Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.109
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731835

RESUMEN

Combining new therapeutics with all-trans-retinoic acid (ATRA) could improve the efficiency of acute myeloid leukemia (AML) treatment. Modeling the process of ATRA-induced differentiation based on the transcriptomic profile of leukemic cells resulted in the identification of key targets that can be used to increase the therapeutic effect of ATRA. The genome-scale transcriptome analysis revealed the early molecular response to the ATRA treatment of HL-60 cells. In this study, we performed the transcriptomic profiling of HL-60, NB4, and K562 cells exposed to ATRA for 3-72 h. After treatment with ATRA for 3, 12, 24, and 72 h, we found 222, 391, 359, and 1032 differentially expressed genes (DEGs) in HL-60 cells, as well as 641, 1037, 1011, and 1499 DEGs in NB4 cells. We also found 538 and 119 DEGs in K562 cells treated with ATRA for 24 h and 72 h, respectively. Based on experimental transcriptomic data, we performed hierarchical modeling and determined cyclin-dependent kinase 6 (CDK6), tumor necrosis factor alpha (TNF-alpha), and transcriptional repressor CUX1 as the key regulators of the molecular response to the ATRA treatment in HL-60, NB4, and K562 cell lines, respectively. Mapping the data of TMT-based mass-spectrometric profiling on the modeling schemes, we determined CDK6 expression at the proteome level and its down-regulation at the transcriptome and proteome levels in cells treated with ATRA for 72 h. The combination of therapy with a CDK6 inhibitor (palbociclib) and ATRA (tretinoin) could be an alternative approach for the treatment of acute myeloid leukemia (AML).


Asunto(s)
Leucemia Mieloide Aguda , Biología de Sistemas , Tretinoina , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Tretinoina/farmacología , Biología de Sistemas/métodos , Células HL-60 , Perfilación de la Expresión Génica , Células K562 , Descubrimiento de Drogas/métodos , Transcriptoma , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
2.
J Biosci ; 492024.
Artículo en Inglés | MEDLINE | ID: mdl-38726827

RESUMEN

Metabolism is the key cellular process of plant physiology. Understanding metabolism and its dynamical behavior under different conditions may help plant biotechnologists to design new cultivars with desired goals. Computational systems biochemistry and incorporation of different omics data unravelled active metabolism and its variations in plants. In this review, we mainly focus on the basics of flux balance analysis (FBA), elementary flux mode analysis (EFMA), and some advanced computational tools. We describe some important results that were obtained using these tools. Limitations and challenges are also discussed.


Asunto(s)
Plantas , Biología de Sistemas , Plantas/metabolismo , Plantas/genética , Redes y Vías Metabólicas/genética , Análisis de Flujos Metabólicos , Modelos Biológicos , Fenómenos Fisiológicos de las Plantas
3.
Life Sci Alliance ; 7(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702075

RESUMEN

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Asunto(s)
Adipocitos , Adipogénesis , Distribución de la Grasa Corporal , Humanos , Adipocitos/metabolismo , Masculino , Femenino , Adipogénesis/genética , Índice de Masa Corporal , Adulto , Redes Reguladoras de Genes , Persona de Mediana Edad , Teorema de Bayes , Relación Cintura-Cadera , Tejido Adiposo/metabolismo , Vía de Señalización Wnt/genética , Regulación de la Expresión Génica/genética , Biología de Sistemas/métodos
4.
Daru ; 32(1): 215-235, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652363

RESUMEN

PURPOSE: Identifying the molecular mechanisms behind SARS-CoV-2 disparities and similarities will help find new treatments. The present study determines networks' shared and non-shared (specific) crucial elements in response to HCoV-229E and SARS-CoV-2 viruses to recommend candidate medications. METHODS: We retrieved the omics data on respiratory cells infected with HCoV-229E and SARS-CoV-2, constructed PPIN and GRN, and detected clusters and motifs. Using a drug-gene interaction network, we determined the similarities and disparities of mechanisms behind their host response and drug-repurposed. RESULTS: CXCL1, KLHL21, SMAD3, HIF1A, and STAT1 were the shared DEGs between both viruses' protein-protein interaction network (PPIN) and gene regulatory network (GRN). The NPM1 was a specific critical node for HCoV-229E and was a Hub-Bottleneck shared between PPI and GRN in HCoV-229E. The HLA-F, ADCY5, TRIM14, RPF1, and FGA were the seed proteins in subnetworks of the SARS-CoV-2 PPI network, and HSPA1A and RPL26 proteins were the seed in subnetworks of the PPI network of HCOV-229E. TRIM14, STAT2, and HLA-F played the same role for SARS-CoV-2. Top enriched KEGG pathways included cell cycle and proteasome in HCoV-229E and RIG-I-like receptor, Chemokine, Cytokine-cytokine, NOD-like receptor, and TNF signaling pathways in SARS-CoV-2. We suggest some candidate medications for COVID-19 patient lungs, including Noscapine, Isoetharine mesylate, Cycloserine, Ethamsylate, Cetylpyridinium, Tretinoin, Ixazomib, Vorinostat, Venetoclax, Vorinostat, Ixazomib, Venetoclax, and epoetin alfa for further in-vitro and in-vivo investigations. CONCLUSION: We suggested CXCL1, KLHL21, SMAD3, HIF1A, and STAT1, ADCY5, TRIM14, RPF1, and FGA, STAT2, and HLA-F as critical genes and Cetylpyridinium, Cycloserine, Noscapine, Ethamsylate, Epoetin alfa, Isoetharine mesylate, Ribavirin, and Tretinoin drugs to study further their importance in treating COVID-19 lung complications.


Asunto(s)
Antivirales , Coronavirus Humano 229E , Reposicionamiento de Medicamentos , Mapas de Interacción de Proteínas , SARS-CoV-2 , Biología de Sistemas , Humanos , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Coronavirus Humano 229E/genética , Coronavirus Humano 229E/efectos de los fármacos , Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Nucleofosmina , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/efectos de los fármacos , Mucosa Respiratoria/virología , Redes Reguladoras de Genes/efectos de los fármacos , COVID-19
5.
J Virol ; 98(5): e0151623, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38567951

RESUMEN

The non-human primate (NHP) model (specifically rhesus and cynomolgus macaques) has facilitated our understanding of the pathogenic mechanisms of yellow fever (YF) disease and allowed the evaluation of the safety and efficacy of YF-17D vaccines. However, the accuracy of this model in mimicking vaccine-induced immunity in humans remains to be fully determined. We used a systems biology approach to compare hematological, biochemical, transcriptomic, and innate and antibody-mediated immune responses in cynomolgus macaques and human participants following YF-17D vaccination. Immune response progression in cynomolgus macaques followed a similar course as in adult humans but with a slightly earlier onset. Yellow fever virus neutralizing antibody responses occurred earlier in cynomolgus macaques [by Day 7[(D7)], but titers > 10 were reached in both species by D14 post-vaccination and were not significantly different by D28 [plaque reduction neutralization assay (PRNT)50 titers 3.6 Log vs 3.5 Log in cynomolgus macaques and human participants, respectively; P = 0.821]. Changes in neutrophils, NK cells, monocytes, and T- and B-cell frequencies were higher in cynomolgus macaques and persisted for 4 weeks versus less than 2 weeks in humans. Low levels of systemic inflammatory cytokines (IL-1RA, IL-8, MIP-1α, IP-10, MCP-1, or VEGF) were detected in either or both species but with no or only slight changes versus baseline. Similar changes in gene expression profiles were elicited in both species. These included enriched and up-regulated type I IFN-associated viral sensing, antiviral innate response, and dendritic cell activation pathways D3-D7 post-vaccination in both species. Hematological and blood biochemical parameters remained relatively unchanged versus baseline in both species. Low-level YF-17D viremia (RNAemia) was transiently detected in some cynomolgus macaques [28% (5/18)] but generally absent in humans [except one participant (5%; 1/20)].IMPORTANCECynomolgus macaques were confirmed as a valid surrogate model for replicating YF-17D vaccine-induced responses in humans and suggest a key role for type I IFN.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Macaca fascicularis , Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Virus de la Fiebre Amarilla , Animales , Vacuna contra la Fiebre Amarilla/inmunología , Humanos , Fiebre Amarilla/prevención & control , Fiebre Amarilla/inmunología , Fiebre Amarilla/virología , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Virus de la Fiebre Amarilla/inmunología , Vacunación , Masculino , Femenino , Modelos Animales de Enfermedad , Adulto , Inmunidad Innata , Biología de Sistemas/métodos
6.
BMC Bioinformatics ; 25(1): 166, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664639

RESUMEN

BACKGROUND: The Biology System Description Language (BiSDL) is an accessible, easy-to-use computational language for multicellular synthetic biology. It allows synthetic biologists to represent spatiality and multi-level cellular dynamics inherent to multicellular designs, filling a gap in the state of the art. Developed for designing and simulating spatial, multicellular synthetic biological systems, BiSDL integrates high-level conceptual design with detailed low-level modeling, fostering collaboration in the Design-Build-Test-Learn cycle. BiSDL descriptions directly compile into Nets-Within-Nets (NWNs) models, offering a unique approach to spatial and hierarchical modeling in biological systems. RESULTS: BiSDL's effectiveness is showcased through three case studies on complex multicellular systems: a bacterial consortium, a synthetic morphogen system and a conjugative plasmid transfer process. These studies highlight the BiSDL proficiency in representing spatial interactions and multi-level cellular dynamics. The language facilitates the compilation of conceptual designs into detailed, simulatable models, leveraging the NWNs formalism. This enables intuitive modeling of complex biological systems, making advanced computational tools more accessible to a broader range of researchers. CONCLUSIONS: BiSDL represents a significant step forward in computational languages for synthetic biology, providing a sophisticated yet user-friendly tool for designing and simulating complex biological systems with an emphasis on spatiality and cellular dynamics. Its introduction has the potential to transform research and development in synthetic biology, allowing for deeper insights and novel applications in understanding and manipulating multicellular systems.


Asunto(s)
Biología Sintética , Biología Sintética/métodos , Modelos Biológicos , Lenguajes de Programación , Biología de Sistemas/métodos , Programas Informáticos
7.
Eur J Med Res ; 29(1): 234, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622728

RESUMEN

BACKGROUND: Influenza is an acute respiratory infection caused by influenza virus. Maxing Shigan Decoction (MXSGD) is a commonly used traditional Chinese medicine prescription for the prevention and treatment of influenza. However, its mechanism remains unclear. METHOD: The mice model of influenza A virus pneumonia was established by nasal inoculation. After 3 days of intervention, the lung index was calculated, and the pathological changes of lung tissue were detected by HE staining. Firstly, transcriptomics technology was used to analyze the differential genes and important pathways in mouse lung tissue regulated by MXSGD. Then, real-time fluorescent quantitative PCR (RT-PCR) was used to verify the changes in mRNA expression in lung tissues. Finally, intestinal microbiome and intestinal metabolomics were performed to explore the effect of MXSGD on gut microbiota. RESULTS: The lung inflammatory cell infiltration in the MXSGD group was significantly reduced (p < 0.05). The results of bioinformatics analysis for transcriptomics results show that these genes are mainly involved in inflammatory factors and inflammation-related signal pathways mediated inflammation biological modules, etc. Intestinal microbiome showed that the intestinal flora Actinobacteriota level and Desulfobacterota level increased in MXSGD group, while Planctomycetota in MXSGD group decreased. Metabolites were mainly involved in primary bile acid biosynthesis, thiamine metabolism, etc. This suggests that MXSGD has a microbial-gut-lung axis regulation effect on mice with influenza A virus pneumonia. CONCLUSION: MXSGD may play an anti-inflammatory and immunoregulatory role by regulating intestinal microbiome and intestinal metabolic small molecules, and ultimately play a role in the treatment of influenza A virus pneumonia.


Asunto(s)
Alphainfluenzavirus , Medicamentos Herbarios Chinos , Virus de la Influenza A , Gripe Humana , Orthomyxoviridae , Neumonía , Ratones , Animales , Humanos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Gripe Humana/tratamiento farmacológico , Gripe Humana/genética , Neumonía/tratamiento farmacológico , Neumonía/genética , Inflamación , Biología de Sistemas , Perfilación de la Expresión Génica
8.
Sci Rep ; 14(1): 9582, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671040

RESUMEN

Stress is an adaptive response to the stressors that adversely affects physiological and psychological health. Stress elicits HPA axis activation, resulting in cortisol release, ultimately contributing to oxidative, inflammatory, physiological and mental stress. Nutritional supplementations with antioxidant, anti-inflammatory, and stress-relieving properties are among widely preferred complementary approaches for the stress management. However, there is limited research on the potential combined impact of vitamins, minerals and natural ingredients on stress. In the present study, we have investigated the effect of a multi-nutrient botanical formulation, Nutrilite® Daily Plus, on clinical stress parameters. The stress-modulatory effects were quantified at population level using a customized sub-clinical inflammation mathematical model. The model suggested that combined intervention of botanical and micronutrients lead to significant decline in physical stress (75% decline), mental stress (70% decline), oxidative stress (55% decline) and inflammatory stress (75% decline) as evident from reduction in key stress parameters such as ROS, TNF-α, blood pressure, cortisol levels and PSS scores at both individual and population levels. Further, at the population level, the intervention relieved stress in 85% of individuals who moved towards a healthy state. The in silico studies strongly predicts the use of Gotukola based Nutrilite® Daily Plus as promising anti-stress formulation.


Asunto(s)
Estrés Oxidativo , Biología de Sistemas , Humanos , Biología de Sistemas/métodos , Estrés Oxidativo/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Suplementos Dietéticos , Masculino , Femenino , Antioxidantes/farmacología , Estrés Fisiológico/efectos de los fármacos , Adulto , Modelos Teóricos , Hidrocortisona , Persona de Mediana Edad
9.
PLoS One ; 19(4): e0300441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38648205

RESUMEN

INTRODUCTION: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19), has infected millions of individuals worldwide, which poses a severe threat to human health. COVID-19 is a systemic ailment affecting various tissues and organs, including the lungs and liver. Intrahepatic cholangiocarcinoma (ICC) is one of the most common liver cancer, and cancer patients are particularly at high risk of SARS-CoV-2 infection. Nonetheless, few studies have investigated the impact of COVID-19 on ICC patients. METHODS: With the methods of systems biology and bioinformatics, this study explored the link between COVID-19 and ICC, and searched for potential therapeutic drugs. RESULTS: This study identified a total of 70 common differentially expressed genes (DEGs) shared by both diseases, shedding light on their shared functionalities. Enrichment analysis pinpointed metabolism and immunity as the primary areas influenced by these common genes. Subsequently, through protein-protein interaction (PPI) network analysis, we identified SCD, ACSL5, ACAT2, HSD17B4, ALDOA, ACSS1, ACADSB, CYP51A1, PSAT1, and HKDC1 as hub genes. Additionally, 44 transcription factors (TFs) and 112 microRNAs (miRNAs) were forecasted to regulate the hub genes. Most importantly, several drug candidates (Periodate-oxidized adenosine, Desipramine, Quercetin, Perfluoroheptanoic acid, Tetrandrine, Pentadecafluorooctanoic acid, Benzo[a]pyrene, SARIN, Dorzolamide, 8-Bromo-cAMP) may prove effective in treating ICC and COVID-19. CONCLUSION: This study is expected to provide valuable references and potential drugs for future research and treatment of COVID-19 and ICC.


Asunto(s)
Neoplasias de los Conductos Biliares , COVID-19 , Colangiocarcinoma , Biología Computacional , SARS-CoV-2 , Biología de Sistemas , Colangiocarcinoma/genética , Colangiocarcinoma/virología , Humanos , COVID-19/genética , COVID-19/virología , SARS-CoV-2/genética , Biología Computacional/métodos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/virología , Biología de Sistemas/métodos , Mapas de Interacción de Proteínas/genética , Pandemias , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/genética , Betacoronavirus/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes
10.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38581416

RESUMEN

The inference of gene regulatory networks (GRNs) from gene expression profiles has been a key issue in systems biology, prompting many researchers to develop diverse computational methods. However, most of these methods do not reconstruct directed GRNs with regulatory types because of the lack of benchmark datasets or defects in the computational methods. Here, we collect benchmark datasets and propose a deep learning-based model, DeepFGRN, for reconstructing fine gene regulatory networks (FGRNs) with both regulation types and directions. In addition, the GRNs of real species are always large graphs with direction and high sparsity, which impede the advancement of GRN inference. Therefore, DeepFGRN builds a node bidirectional representation module to capture the directed graph embedding representation of the GRN. Specifically, the source and target generators are designed to learn the low-dimensional dense embedding of the source and target neighbors of a gene, respectively. An adversarial learning strategy is applied to iteratively learn the real neighbors of each gene. In addition, because the expression profiles of genes with regulatory associations are correlative, a correlation analysis module is designed. Specifically, this module not only fully extracts gene expression features, but also captures the correlation between regulators and target genes. Experimental results show that DeepFGRN has a competitive capability for both GRN and FGRN inference. Potential biomarkers and therapeutic drugs for breast cancer, liver cancer, lung cancer and coronavirus disease 2019 are identified based on the candidate FGRNs, providing a possible opportunity to advance our knowledge of disease treatments.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias Hepáticas , Humanos , Biología de Sistemas/métodos , Transcriptoma , Algoritmos , Biología Computacional/métodos
12.
Physiol Rev ; 104(3): 1205-1263, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38483288

RESUMEN

Stress resilience is the phenomenon that some people maintain their mental health despite exposure to adversity or show only temporary impairments followed by quick recovery. Resilience research attempts to unravel the factors and mechanisms that make resilience possible and to harness its insights for the development of preventative interventions in individuals at risk for acquiring stress-related dysfunctions. Biological resilience research has been lagging behind the psychological and social sciences but has seen a massive surge in recent years. At the same time, progress in this field has been hampered by methodological challenges related to finding suitable operationalizations and study designs, replicating findings, and modeling resilience in animals. We embed a review of behavioral, neuroimaging, neurobiological, and systems biological findings in adults in a critical methods discussion. We find preliminary evidence that hippocampus-based pattern separation and prefrontal-based cognitive control functions protect against the development of pathological fears in the aftermath of singular, event-type stressors [as found in fear-related disorders, including simpler forms of posttraumatic stress disorder (PTSD)] by facilitating the perception of safety. Reward system-based pursuit and savoring of positive reinforcers appear to protect against the development of more generalized dysfunctions of the anxious-depressive spectrum resulting from more severe or longer-lasting stressors (as in depression, generalized or comorbid anxiety, or severe PTSD). Links between preserved functioning of these neural systems under stress and neuroplasticity, immunoregulation, gut microbiome composition, and integrity of the gut barrier and the blood-brain barrier are beginning to emerge. On this basis, avenues for biological interventions are pointed out.


Asunto(s)
Neurobiología , Resiliencia Psicológica , Estrés Psicológico , Biología de Sistemas , Humanos , Animales , Estrés Psicológico/fisiopatología , Encéfalo
13.
Alzheimers Dement ; 20(5): 3587-3605, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38534018

RESUMEN

Despite numerous studies in the field of dementia and Alzheimer's disease (AD), a comprehensive understanding of this devastating disease remains elusive. Bulk transcriptomics have provided insights into the underlying genetic factors at a high level. Subsequent technological advancements have focused on single-cell omics, encompassing techniques such as single-cell RNA sequencing and epigenomics, enabling the capture of RNA transcripts and chromatin states at a single cell or nucleus resolution. Furthermore, the emergence of spatial omics has allowed the study of gene responses in the vicinity of amyloid beta plaques or across various brain regions. With the vast amount of data generated, utilizing gene regulatory networks to comprehensively study this disease has become essential. This review delves into some techniques employed in the field of AD, explores the discoveries made using these techniques, and provides insights into the future of the field.


Asunto(s)
Enfermedad de Alzheimer , Redes Reguladoras de Genes , Biología de Sistemas , Enfermedad de Alzheimer/genética , Humanos , Redes Reguladoras de Genes/genética , Epigenómica , Genómica , Encéfalo/metabolismo , Multiómica
14.
PLoS Comput Biol ; 20(3): e1011916, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38470870

RESUMEN

Discovering mathematical equations that govern physical and biological systems from observed data is a fundamental challenge in scientific research. We present a new physics-informed framework for parameter estimation and missing physics identification (gray-box) in the field of Systems Biology. The proposed framework-named AI-Aristotle-combines the eXtreme Theory of Functional Connections (X-TFC) domain-decomposition and Physics-Informed Neural Networks (PINNs) with symbolic regression (SR) techniques for parameter discovery and gray-box identification. We test the accuracy, speed, flexibility, and robustness of AI-Aristotle based on two benchmark problems in Systems Biology: a pharmacokinetics drug absorption model and an ultradian endocrine model for glucose-insulin interactions. We compare the two machine learning methods (X-TFC and PINNs), and moreover, we employ two different symbolic regression techniques to cross-verify our results. To test the performance of AI-Aristotle, we use sparse synthetic data perturbed by uniformly distributed noise. More broadly, our work provides insights into the accuracy, cost, scalability, and robustness of integrating neural networks with symbolic regressors, offering a comprehensive guide for researchers tackling gray-box identification challenges in complex dynamical systems in biomedicine and beyond.


Asunto(s)
Benchmarking , Aprendizaje Automático , Redes Neurales de la Computación , Física , Biología de Sistemas
15.
Front Immunol ; 15: 1264856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455049

RESUMEN

Background: Increasing evidence indicating that coronavirus disease 2019 (COVID-19) increased the incidence and related risks of pericarditis and whether COVID-19 vaccine is related to pericarditis has triggered research and discussion. However, mechanisms behind the link between COVID-19 and pericarditis are still unknown. The objective of this study was to further elucidate the molecular mechanisms of COVID-19 with pericarditis at the gene level using bioinformatics analysis. Methods: Genes associated with COVID-19 and pericarditis were collected from databases using limited screening criteria and intersected to identify the common genes of COVID-19 and pericarditis. Subsequently, gene ontology, pathway enrichment, protein-protein interaction, and immune infiltration analyses were conducted. Finally, TF-gene, gene-miRNA, gene-disease, protein-chemical, and protein-drug interaction networks were constructed based on hub gene identification. Results: A total of 313 common genes were selected, and enrichment analyses were performed to determine their biological functions and signaling pathways. Eight hub genes (IL-1ß, CD8A, IL-10, CD4, IL-6, TLR4, CCL2, and PTPRC) were identified using the protein-protein interaction network, and immune infiltration analysis was then carried out to examine the functional relationship between the eight hub genes and immune cells as well as changes in immune cells in disease. Transcription factors, miRNAs, diseases, chemicals, and drugs with high correlation with hub genes were predicted using bioinformatics analysis. Conclusions: This study revealed a common gene interaction network between COVID-19 and pericarditis. The screened functional pathways, hub genes, potential compounds, and drugs provided new insights for further research on COVID-19 associated with pericarditis.


Asunto(s)
COVID-19 , Pericarditis , Humanos , Vacunas contra la COVID-19 , COVID-19/genética , Biología Computacional , Biología de Sistemas , Pericarditis/genética
16.
OMICS ; 28(3): 138-147, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38478777

RESUMEN

Klebsiella pneumoniae is an opportunistic multidrug-resistant bacterial pathogen responsible for various health care-associated infections. The prediction of proteins that are essential for the survival of bacterial pathogens can greatly facilitate the drug development and discovery pipeline toward target identification. To this end, the present study reports a comprehensive computational approach integrating bioinformatics and systems biology-based methods to identify essential proteins of K. pneumoniae involved in vital processes. From the proteome of this pathogen, we predicted a total of 854 essential proteins based on sequence, protein-protein interaction (PPI) and genome-scale metabolic model methods. These predicted essential proteins are involved in vital processes for cellular regulation such as translation, metabolism, and biosynthesis of essential factors, among others. Cluster analysis of the PPI network revealed the highly connected modules involved in the basic functionality of the organism. Further, the predicted consensus set of essential proteins of K. pneumoniae was evaluated by comparing them with existing resources (NetGenes and PATHOgenex) and literature. The findings of this study offer guidance toward understanding cell functionality, thereby facilitating the understanding of pathogen systems and providing a way forward to shortlist potential therapeutic candidates for developing novel antimicrobial agents against K. pneumoniae. In addition, the research strategy presented herein is a fusion of sequence and systems biology-based approaches that offers prospects as a model to predict essential proteins for other pathogens.


Asunto(s)
Genoma Bacteriano , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Biología Computacional/métodos , Biología de Sistemas , Descubrimiento de Drogas , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
17.
Methods Mol Biol ; 2776: 305-320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38502513

RESUMEN

ChloroKB ( http://chlorokb.fr ) is a knowledge base providing synoptic representations of the metabolism of the model plant Arabidopsis thaliana and its regulation. Initially focused on plastid metabolism, ChloroKB now accounts for the metabolism throughout the cell. ChloroKB is based on the CellDesigner formalism. CellDesigner supports graphical notation and listing of the corresponding symbols based on the Systems Biology Graphical Notation. Thus, this formalism allows biologists to represent detailed biochemical processes in a way that can be easily understood and shared, facilitating communication between researchers. In this chapter, we will focus on a specificity of ChloroKB, the representation of multilayered regulation of protein activity. Information on regulation of protein activity is indeed central to understanding the plant response to fluctuating environmental conditions. However, the intrinsic diversity of the regulatory modes and the abundance of detail may hamper comprehension of the regulatory processes described in ChloroKB. With this chapter, ChloroKB users will be guided through the representation of these sophisticated biological processes of prime importance to understanding metabolism or for applied purposes. The descriptions provided, which summarize years of work and a broad bibliography in a few pages, can help speed up the integration of regulatory processes in kinetic models of plant metabolism.


Asunto(s)
Arabidopsis , Programas Informáticos , Biología de Sistemas , Redes y Vías Metabólicas , Arabidopsis/metabolismo
18.
Database (Oxford) ; 20242024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38537198

RESUMEN

Curation of biomedical knowledge into systems biology diagrammatic or computational models is essential for studying complex biological processes. However, systems-level curation is a laborious manual process, especially when facing ever-increasing growth of domain literature. New findings demonstrating elaborate relationships between multiple molecules, pathways and cells have to be represented in a format suitable for systems biology applications. Importantly, curation should capture the complexity of molecular interactions in such a format together with annotations of the involved elements and support stable identifiers and versioning. This challenge calls for novel collaborative tools and platforms allowing to improve the quality and the output of the curation process. In particular, community-based curation, an important source of curated knowledge, requires support in role management, reviewing features and versioning. Here, we present Biological Knowledge Curation (BioKC), a web-based collaborative platform for the curation and annotation of biomedical knowledge following the standard data model from Systems Biology Markup Language (SBML). BioKC offers a graphical user interface for curation of complex molecular interactions and their annotation with stable identifiers and supporting sentences. With the support of collaborative curation and review, it allows to construct building blocks for systems biology diagrams and computational models. These building blocks can be published under stable identifiers and versioned and used as annotations, supporting knowledge building for modelling activities.


Asunto(s)
Programas Informáticos , Biología de Sistemas , Curaduría de Datos
19.
Semin Immunol ; 72: 101875, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38489999

RESUMEN

The integration of multi-'omic datasets into complex systems-wide assessments has become a mainstay in immunologic investigation. This focus on high-dimensional data collection and analysis was on full display in the investigation of COVID-19, the respiratory illness resulting from infection by the novel coronavirus SARS-CoV-2. Particularly in the area of B cell biology, tremendous efforts in both cellular and serologic investigation have resulted in an increasingly detailed mapping of the coordinated effector, memory, and antibody secreting cell responses that underpin the development of humoral immunity in response to primary viral infection. Further, the rapid development and deployment of effective vaccines has allowed for the assessment of developing memory responses across a wide variety of immune contexts, including in patients with compromised immune function. The result has been a period of rapid gains in the understanding of B cell biology unrestricted to the study of COVID-19. Here, we outline the systems-level technologies that have been routinely implemented in these investigations throughout the pandemic, and discuss how their use has led to clear and applicable gains in pursuance of the amelioration of human infectious disease and beyond.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Linfocitos B , Inmunidad Humoral , Biología de Sistemas , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...