. The EOs of both ecospecies showed significant allelopathic and antimicrobial activity; therefore, these EOs could be considered as potential green eco-friendly resources for weed and microbe control, considering that this plant is widely grown in arid habitats.


Asunto(s)
Alelopatía , Antiinfecciosos/química , Bidens/efectos de los fármacos , Calotropis/química , Aceites Volátiles/química , Poaceae/efectos de los fármacos , Antioxidantes/química , Análisis por Conglomerados , Ecosistema , Egipto , Cromatografía de Gases y Espectrometría de Masas , Componentes Aéreos de las Plantas/química , Extractos Vegetales/química , Malezas/efectos de los fármacos , Análisis de Componente Principal , Arabia Saudita , Terpenos/química , Compuestos Orgánicos Volátiles/química
3.
Chem Biodivers ; 17(3): e1900694, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32022474

RESUMEN

Studies of the phytotoxic effects between plants can be a crucial tool in the discovery of innovative compounds with herbicide potential. In this sense, we can highlight ruzigrass (Urochloa ruziziensis), which is traditionally used in the crop rotation system in order to reduce weed emergence. The aim of this work was to characterize the secondary metabolites of ruzigrass and to evaluate its phytotoxic effects. In total, eight compounds were isolated: friedelin, oleanolic acid, α-amyrin, 1-dehydrodiosgenone, sitosterol and stigmasterol glycosides, tricin and p-coumaric acid. Phytotoxic effects of the crude methanolic extract and fractions of ruzigrass were assessed using germination rate, initial seedling growth, and biomass of Bidens pilosa, Euphorbia heterophylla and Ipomoea grandifolia. Chemometric analysis discriminated the weed species into three groups, and B. pilosa was the most affected by fractions of ruzigrass. The phytotoxic activities of 1-dehydrodiosgenone, tricin, and p-coumaric acid are also reported, and p-coumaric acid and 1-dehydrodiosgenone were active against B. pilosa.


Asunto(s)
Bidens/efectos de los fármacos , Euphorbia/efectos de los fármacos , Ipomoea/efectos de los fármacos , Componentes Aéreos de las Plantas/química , Extractos Vegetales/farmacología , Poaceae/química , Bidens/crecimiento & desarrollo , Euphorbia/crecimiento & desarrollo , Ipomoea/crecimiento & desarrollo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
4.
Sci Rep ; 9(1): 16004, 2019 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-31690889

RESUMEN

It is now widely recognized that Bidens pilosa has become a problematic broadleaf weed in many ecosystems across the world and, particularly in the light of recent climate change conditions, closer management strategies are required to curtail its impact on agricultural cropping. In this investigation, experiments were conducted to evaluate the effect of environmental factors on the germination and emergence of B. pilosa, and also on the response of this weed to commonly available post-emergence herbicides in Australia. The environmental factors of particular interest to this current work were the effect of light and temperature, salinity, burial depth and moisture on B. pilosa since these are key management issues in Australian agriculture. In addition, the effects of a number of commonly used herbicides were examined, because of concerns regarding emerging herbicide resistance. In the tested light/dark regimes, germination was found to be higher at fluctuating day/night temperatures of 25/15 °C and 30/20 °C (92-93%) than at 35/25 °C (79%), whilst across the different temperature ranges, germination was higher in the light/dark regime (79-93%) than in complete darkness (22-38%). The standard five-minute temperature pretreatment required for 50% inhibition of maximum germination was found to be 160 °C, and it was further shown that no seeds germinated at temperatures higher than 240 °C. With regard to salinity, some B. pilosa seeds germinated (3%) in 200 mM sodium chloride (NaCl) but all failed to germinate at 250 mM NaCl. Germination declined from 89% to 2% as the external osmotic potential decreased from 0 to -0.6 MPa, and germination ceased at -0.8 MPa. Seeding emergence of B. pilosa was maximum (71%) for seeds placed on the soil surface and it was found that no seedlings emerged from a depth of 8 cm or greater. A depth of 3.75 cm was required to inhibit the seeds to 50% of the maximum emergence. In this study, application of glufosinate, glyphosate and paraquat provided commercially acceptable control levels (generally accepted as >90%) when applied at the four-leaf stage of B. pilosa. However, none of the herbicide treatments involved in this study provided this level of control when applied at the six-leaf stage. In summary, B. pilosa germination has been clearly shown to be stimulated by light and thus its emergence was greatest from the soil surface. This suggests that infestation from this weed will remain as a problem in no-till conservation agriculture systems, the use of which is increasing now throughout the world. It is intended that information generated from this study be used to develop more effective integrated management programs for B. pilosa and similar weeds in commercial agricultural environments which are tending toward conservation approaches.


Asunto(s)
Bidens/crecimiento & desarrollo , Germinación , Malezas/crecimiento & desarrollo , Australia , Bidens/efectos de los fármacos , Bidens/metabolismo , Ecosistema , Germinación/efectos de los fármacos , Herbicidas/farmacología , Malezas/efectos de los fármacos , Malezas/metabolismo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Cloruro de Sodio/metabolismo , Temperatura , Control de Malezas
5.
Braz. j. biol ; 79(3): 383-394, July-Sept. 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1001447

RESUMEN

Abstract Bidens pilosa L. is a heterocarpic weed species with two cypselae types that present morpho-physiological differences, being the peripheral type smaller and slower to germinate than the central one. We aimed to verify how the germination mechanism varied between types. We focused on two mechanisms: (1) pericarp constraints (physical and chemical) and (2) hormonal stimulation (Abcisic acid [ABA] and Gibberellin [GA]). Both cypselae types are physically constrained by the pericarp, for when it is excised both seed types increase their germination, but behavioral differences still remain. The pericarp of the peripheral type also has chemical inhibitors that effectively inhibited germination of the intact central cypsela. To test the hormonal effects, we focused on the ABA:GA control. Both cypselae responded to an exogenous ABA concentration gradient, however there is no variation between types on the sensitivity to it. Also, both cypselae types were indifferent to Fluridone (ABA inhibitor), which indicates that the dormancy is not maintained by de novo ABA synthesis. Cypselae types had different sensitivity to an exogenous GA3 gradient, the central type being more sensitive to the treatment than the peripheral one. But when the endogenous GA synthesis was blocked by Paclobutrazol, both types responded equally to same GA3 concentrations. This indicates that endogenous GA synthesis may be related to differences observed on germination of cypselae types. To conclude, seed types differ on their growth potential to overcome the pericarp resistance: while the inhibitor in the peripheral pericarp reduces growth potential, GA increases it.


Resumo Bidens pilosa L. é uma espécie de planta daninha heterocarpica com dois tipos de cipselas que possuem diferenças morfofisiológicas, sendo o tipo periférico de menor tamanho e com germinação lenta se comparado com o central. Nosso objetivo foi verificar como o mecanismo de germinação varia entre os tipos. Focamos em dois mecanismos: (1) restrição causada pelo pericarpo (física e química) e (2) estímulo hormonal (Ácido abscísico [ABA] e Giberelina [GA]). Os tipos de cipselas são fisicamente limitados pelo pericarpo, pois quando ambos os tipos de sementes são excisados há um aumento na germinação, contudo as diferenças no processo se mantém. O pericarpo do tipo periférico ainda possui inibidores que efetivamente retardam a germinação das cipselas centrais intactas. Para testar os efeitos hormonais, nós focamos no controle pelo ABA:GA. Ambas cipselas responderam ao gradiente de concentração de ABA exógeno, contudo não houve variação na sensibilidade entre os tipos. Ainda, ambos tipos de cipselas foram indiferentes à Fluoridona (inibidor de ABA), que indica que a dormência não é mantida pela nova síntese de ABA. Tipos de cipselas apresentam diferentes sensibilidades ao gradiente exógeno de GA3, com o tipo central sendo mais sensível ao tratamento que o periférico. Mas quando a síntese endógena de GA foi bloqueada pelo Paclobutrazol, ambos os tipos responderam de forma similar às concentrações de GA 3. Isso indica que a síntese de GA endógena pode estar relacionada com a diferença observada na germinação dos dois tipos de cipselas. Para concluir, os tipos de sementes diferem no potencial para superar a resistência do pericarpo, sendo o inibidor no pericarpo da cipsela periférica o redutor do potencial de crescimento, enquanto a GA aumenta esse potencial.


Asunto(s)
Reguladores del Crecimiento de las Plantas/farmacología , Piridonas/farmacología , Ácido Abscísico/farmacología , Germinación/fisiología , Bidens/fisiología , Herbicidas/farmacología , Semillas/crecimiento & desarrollo , Semillas/efectos de los fármacos , Germinación/efectos de los fármacos , Bidens/efectos de los fármacos
6.
Phytochemistry ; 161: 107-116, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30825705

RESUMEN

Styrene analogs are known to be naturally synthesized in the leaves of pears and in other plant species, including several trees in the Styracaceae family. Styrene analogs are potential contributors to the aroma of wine, perfumes, pharmaceuticals, and other fermented foods and beverages. In addition, styrene analogs perform important ecological functions such as insecticidal and antifeedant activities against insects. We showed here that exogenous applications of styrene and p-hydroxystyrene caused a dramatic reduction the number of eggs laid by psylla and of subsequent nymph survival. Despite their importance specific reactions that lead to the biosynthesis of the styrene analogs in pear are unknown. To identify genes involved in the synthesis of these metabolites, existing genome databases of the Rosaceae were screened for pear genes with significant sequence similarity to bacterial phenolic acid decarboxylase. Herein described are the isolation and characterization of a pear phenolic acid decarboxylase, designated PyPAD1, which catalyzed the decarboxylation of p-coumaric acid and ferulic acid to p-hydroxystyrene and 3-methoxy-4-hydroxystyrene respectively. Its apparent Km values for p-coumaric acid and ferulic acid were 34.42 and 84.64 µM, respectively. The PyPAD1 preferred p-coumaric acid to ferulic acid as a substrate by a factor of 2.4 when comparing catalytic efficiencies in vitro. Expression analysis of PyPAD1 showed that the gene was transcribed in all five pear genotypes examined. However, transcript abundance was increased in correlation with the presence of p-hydroxystyrene in resistant cultivars Py-701 and Py-760 and in the sensitive cultivar Spadona when grafted on these resistant cultivars. Thus, PyPAD1 appears to be responsible for the decarboxylation of the p-coumaric acid, and for the production of metabolites that are active against pear psylla.


Asunto(s)
Bidens/efectos de los fármacos , Hemípteros/efectos de los fármacos , Insecticidas/farmacología , Pyrus/metabolismo , Estirenos/farmacología , Animales , Bidens/metabolismo , Hemípteros/metabolismo , Insecticidas/química , Insecticidas/metabolismo , Pyrus/genética , Estirenos/química , Estirenos/metabolismo
7.
Bull Environ Contam Toxicol ; 102(3): 353-357, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30659299

RESUMEN

The fungicide tebuconazole (TBZ) has been used to prevent terrestrial fungi in agroecosystems, but it can also induce negative effects to non-targeted aquatic organisms, such as plants. The aim of the present work was to evaluate the potential cyto- and genotoxicity of TBZ in the aquatic macrophyte Bidens laevis, exposed to a range of concentrations of 0.1-100 µg/L. Mitosis in root tips were analyzed showing decreased mitotic index and an increase of chromosomal aberrations at 10 and 100 µg/L. The regression of TBZ concentration vs. aneugenic aberrations was significant, indicating the mechanism of genotoxicity. The specific growth rate (Gr) for total length decreased in plants exposed to 0.1, 10 and 100 µg/L. Gr for root decreased in plants exposed at 0.1 and 10 µg/L, reaching a maximum percent inhibition root growth rate (Ir) of 68.8%. These results show that TBZ resulted cyto- and genotoxic to B. laevis at environmentally relevant levels.


Asunto(s)
Bidens/efectos de los fármacos , Fungicidas Industriales/toxicidad , Triazoles/toxicidad , Bidens/genética , Bidens/crecimiento & desarrollo , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Meristema , Fotosíntesis/efectos de los fármacos , Análisis de Regresión , Humedales
8.
Braz J Biol ; 79(3): 383-394, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30110080

RESUMEN

Bidens pilosa L. is a heterocarpic weed species with two cypselae types that present morpho-physiological differences, being the peripheral type smaller and slower to germinate than the central one. We aimed to verify how the germination mechanism varied between types. We focused on two mechanisms: (1) pericarp constraints (physical and chemical) and (2) hormonal stimulation (Abcisic acid [ABA] and Gibberellin [GA]). Both cypselae types are physically constrained by the pericarp, for when it is excised both seed types increase their germination, but behavioral differences still remain. The pericarp of the peripheral type also has chemical inhibitors that effectively inhibited germination of the intact central cypsela. To test the hormonal effects, we focused on the ABA:GA control. Both cypselae responded to an exogenous ABA concentration gradient, however there is no variation between types on the sensitivity to it. Also, both cypselae types were indifferent to Fluridone (ABA inhibitor), which indicates that the dormancy is not maintained by de novo ABA synthesis. Cypselae types had different sensitivity to an exogenous GA3 gradient, the central type being more sensitive to the treatment than the peripheral one. But when the endogenous GA synthesis was blocked by Paclobutrazol, both types responded equally to same GA3 concentrations. This indicates that endogenous GA synthesis may be related to differences observed on germination of cypselae types. To conclude, seed types differ on their growth potential to overcome the pericarp resistance: while the inhibitor in the peripheral pericarp reduces growth potential, GA increases it.


Asunto(s)
Ácido Abscísico/farmacología , Bidens/fisiología , Germinación/fisiología , Herbicidas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Piridonas/farmacología , Bidens/efectos de los fármacos , Germinación/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo
9.
Plant Biol (Stuttg) ; 21(2): 326-335, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30341820

RESUMEN

The exogenous application of plant hormones and their analogues has been exploited to improve crop performance in the field. Protodioscin is a saponin whose steroidal moiety has some similarities to plant steroidal hormones, brassinosteroids. To test the possibility that protodioscin acts as an agonist or antagonist of brassinosteroids or other plant growth regulators, we compared responses of the weed species Bidens pilosa L. to treatment with protodioscin, brassinosteroids, auxins (IAA) and abscisic acid (ABA). Seeds were germinated and grown in agar containing protodioscin, dioscin, brassinolides, IAA and ABA. Root apex respiratory activity was measured with an oxygen electrode. Malondialdehyde (MDA) and antioxidant enzymes activities were assessed. Protodioscin at 48-240 µm inhibited growth of B. pilosa seedlings. The steroidal hormone 24-epibrassinolide (0.1-5 µm) also inhibited growth of primary roots, but brassicasterol was inactive. IAA at higher concentrations (0.5-10.0 µm) strongly inhibited primary root length and fresh weight of stems. ABA inhibited all parameters of seedling growth and also seed germination. Respiratory activity of primary roots (KCN-sensitive and KCN-insensitive) was activated by protodioscin. IAA and ABA reduced KCN-insensitive respiration. The content of MDA in primary roots increased only after protodioscin treatment. All assayed compounds increased APx and POD activity, with 24-epibrassinolide being most active. The activity of CAT was stimulated by protodioscin and 24-epibrassinolide. The results revealed that protodioscin was toxic to B. pilosa through a mechanism not related to plant growth regulator signalling. Protodioscin caused a disturbance in mitochondrial respiratory activity, which could be related to overproduction of ROS and consequent cell membrane damage.


Asunto(s)
Ácido Abscísico/farmacología , Bidens/efectos de los fármacos , Brasinoesteroides/farmacología , Diosgenina/análogos & derivados , Ácidos Indolacéticos/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Saponinas/farmacología , Esteroides Heterocíclicos/farmacología , Antioxidantes/metabolismo , Bidens/crecimiento & desarrollo , Bidens/metabolismo , Diosgenina/farmacología , Relación Dosis-Respuesta a Droga , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Germinación/efectos de los fármacos , Malondialdehído/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo
10.
Pest Manag Sci ; 74(7): 1637-1645, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29318774

RESUMEN

BACKGROUND: In the context of the demand for more efficient herbicides, the aim of the present work was to synthesize anilides via simple methods, and evaluate their herbicidal activities through seed germination assays. In silico studies were carried out to identify the enzyme target sites in plants for the most active anilides. RESULTS: A total of 18 anilides were prepared via one-pot reaction in yields that varied from 36 to 98% through reactions of anilines with sorbic chloride and hexanoic anhydride. According to seed germination assays in three dicotyledonous and one monocotyledonous plant species, the most active anilides showed root and shoot growth inhibition superior to that of Dual (S-metolachlor). In silico studies indicated that histone deacetylase was the probable enzyme target site in plants for these substances. The affinities of the most active anilides for the binding sites of this enzyme were equal to or higher than those calculated for its inhibitors. CONCLUSION: Anilides 4d, 4e, 4 g, and 4 h are promising candidates for the development of novel herbicides. According to in silico studies, they inhibit histone deacetylase in plants, which can be exploited for the development of new weed control methods. © 2018 Society of Chemical Industry.


Asunto(s)
Anilidas/toxicidad , Bidens/efectos de los fármacos , Cucumis sativus/efectos de los fármacos , Herbicidas/toxicidad , Lactuca/efectos de los fármacos , Simulación del Acoplamiento Molecular , Cebollas/efectos de los fármacos , Anilidas/síntesis química , Herbicidas/síntesis química , Control de Malezas
11.
Environ Sci Pollut Res Int ; 24(29): 23161-23167, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28828736

RESUMEN

Phytoremediation with the use of hyperaccumulating plant species to remove excess trace metals from contaminated soil and water is considered a cost-effective non-invasive technique. Over 400 plant taxa worldwide have been identified as natural hyperaccumulators, but only very few are reported to hyperaccumulate Cd. Bidens pilosa L. is a newly found, promising Cd hyperaccumulator, although its potential to accumulate Cd and mechanism of this process are not yet well known. This paper was aimed at exploring hyperaccumulation capacity of B. pilosa for Cd, and its translocation behavior related to cell membrane permeability. The highest Cd concentration in shoots of B. pilosa grown in soil was 405.91 mg kg-1 and of that cultured in nutrient solution 1651.68 mg kg-1, indicating very high accumulation potential. Cd concentrations in the root, stem, leaf, and shoot of B. pilosa cultured in nutrient solution were all much higher than those in soil, while biomass development was considerably lower. This resulted in lesser differences between Cd maximum accumulation loads in the shoot (462 and 365 µg pot-1) and in the root (100 and 96 µg pot-1) of B. pilosa grown in solution and in soil, respectively. Relative electric conductivity (REC), K+ relative permeability ratio, and MDA (malondialdehyde) contents, which are major indices expressing cell membrane permeability, appeared to be closely related to Cd translocation and accumulation. The relative molecular mechanism of Cd accumulation/translocation in B. pilosa was found of importance and needs to be elucidated.


Asunto(s)
Bidens/metabolismo , Cadmio/análisis , Permeabilidad de la Membrana Celular , Contaminantes del Suelo/análisis , Bidens/efectos de los fármacos , Biodegradación Ambiental , Biomasa , Cadmio/metabolismo , Cadmio/toxicidad , Permeabilidad de la Membrana Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad
12.
J Agric Food Chem ; 65(30): 6100-6113, 2017 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-28700828

RESUMEN

Berberine is a natural herbicidal alkaloid from Coptis chinensis Franch. Here we characterized its herbicidal spectrum and absorption and transportation in the plant, along with the possible mechanism. Berberine showed no effect on the germination of the 10 tested plants. The IC50 values of berberine on the primary root length and fresh weight of the 10 tested plants ranged from 2.91 to 9.79 mg L-1 and 5.76 to 35.07 mg L-1, respectively. Berberine showed a similar herbicidal effect on Bidens pilosa as the commercial naturally derived herbicide cinmethylin. HPLC and fluorescence analysis revealed that berberine was mainly absorbed by B. pilosa root and transported through vascular bundle acropetally. Enzyme activity studies, GC-MS analysis, and SEM and TEM observations indicated that berberine might first function on the cell membrane indicated by variation of the IUFA percent and then cause POD, PPO, and SOD activity changes and cellular structure deformity, which was eventually expressed as the decrease of cell adaptation ability and abnormal cell function and may even result in cell death. Environmental safety evaluation tests revealed that berberine was low in toxicity to Brachydanio rerio. These indicate that berberine has the potential to be a bioherbicide and/or a lead molecule for new herbicides.


Asunto(s)
Berberina/metabolismo , Berberina/farmacología , Bidens/metabolismo , Coptis/química , Herbicidas/metabolismo , Herbicidas/farmacología , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Bidens/efectos de los fármacos , Transporte Biológico , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
13.
J Hazard Mater ; 311: 63-9, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-26954477

RESUMEN

The principal impediment for Pb uptake by plants is the Casparian strip in roots. It prevents metals reaching the xylem, thereby hampering translocation to the aerial organs. In the root apices, young root cells have thin cell walls and the Casparian strip is not completely developed, which could facilitate Pb uptake by roots at these vulnerable points. However, as the phytotoxic effects of Pb reduce root growth and enhance suberization, entry of Pb into the plant is avoided. We propose that the application of root growth promotors could be an important complement in the phytoextraction of Pb from polluted soils, due to their effects on produced biomass, Pb toxicity, and root exudate production. A greenhouse experiment was carried on to evaluate the auxin application effect on the Pb uptake of Bidens pilosa and Tagetes minuta. These species were sensitive to auxins, but the phytotoxic effect of Pb was not reversed by this treatment. Root exudates capable of extracting Pb were produced only when the species were grown in highly polluted soils, indicating a behavioral response to Pb exposure which is desirable for phytoremediation.


Asunto(s)
Bidens/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Plomo/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Contaminantes del Suelo/metabolismo , Tagetes/efectos de los fármacos , Bidens/metabolismo , Biodegradación Ambiental , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Tagetes/metabolismo
14.
Braz J Biol ; 75(4): 868-77, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26675903

RESUMEN

Indigenous plants have been grown naturally and vigorously in copper contaminated soils. Thus, the aim of this study was to evaluate the phytoremediation ability of two indigenous plants naturally grown in two vineyard soils copper contaminated, and in a copper mining waste. However, it was evaluated the macro and micronutrient uptake and the potential of phytoremediation. So, a greenhouse study was carried out with Bidens pilosa and Plantago lanceolata in samples of vineyard soils (Inceptisol and Mollisol) copper contaminated, and in a copper mining waste. Plant growth, macro and micronutrient up take, tolerance index (TI), translocation factor (TF), metal extraction ratio (MER), bioaccumulation factor (BCF), plant effective number of the shoots (PENs), and plant effective number of the total plant (PENt) were analyzed. Both plants grown in vineyard soils showed high phytomass production and TI. P. lanceolata plants cultivated in the Inceptisol showed the highest copper concentrations in the shoots (142 mg kg-1), roots (964 mg kg-1) and entire plants (1,106 mg kg-1). High levels of copper were phytoaccumulated from the Inceptisol by B. pilosa and P. lanceolata with 3,500 and 2,200 g ha-1 respectively. Both B. pilosa and P. lanceolata plants showed characteristics of high copper hyperaccumulator. Results showed that both species play an important role in the natural copper phytoaccumulation in both vineyard soils contaminated with copper, being important to its phytoremediation.


Asunto(s)
Bidens/metabolismo , Cobre/metabolismo , Restauración y Remediación Ambiental , Plantago/metabolismo , Contaminantes del Suelo/metabolismo , Bidens/efectos de los fármacos , Bidens/crecimiento & desarrollo , Biodegradación Ambiental , Brasil , Plantago/efectos de los fármacos , Plantago/crecimiento & desarrollo
15.
Braz. j. biol ; 75(4): 868-877, Nov. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-768201

RESUMEN

Abstract Indigenous plants have been grown naturally and vigorously in copper contaminated soils. Thus, the aim of this study was to evaluate the phytoremediation ability of two indigenous plants naturally grown in two vineyard soils copper contaminated, and in a copper mining waste. However, it was evaluated the macro and micronutrient uptake and the potential of phytoremediation. So, a greenhouse study was carried out with Bidens pilosa and Plantago lanceolata in samples of vineyard soils (Inceptisol and Mollisol) copper contaminated, and in a copper mining waste. Plant growth, macro and micronutrient up take, tolerance index (TI), translocation factor (TF), metal extraction ratio (MER), bioaccumulation factor (BCF), plant effective number of the shoots (PENs), and plant effective number of the total plant (PENt) were analyzed. Both plants grown in vineyard soils showed high phytomass production and TI. P. lanceolata plants cultivated in the Inceptisol showed the highest copper concentrations in the shoots (142 mg kg–1), roots (964 mg kg–1) and entire plants (1,106 mg kg–1). High levels of copper were phytoaccumulated from the Inceptisol by B. pilosa and P. lanceolata with 3,500 and 2,200 g ha–1 respectively. Both B. pilosa and P. lanceolata plants showed characteristics of high copper hyperaccumulator. Results showed that both species play an important role in the natural copper phytoaccumulation in both vineyard soils contaminated with copper, being important to its phytoremediation.


Resumo Plantas nativas crescem naturalmente e vigorosamente em solos contaminados com cobre. Assim, o objetivo deste estudo foi avaliar a capacidade de fitorremediação de duas plantas nativas, naturalmente encontradas em dois solos de vitivinicultura contaminados com cobre, e em rejeito de mineração de cobre. Foram avaliados os teores de macro e micronutrientes nos tecidos das plantas, e o potencial de fitorremediação. Assim, um estudo em casa de vegetação foi realizado com plantas de Bidens pilosa e Plantago lanceolata, com amostras de dois solos de vitivinicultura (Neossolos e Cambissolos) contaminados com cobre, e com rejeito de mineração de cobre. O crescimento das plantas, teores de macro e micronutrientes nos tecidos, índice de tolerância (TI), fator de translocação (TF), taxa de extração do metal (MER), fator de bioacumulação (BCF), número efetivo dos plantas da parte aérea (PENs) e número efetivo de plantas inteiras (PENt) foram analisados. Ambas as espécies cultivadas em solos vitivinicultura mostraram elevada produção de fitomassa e os TI. P. lanceolata cultivadas no Neossolo mostraram as concentrações de cobre mais elevados na parte aérea (142 mg kg–1), nas raízes (964 mg kg–1) e nas plantas inteiras (1.106 mg kg–1). Altos níveis de cobre foram fitoacumulados pelas plantas B. pilosa e P. lanceolata com 3.500 e 2.200 g ha–1, respectivamente, quando cultivadas em Neossolo. Ambas as espécies apresentaram características hiperacumuladoras de cobre. Os resultados mostraram que estas espécies desempenham um papel importante na fitoacumulação de cobre naturalmente em ambos os solos de vitivinicultura contaminados com cobre, sendo importantes para a fitorremediação.


Asunto(s)
Bidens/metabolismo , Cobre/metabolismo , Restauración y Remediación Ambiental , Plantago/metabolismo , Contaminantes del Suelo/metabolismo , Biodegradación Ambiental , Brasil , Bidens/efectos de los fármacos , Bidens/crecimiento & desarrollo , Plantago/efectos de los fármacos , Plantago/crecimiento & desarrollo
16.
J Chem Ecol ; 40(1): 90-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24390624

RESUMEN

Alstonia scholaris is a tropical evergreen tree native to South and Southeast Asia. Alstonia forests frequently lack understory species. However, potential mechanisms-particularly the allelochemicals involved-remain unclear. In the present study, we identified allelochemicals of A. scholaris, and clarified the role of allelopathic substances from A. scholaris in interactions with neighboring plants. We showed that the leaves, litter, and soil from A. scholaris inhibited growth of Bidens pilosa-a weed found growing abundantly near A. scholaris forests. The allelochemicals were identified as pentacyclic triterpenoids, including betulinic acid, oleanolic acid, and ursolic acid by using (1)H and (13)C-NMR spectroscopy. The half-maximal inhibitory concentration (IC50) for radicle growth of B. pilosa and Lactuca sativa ranged from 78.8 µM to 735.2 µM, and ursolic acid inhibited seed germination of B. pilosa. The triterpenoid concentrations in the leaves, litter, and soil were quantified with liquid chromatography-electrospray ionization/tandem mass spectrometry. Ursolic acid was present in forest soil at a concentration of 3,095 µg/g, i.e., exceeding the IC50. In the field, ursolic acid accumulated abundantly in the soil in A. scholaris forests, and suppressed weed growth during summer and winter. Our results indicate that A. scholaris pentacyclic triterpenoids influence the growth of neighboring weeds by inhibiting seed germination, radicle growth, and functioning of photosystem II.


Asunto(s)
Alelopatía , Alstonia/metabolismo , Feromonas/química , Feromonas/farmacología , Triterpenos/química , Triterpenos/farmacología , Bidens/efectos de los fármacos , Bidens/crecimiento & desarrollo , Bidens/metabolismo , Germinación/efectos de los fármacos , Feromonas/análisis , Feromonas/metabolismo , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/metabolismo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Malezas/metabolismo , Suelo/química , Triterpenos/análisis , Triterpenos/metabolismo , Ácido Ursólico
17.
Environ Toxicol ; 29(9): 1063-71, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23315857

RESUMEN

Previous studies in the wetland macrophyte Bidens laevis L have demonstrated that the insecticide endosulfan induces a high frequency of somatic chromosome aberrations in anaphase-telophase (CAAT) but no DNA changes as determined by the single cell gel electrophoresis (Comet) assay. Thus, cytogenetic biomarkers appear to be more sensitive to the toxic effects of the insecticide than the DNA molecule in the studied species. For this reason, the goals of this study were to use cytogenetic biomarkers--CAAT and abnormal metaphase--and defense biomarkers such as the activity of the antioxidant enzymes--guaiacol peroxidases (POD), glutathione reductase, and microsomal and cytosolic (m- and c-) glutathione-S-transferase (GST)--to evaluate in B. laevis effects caused by a commercial formulation of endosulfan. The frequency of CAAT was increased at 5, 10, 50, and 100 µg/L endosulfan with respect to the negative controls by 3.1, 2.5, 2.5, and 3.2-fold, respectively while the frequency of abnormal metaphases was also increased at the same concentrations by 3.5, 2.8, 3.2, and 11.3-fold, respectively. In addition to these aneugenic effects, other abnormalities such as C-mitosis and chromosome clumping were observed at 10 µg/L endosulfan. On the other hand, POD induction at 0.02, 0.5, 5, and 10 µg/L and m-GST inhibition at 0.5, 10, and 50 µg/L in plants exposed during 24 h to endosulfan were observed but all of these responses were highly variable. In conclusion, only cytogenetic biomarkers like CAAT in B. laevis can serve potentially as early warning systems to detect environmentally relevant concentrations of endosulfan in aquatic ecosystems.


Asunto(s)
Bidens/efectos de los fármacos , Endosulfano/toxicidad , Insecticidas/toxicidad , Anafase , Bidens/enzimología , Bidens/genética , Biomarcadores/metabolismo , Aberraciones Cromosómicas , Ensayo Cometa , Marcadores Genéticos , Glutatión Reductasa/metabolismo , Glutatión Transferasa/metabolismo , Telofase
18.
Environ Pollut ; 159(1): 281-286, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20884102

RESUMEN

The wetland macrophyte Bidens laevis possesses suitable cytological characteristics for genotoxicity testing. To test its sensitivity as compared to terrestrial plants species currently in use in standardized assays, Methyl Methanesulfonate (MMS), N-ethyl-N-nitrosourea (ENU) and Maleic Hydrazide (HM) were used. On the other hand, the insecticide Endosulfan (ES)--an environmentally relevant contaminant--was assayed in seeds and two-month old plants. Mitotic Index (MI), frequency of Chromosome Aberrations in Anaphase-Telophase (CAAT) and frequency of Abnormal Metaphases (AM) were analyzed. MH, MMS and ENU caused a significant decrease of the MI. MMS was aneugenic whereas MH and ENU were both aneugenic and clastogenic. ES caused a significant concentration-dependent increase of total- and aneugenic-CAAT in roots and a significant high frequency of AM at high concentrations. Because of its sensitivity to mutagenic substances, B. laevis can be regarded as a reliable and convenient species for genotoxicity assays especially if aquatic contaminants are evaluated.


Asunto(s)
Bidens/efectos de los fármacos , Aberraciones Cromosómicas/inducido químicamente , Monitoreo del Ambiente/métodos , Mutágenos/toxicidad , Semillas/efectos de los fármacos , Bioensayo , Metanosulfonato de Etilo/toxicidad , Hidrazida Maleica/toxicidad , Metilmetanosulfonato/toxicidad , Pruebas de Mutagenicidad , Humedales
19.
J Chem Ecol ; 34(4): 499-507, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18338136

RESUMEN

Nine natural plant compounds were screened for phytotoxicity to Bidens pilosa L. a troublesome weed in field and plantation crops. The sensitivity of three other weed species to coumarin, the most active identified compound, was also evaluated. Coumarin, at a concentration of 500 microM, had little effect on germination and growth of Senna obtusifolia L., Euphorbia heterophylla L., and Ipomoea grandifolia L. when compared with its effects on B. pilosa L. In a concentration range of 10-100 microM, coumarin caused a dose-dependent inhibition of germination and growth of B. pilosa L. The measurements of some parameters of energy metabolism revealed that coumarin-treated root tissues exhibited characteristics of seedlings in an earlier stage of growth, including higher respiratory activity and higher activities of alcohol dehydrogenase and lipoxygenase. These results suggest that coumarin inhibition of germination and growth of B. pilosa L. was not a consequence of an impairment of energy metabolism. Rather, it seems to act as a cytostatic agent, retarding germination. At concentrations above 50 microM, coumarin increased lipoxygenase activity and the level of conjugated dienes of root extracts, suggesting that it may induce oxidative stress in seedling roots.


Asunto(s)
Bidens/efectos de los fármacos , Cumarinas/farmacología , Bidens/fisiología , Germinación , Especificidad de la Especie
20.
Environ Pollut ; 153(3): 695-8, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18029070

RESUMEN

The frequency of micronuclei (MN) and chromosome aberrations in anaphase-telophase (CAAT) was determined in root tips of the wetland macrophyte Bidens laevis exposed to environmentally relevant concentrations of endosulfan (0.01, 0.02, 0.5 and 5microg/L) for 48h. MN frequency varied from 0 in negative controls and plants exposed to 0.01microg/L endosulfan to 0-3 in plants exposed to 5microg/L. Moreover, a significant concentration-dependent increase of CAAT was observed. The higher proportion of laggards and vagrand chromosomes observed at 5microg/L would indicate that endosulfan interacts with the spindle interrupting normal chromosome migration. Endosulfan resulted genotoxic to B. laevis, a species of potential value for bioassays and in situ monitoring of environmental contamination by pesticides.


Asunto(s)
Bidens/efectos de los fármacos , Daño del ADN , Endosulfano/toxicidad , Contaminantes Ambientales/toxicidad , Genes de Plantas/efectos de los fármacos , Insecticidas/toxicidad , Argentina , Bidens/genética , Monitoreo del Ambiente/métodos , Pruebas de Micronúcleos , Pruebas de Mutagenicidad/métodos , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...