Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
1.
Arch Insect Biochem Physiol ; 116(4): e22130, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118437

RESUMEN

Toll receptors are important regulators of insects' innate immune system which, upon binding of pathogen molecules, activate a conserved signal transduction cascade known as the Toll pathway. RNA interference (RNAi) is a powerful tool to study the function of genes via reverse genetics. However, due to the reported refractory of RNAi efficiency in lepidopteran insects, successful reports of silencing of Toll receptors in the silkworm Bombyx mori have not been reported yet. In this study, a Toll receptor of the silkworm Bombyx Toll9-2 (BmToll9-2) was cloned and its expression and function were analyzed. The results showed that BmToll9-2 contains an ectodomain (ECD) with a signal peptide and nine leucine-rich repeats, a transmembrane helix, and a cytoplasmic region with a Toll/interleukin-1 domain. Phylogenetic analysis indicates that BmToll9-2 clusters with other insect Toll9 receptors and mammalian Toll-like receptor 4. Oral infection of exogenous pathogens showed that the Gram-negative bacterium Escherichia coli and its main cell wall component lipopolysaccharide (LPS), as well as the Gram-positive bacterium Staphylococcus aureus and its main cell wall component peptidoglycan, significantly induce BmToll9-2 expression in vivo. LPS also induced the expression of BmToll9-2 in BmN4 cells in vitro. These observations indicate its role as a sensor in the innate immunity to exogenous pathogens and as a pathogen-associated receptor that is responsive to LPS. RNAi of BmToll9-2 was effective in the midgut and epidermis. RNAi-mediated knock-down of BmToll9-2 reduced the weight and growth of the silkworm. Bacterial challenge following RNAi upregulated the expression of BmToll9-2 and rescued the weight differences of the silkworm, which may be related to its participation in the immune response and the regulation of the microbiota in the midgut lumen of the silkworm larvae.


Asunto(s)
Bombyx , Escherichia coli , Proteínas de Insectos , Larva , Lipopolisacáridos , Filogenia , Animales , Bombyx/inmunología , Bombyx/genética , Bombyx/crecimiento & desarrollo , Bombyx/microbiología , Bombyx/metabolismo , Larva/inmunología , Larva/crecimiento & desarrollo , Larva/microbiología , Larva/genética , Larva/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Lipopolisacáridos/farmacología , Receptores Toll-Like/metabolismo , Receptores Toll-Like/genética , Inmunidad Innata , Staphylococcus aureus , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/metabolismo , Secuencia de Aminoácidos , Interferencia de ARN
2.
Commun Biol ; 7(1): 955, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112633

RESUMEN

Similar to the physiological importance of gut microbiomes, recent works have shown that insect ectomicrobiotas can mediate defensive colonization resistance against fungal parasites that infect via cuticle penetration. Here we show that engineering the entomopathogenic fungus Metarhizium robertsii with a potent antibacterial moricin gene from silkworms substantially enhances the ability of the fungus to kill mosquitos, locusts, and two Drosophila species. Further use of Drosophila melanogaster as an infection model, quantitative microbiome analysis reveals that engineered strains designed to suppress insect cuticular bacteria additionally disrupt gut microbiomes. An overgrowth of harmful bacteria such as the opportunistic pathogens of Providencia species is detected that can accelerate insect death. In support, quantitative analysis of antimicrobial genes in fly fat bodies and guts indicates that topical fungal infections result in the compromise of intestinal immune responses. In addition to providing an innovative strategy for improving the potency of mycoinsecticides, our data solidify the importance of both the ecto- and endo-microbiomes in maintaining insect wellbeing.


Asunto(s)
Metarhizium , Animales , Metarhizium/genética , Drosophila melanogaster/microbiología , Drosophila melanogaster/genética , Bombyx/microbiología , Bombyx/genética , Control Biológico de Vectores/métodos , Microbioma Gastrointestinal
3.
ACS Appl Bio Mater ; 7(8): 5740-5753, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39110486

RESUMEN

The sericulture industry suffers severe crop losses due to various silkworm diseases, necessitating the development of further technologies for rapid pathogen detection. Here, we report an all-in-one portable biosensor that combines conjugated gold nanoparticles (Au NPs) with an aptamer-based lateral flow assay (LFA) platform for the real-time analysis of Mammaliicoccus sp. and Pseudomonas sp. Our platform enables sample-to-answer naked eye detection within 5 min without any cross-reactivity with other representatives of the silkworm pathogenic bacterial group. This assay was based on the sandwich-type format using a bacteria-specific primary aptamer (Apt1) conjugated with 23 nm ± 1.27 nm Au NPs as a signal probe and another bacteria-specific secondary aptamer (Apt2)-coated nitrocellulose membrane as a capture probe. The hybridization between the signal probe and the capture probe in the presence of bacteria develops a red band in the test line, whose intensity is directly proportional to the bacterial concentration. Under the optimal experimental conditions, the visual limit of detection of the strip for Mammaliicoccus sp. and Pseudomonas sp. was 1.5 × 104 CFU/mL and 1.5 × 103 CFU/mL, respectively. Additionally, the performance of the LFA device was validated by using a colorimetric assay, and the results from the colorimetric assay are consistent with those obtained from the LFA. Our findings indicate that the developed point-of-care diagnostic device has significant potential for providing a cost-effective, scalable alternative for the rapid detection of silkworm pathogens.


Asunto(s)
Aptámeros de Nucleótidos , Bombyx , Oro , Nanopartículas del Metal , Tamaño de la Partícula , Bombyx/microbiología , Oro/química , Animales , Nanopartículas del Metal/química , Aptámeros de Nucleótidos/química , Pseudomonas/aislamiento & purificación , Ensayo de Materiales , Materiales Biocompatibles/química , Farmacorresistencia Bacteriana Múltiple , Técnicas Biosensibles , Sistemas de Atención de Punto
4.
Sci Rep ; 14(1): 16931, 2024 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043935

RESUMEN

Pulmonary Mycobacterium avium-intracellulare complex (MAC) disease is a typical non-tuberculous mycobacterial infection. The incidence of pulmonary MAC is increasing worldwide. This study aimed to clarify the pharmacokinetic parameters of anti-pulmonary MAC disease drugs in silkworms. The pharmacokinetic parameters investigated included maximum concentration, area under the concentration-time curve, total clearance, and volume of distribution at steady-state. In addition, protein-binding rates, fat body transferability, and drug-drug interactions were examined. Antibiotic concentrations were measured using a validated high-performance liquid chromatography-mass spectrometry method. Among the antibiotics investigated, amikacin was not eliminated from silkworms during the 48-h observation period. In contrast, dose-proportional pharmacokinetics were observed in silkworms for all antibiotics tested, except for amikacin. Protein-binding rates in hemolymph for clarithromycin, azithromycin, rifampicin, ethambutol, and amikacin were 39.6 ± 3.0%, 39.5 ± 4.3%, 76.3 ± 3.2%, 20.9 ± 4.2%, and 73.1 ± 4.7%, respectively (mean ± standard deviation). The distribution of antibiotics in the fat bodies of silkworms was related to drug lipophilicity. No drug-drug interactions were observed in the silkworms. The pharmacokinetics of these drugs in silkworms differed significantly from those in humans. Therefore, while it is challenging to predict the pharmacokinetics of these drugs in humans based on silkworm data, the silkworm infection model has facilitated a comprehensive assessment of the relationship between antibiotic exposure and efficacy.


Asunto(s)
Amicacina , Antibacterianos , Bombyx , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Animales , Bombyx/microbiología , Bombyx/metabolismo , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Infección por Mycobacterium avium-intracellulare/microbiología , Antibacterianos/farmacocinética , Complejo Mycobacterium avium/efectos de los fármacos , Amicacina/farmacocinética , Hemolinfa/metabolismo , Claritromicina/farmacocinética , Interacciones Farmacológicas , Etambutol/farmacocinética , Unión Proteica , Rifampin/farmacocinética , Rifampin/farmacología
5.
Animal ; 18(8): 101221, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013331

RESUMEN

Silkworms have been farmed for their silk since ancient times. After silk reeling, their chrysalides are consumed as food in several Asian countries. Despite the long rearing tradition of this insect, few studies have investigated the silkworm's microbiological safety all along the life cycle, focusing on detecting silkworm pathogens or on the safety of the dried chrysalis for food consumption. However, the in-farm rearing process, which takes around forty days, may affect the microbial load of the silkworm and of the rearing environment, as well as the quality of fresh cocoon and other performance parameters. No data is available on how microbial contamination changes during the rearing period and between different farmers. Furthermore, in light of the possible use of the chrysalis as food, it is crucial to understand how its microbial load varies according to the water content. To address these specific questions, we conducted an investigation involving the analysis of specific microbial indicators commonly used in the food chain. We collected environmental and silkworm samples from several farms. The examination covered the entire life cycle of silkworms, beginning with the first instar larvae and concluding with the scrutiny of both freshly harvested and dried pupae. Silkworm farms in Northeast Italy proved to be an appropriate model system for carrying out the experimentation. Additionally, an evaluation of rearing performance was conducted, with a focus on the quality of fresh cocoons and the survival rate of the insects.


Asunto(s)
Bombyx , Larva , Pupa , Bombyx/microbiología , Animales , Larva/microbiología , Larva/crecimiento & desarrollo , Italia , Pupa/microbiología , Pupa/crecimiento & desarrollo , Crianza de Animales Domésticos/métodos , Granjas , Inocuidad de los Alimentos
6.
Front Cell Infect Microbiol ; 14: 1383774, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947126

RESUMEN

Silkworm (Bombyx mori) larvae are expected to be useful as an ingredient in entomophagy. They are full of nutrients, including indigestible proteins; however, there have been few studies on the effects of the consumption of the entire body of silkworms on the intestinal microflora. We prepared a customized diet containing silkworm larval powder (SLP), and investigated the effects of ad libitum feeding of the SLP diet on the intestinal microbiota and the amount of short-chain fatty acids (SCFAs) in mice. We found that the diversity of the cecal and fecal microbiota increased in the mice fed the SLP diet (SLP group), and that the composition of their intestinal microbiota differed from that of the control mice. Furthermore, a genus-level microbiota analysis showed that in the SLP group, the proportions of Alistipes, Lachnospiraceae A2, and RF39, which are associated with the prevention of obesity, were significantly increased, while the proportions of Helicobacter and Anaerotruncus, which are associated with obesity, were significantly decreased. Additionally, the level of butyrate was increased in the SLP group, and Clostridia UCG 014 and Lachnospiraceae FCS020 were found to be associated with the level of butyrate, one of the major SCFAs. These findings indicated that silkworm powder may be useful as an insect food that might also improve obesity.


Asunto(s)
Bombyx , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Larva , Animales , Bombyx/microbiología , Bombyx/metabolismo , Larva/microbiología , Ratones , Ácidos Grasos Volátiles/metabolismo , Heces/microbiología , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Polvos , Dieta , Ciego/microbiología , Ciego/metabolismo , Masculino , Obesidad/microbiología , Obesidad/metabolismo , Alimentación Animal
7.
J Antibiot (Tokyo) ; 77(8): 477-485, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38773231

RESUMEN

The development of novel antimicrobial agents is required to solve the problem of antimicrobial resistance. We established a quantitative method for evaluating the therapeutic efficacy of antimicrobial agents in a silkworm bacterial infection model. Pharmacokinetic factors are present in the silkworm as well as in mice, and evaluating the therapeutic efficacy of antimicrobial agents is possible in a silkworm infection model, comparable to that in a mammalian model. This silkworm model was used to screen for novel antimicrobial agents with therapeutic efficacy as an indicator. As a result, a new antibiotic, lysocin E, was discovered. Lysocin E has a completely different mechanism of action from existing antimicrobial agents, and its potent bactericidal activity leads to remarkable therapeutic efficacy in a mouse model. In this review, I describe the features of the silkworm model that have contributed to the discovery of lysocin E and its mechanisms of action.


Asunto(s)
Antibacterianos , Infecciones Bacterianas , Bombyx , Modelos Animales de Enfermedad , Animales , Bombyx/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Ratones , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Pruebas de Sensibilidad Microbiana , Péptidos Cíclicos
8.
Microbiol Spectr ; 12(6): e0367123, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38690912

RESUMEN

Lipid droplets (LDs) are dynamic organelles that participate in the regulation of lipid metabolism and cellular homeostasis inside of cells. LD-associated proteins, also known as perilipins (PLINs), are a family of proteins found on the surface of LDs that regulate lipid metabolism, immunity, and other functions. In silkworms, pébrine disease caused by infection by the microsporidian Nosema bombycis (Nb) is a severe threat to the sericultural industry. Although we found that Nb relies on lipids from silkworms to facilitate its proliferation, the relationship between PLINs and Nb proliferation remains unknown. Here, we found Nb infection caused the accumulation of LDs in the fat bodies of silkworm larvae. The characterized perilipin1 gene (plin1) promotes the accumulation of intracellular LDs and is involved in Nb proliferation. plin1 is similar to perilipin1 in humans and is conserved in all insects. The expression of plin1 was mostly enriched in the fat body rather than in other tissues. Knockdown of plin1 enhanced Nb proliferation, whereas overexpression of plin1 inhibited its proliferation. Furthermore, we confirmed that plin1 increased the expression of the Domeless and Hop in the JAK-STAT immune pathway and inhibited Nb proliferation. Taken together, our current findings demonstrate that plin1 inhibits Nb proliferation by promoting the JAK-STAT pathway through increased expression of Domeless and Hop. This study provides new insights into the complicated connections among microsporidia pathogens, LD surface proteins, and insect immunity.IMPORTANCELipid droplets (LDs) are lipid storage sites in cells and are present in almost all animals. Many studies have found that LDs may play a role in host resistance to pathogens and are closely related to innate immunity. The present study found that a surface protein of insect lipid droplets could not only regulate the morphological changes of lipid droplets but also inhibit the proliferation of a microsporidian pathogen Nosema bombycis (Nb) by activating the JAK-STAT signaling pathway. This is the first discovery of the relationship between microsporidian pathogen and insect lipid surface protein perilipin and insect immunity.


Asunto(s)
Bombyx , Proteínas de Insectos , Quinasas Janus , Gotas Lipídicas , Nosema , Perilipina-1 , Transducción de Señal , Bombyx/microbiología , Bombyx/metabolismo , Bombyx/genética , Animales , Nosema/metabolismo , Nosema/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/genética , Gotas Lipídicas/metabolismo , Quinasas Janus/metabolismo , Quinasas Janus/genética , Perilipina-1/metabolismo , Perilipina-1/genética , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética , Cuerpo Adiposo/metabolismo , Larva/microbiología , Larva/metabolismo , Metabolismo de los Lípidos
9.
J Econ Entomol ; 117(3): 772-781, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38691061

RESUMEN

Microsporidia Nosema bombycis (Nb) is a cellular parasite responsible for pébrine disease in silkworms, significantly impacting the sericulture industry. Long non-coding RNAs (lncRNAs), which are RNA fragments longer than 200 nucleotides, are pivotal in a range of cellular and physiological functions. However, the potential role of silkworm lncRNAs in response to Nb infection remains unknown. This study conducted transcriptome sequencing on both larvae and Nb-infected midguts of silkworms, identifying 1,440 lncRNAs across all examined midgut samples. Within the Nb-infected group, 42 differentially expressed lncRNAs (DElncRNAs) and 305 differentially expressed mRNAs (DEmRNAs) were detected. Functional annotation and pathway analysis showed that these DEmRNAs are mostly involved in metabolism, apoptosis, autophagy, and other key pathways. The co-expression network of DEmRNAs and DElncRNAs illustrates that 1 gene could be regulated by multiple lncRNAs and 1 lncRNA may target multiple genes, indicating that the regulation of lncRNA is intricate and networked. In addition, the DElncRNA-miRNA-mRNA network showed that some DElncRNAs may be involved in the immune response and metabolism through miRNA. Notably, the study observed an increase in lncRNA MSTRG857.1 following Nb infection, which may promote Nb proliferation. These findings offer insights into the complex interplay between insects and microsporidia.


Asunto(s)
Bombyx , Larva , Nosema , ARN Largo no Codificante , Bombyx/genética , Bombyx/microbiología , Animales , ARN Largo no Codificante/genética , Nosema/fisiología , Larva/microbiología , Larva/crecimiento & desarrollo , Larva/genética , Transcriptoma
10.
J Econ Entomol ; 117(3): 1141-1151, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38706118

RESUMEN

Bombyx mori L. (Lepidoptera: Bombycidae) nucleopolyhedrovirus (BmNPV) is a serious pathogen causing huge economic losses to sericulture. There is growing evidence that the gut microbiota of silkworms plays a critical role in shaping host responses and interactions with viral infection. However, little is known about the differences in the composition and diversity of intestinal microflora, especially with respect to silkworm strain differences and BmNPV infection-induced changes. Here, we aim to explore the differences between BmNPV-resistant strain A35 and susceptible strain P50 silkworm and the impact of BmNPV infection on intestinal microflora in different strains. The 16S rDNA sequencing analysis revealed that the fecal microbial populations were distinct between A35 and P50 and were significantly changed post BmNPV infection in both strains. Further analysis showed that the BmNPV-resistant strain silkworm possessed higher bacterial diversity than the susceptible strain, and BmNPV infection reduced the diversity of intestinal flora assessed by feces in both silkworm strains. In response to BmNPV infection, the abundance of Muribaculaceae increased in P50 and decreased in A35, while the abundance of Enterobacteriaceae decreased in P50 and increased in A35. These results indicated that BmNPV infection had various effects on the abundance of fecal microflora in different silkworm strains. Our findings not only broadened the understanding of host-pathogen interactions but also provided theoretical help for the breeding of resistant strains and healthy rearing of silkworms based on symbiotic bacteria.


Asunto(s)
Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovirus , Animales , Bombyx/virología , Bombyx/microbiología , Bombyx/crecimiento & desarrollo , Nucleopoliedrovirus/fisiología , Larva/virología , Larva/microbiología , Larva/crecimiento & desarrollo , Heces/microbiología , Heces/virología
11.
Bioresour Technol ; 403: 130899, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38801951

RESUMEN

Amino acids are essential organic compounds in composting products. However, the mechanism underlying the amino acid metabolism during composting remains unclear. This study aims at exploring the impacts of inoculating cellulose-degrading microbes on amino acid metabolism during composting with mulberry branches and silkworm excrements. Cellulose-degrading microbial inoculation enhanced amino acid degradation by 18%-43% by increasing protease and sucrase activities and stimulating eight amino acid degradation pathways from the initial to thermophilic phases, with Enterococcus, Saccharomonospora, Corynebacterium being the dominant bacterial genera, but stimulated amino acid production by 54% by increasing sucrase and urease activities, decreasing ß-glucosidase activities, and stimulating twenty-two amino acid synthesis pathways at the mature phase, with Thermobifida, Devosia, and Cellulosimicrobium being the dominant bacterial genera. The results suggest that cellulose-degrading microbial inoculation enhances amino acid degradation from the initial to thermophilic phases and biosynthesis at the mature phase, thereby improving the quality of organic fertilizer.


Asunto(s)
Aminoácidos , Celulosa , Compostaje , Aminoácidos/metabolismo , Celulosa/metabolismo , Bacterias/metabolismo , Animales , Bombyx/metabolismo , Bombyx/microbiología , Suelo/química
12.
J Antibiot (Tokyo) ; 77(7): 412-421, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38720140

RESUMEN

Three new liposidomycin congeners (1, 2, and 4), together with 14 known liposidomycins (3 and 5-17), were isolated from the culture broth of Streptomyces sp. TMPU-20A065 as anti-Mycobacterium avium complex agents. The structures of liposidomycins were elucidated by spectroscopic analyses, including NMR and MS. Compounds 1, 2, and 4 belong to type-I liposidomycin-containing sulfate groups and methylglutaric acid, each with a different acyl side chain in the structure. Compounds 1-17 exhibited in vitro anti-M. avium and M. intracellulare activities with MIC values ranging between 2.0 and 64 µg ml-1. Furthermore, 1-17 exerted potent therapeutic effects in an in vivo-mimic silkworm infection model with ED50 values ranging between 0.12 and 3.7 µg larva-1 g-1.


Asunto(s)
Antibacterianos , Bombyx , Pruebas de Sensibilidad Microbiana , Complejo Mycobacterium avium , Streptomyces , Animales , Streptomyces/química , Streptomyces/metabolismo , Bombyx/microbiología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Complejo Mycobacterium avium/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Modelos Animales de Enfermedad , Estructura Molecular
13.
Waste Manag ; 183: 163-173, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38759274

RESUMEN

Sericulture has become widespread globally, and the utilization of artificial diets produces a substantial quantity of silkworm excrement. Although silkworm excrement can be composted for environmentally friendly disposal, the potential utility of the resulting compost remains underexplored. The aim of this study was to assess the quality of this unique compost and screen for eco-beneficial microbes, providing a new perspective on microbial research in waste management, especially in sustainable agriculture. The low-concentration compost application exhibited a greater plant growth-promoting effect, which was attributed to an appropriate nutritional value (N, P, K, and dissolved organic matter) and the presence of plant growth-promoting bacteria (PGPB) within the compost. Encouraged by the "One Health" concept, the eco-benefits of potent PGPB, namely, Klebsiella pneumoniae and Bacillus licheniformis, in sericulture were further evaluated. For plants, K. pneumoniae and B. licheniformis increased plant weight by 152.44 % and 130.91 %, respectively. We also found that even a simple synthetic community composed of the two bacteria performed better than any single bacterium. For animals, K. pneumoniae significantly increased the silkworm (Qiufeng × Baiyu strain) cocoon shell weight by 111.94 %, which could increase sericulture profitability. We also elucidated the mechanism by which K. pneumoniae assisted silkworms in degrading tannic acid, a common plant-derived antifeedant, thereby increasing silkworm feed efficiency. Overall, these findings provide the first data revealing multiple beneficial interactions among silkworm excrement-derived microbes, plants, and animals, highlighting the importance of focusing on microbes in sustainable agriculture.


Asunto(s)
Bombyx , Compostaje , Animales , Bombyx/microbiología , Compostaje/métodos , Klebsiella pneumoniae , Bacillus licheniformis/metabolismo , Microbiología del Suelo , Administración de Residuos/métodos , Heces/microbiología
14.
PLoS One ; 19(5): e0298502, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814922

RESUMEN

The skin microbiome maintains healthy human skin, and disruption of the microbiome balance leads to inflammatory skin diseases such as folliculitis and atopic dermatitis. Staphylococcus aureus and Cutibacterium acnes are pathogenic bacteria that simultaneously inhabit the skin and cause inflammatory diseases of the skin through the activation of innate immune responses. Silkworms are useful invertebrate animal models for evaluating innate immune responses. In silkworms, phenoloxidase generates melanin as an indicator of innate immune activation upon the recognition of bacterial or fungal components. We hypothesized that S. aureus and C. acnes interact to increase the innate immunity-activating properties of S. aureus. In the present study, we showed that acidification is involved in the activation of silkworm hemolymph melanization by S. aureus. Autoclaved-killed S. aureus (S. aureus [AC]) alone does not greatly activate silkworm hemolymph melanization. On the other hand, applying S. aureus [AC] treated with C. acnes culture supernatant increased the silkworm hemolymph melanization. Adding C. acnes culture supernatant to the medium decreased the pH. S. aureus [AC] treated with propionic acid, acetic acid, or lactic acid induced higher silkworm hemolymph melanization activity than untreated S. aureus [AC]. S. aureus [AC] treated with hydrochloric acid also induced silkworm hemolymph melanization. The silkworm hemolymph melanization activity of S. aureus [AC] treated with hydrochloric acid was inhibited by protease treatment of S. aureus [AC]. These results suggest that acid treatment of S. aureus induces innate immune activation in silkworms and that S. aureus proteins are involved in the induction of innate immunity in silkworms.


Asunto(s)
Bombyx , Hemolinfa , Melaninas , Staphylococcus aureus , Animales , Hemolinfa/metabolismo , Hemolinfa/microbiología , Hemolinfa/inmunología , Bombyx/microbiología , Bombyx/inmunología , Staphylococcus aureus/inmunología , Melaninas/metabolismo , Inmunidad Innata , Concentración de Iones de Hidrógeno , Monofenol Monooxigenasa/metabolismo
15.
Bioresour Technol ; 402: 130821, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735341

RESUMEN

Probiotics have attracted considerable attention in animal husbandry due to their positive effect on animal growth and health. This study aimed to screen candidate probiotic strain promoting the growth and health of silkworm and reveal the potential mechanisms. A novel probiotic Pediococcus pentosaceus strain (ZZ61) substantially promoted body weight gain, feed efficiency, and silk yield. These effects were likely mediated by changes in the intestinal digestive enzyme activity and nutrient provisioning (e.g., B vitamins) of the host, improving nutrient digestion and assimilation. Additionally, P. pentosaceus produced antimicrobial compounds and increased the antioxidant capacity to protect the host against pathogenic infection. Furthermore, P. pentosaceus affected the gut microbiome and altered the levels of gut metabolites (e.g., glycine and glycerophospholipids), which in turn promotes host nutrition and health. This study contributes to an improved understanding of the interactions between probiotic and host and promotes probiotic utilization in sericulture.


Asunto(s)
Bombyx , Microbioma Gastrointestinal , Pediococcus pentosaceus , Probióticos , Animales , Bombyx/microbiología , Probióticos/farmacología , Alimentación Animal
16.
Mol Biol Rep ; 51(1): 666, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777963

RESUMEN

BACKGROUND: Insect gut microbiomes play a fundamental role in various aspects of insect physiology, including digestion, nutrient metabolism, detoxification, immunity, growth and development. The wild Muga silkworm, Antheraea assamensis Helfer holds significant economic importance, as it produces golden silk. METHODS AND RESULTS: In the current investigation, we deciphered its intricate gut bacteriome through high-throughput 16S rRNA amplicon sequencing. Further, to understand bacterial community dynamics among silkworms raised under outdoor environmental conditions, we compared its gut bacteriomes with those of the domesticated mulberry silkworm, Bombyx mori L. Most abundant bacterial phyla identified in the gut of A. assamensis were Proteobacteria (78.1%), Bacteroidetes (8.0%) and Firmicutes (6.6%), whereas the most-abundant phyla in B. mori were Firmicutes (49-86%) and Actinobacteria (10-36%). Further, Gammaproteobacteria (57.1%), Alphaproteobacteria (10.47%) and Betaproteobacteria (8.28%) were the dominant bacterial classes found in the gut of A. assamensis. The predominant bacterial families in A. assamensis gut were Enterobacteriaceae (27.7%), Comamonadaceae (9.13%), Pseudomonadaceae (9.08%) Flavobacteriaceae (7.59%) Moraxellaceae (7.38%) Alteromonadaceae (6.8%) and Enterococcaceae (4.46%). In B. mori, the most-abundant bacterial families were Peptostreptococcaceae, Enterococcaceae, Lactobacillaceae and Bifidobacteriaceae, though all showed great variability among the samples. The core gut bacteriome of A. assamensis consisted of Pseudomonas, Acinetobacter, Variovorax, Myroides, Alteromonas, Enterobacter, Enterococcus, Sphingomonas, Brevundimonas, Oleispira, Comamonas, Oleibacter Vagococcus, Aminobacter, Marinobacter, Cupriavidus, Aeromonas, and Bacillus. Comparative gut bacteriome analysis revealed a more complex gut bacterial diversity in wild A. assamensis silkworms than in domesticated B. mori silkworms, which contained a relatively simple gut bacteriome as estimated by OTU richness. Predictive functional profiling of the gut bacteriome suggested that gut bacteria in A. assamensis were associated with a wide range of physiological, nutritional, and metabolic functions, including biodegradation of xenobiotics, lipid, amino acid, carbohydrate metabolism, and biosynthesis of secondary metabolites and amino acids. CONCLUSIONS: These results showed great differences in the composition and diversity of gut bacteria between the two silkworm species. Both insect species harbored core bacterial taxa commonly found in insects, but the relative abundance and composition of these taxa varied markedly.


Asunto(s)
Bacterias , Bombyx , Microbioma Gastrointestinal , ARN Ribosómico 16S , Animales , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bombyx/microbiología , Bombyx/genética , Bacterias/genética , Bacterias/clasificación , Filogenia , Mariposas Nocturnas/microbiología
17.
Chemosphere ; 358: 142126, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677612

RESUMEN

Microplastics (MPs) existing extensively in various ecosystems can be ingested by marine organisms and enter the food chain, resulting the health risks from the presence of MPs in aquatic and terrestrial ecosystems. In the present study, an ideal model for Lepidoptera, the silkworm, Bombyx mori, was exposed to environmental concentrations (0.125 µg, 0.25 µg or 0.5 µg/diet) of MPs for 5 days, and the global changes in gut microbes and metabolites were subsequently examined via 16S rDNA sequencing and GC‒MS-based metabolomics. The results showed that MPs exposure did not seriously threaten survival but may regulate signaling pathways involved in development and cocoon production. MPs exposure induced gut microbiota perturbation according to the indices of α-diversity and ß-diversity, and the functional prediction of the altered microbiome and associated metabolites demonstrated the potential roles of the altered microbiome following MPs exposure in the metabolic and physiological states of silkworm. The metabolites markedly altered following MPs exposure may play vital biological roles in energy metabolism, lipid metabolism, xenobiotic detoxification and the immune system by directly or indirectly affecting the physiological state of silkworms. These findings contribute to assessing the health risks of MPs exposure in model insects and provide novel insight into the toxicity mechanism of MPs.


Asunto(s)
Bombyx , Microbioma Gastrointestinal , Microplásticos , Animales , Bombyx/microbiología , Bombyx/efectos de los fármacos , Bombyx/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo
18.
Microb Pathog ; 191: 106649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636568

RESUMEN

Bombyx mori nucleopolyhedrovirus (BmNPV) is a very common and infectious virus that affects silkworms and hinders silk production. To investigate the intestinal flora of BmNPV-resistant and BmNPV-sensitive silkworm varieties, 16 S rDNA high-throughput sequencing was performed. The results of the cluster analysis showed that the intestinal flora of the resistant silkworm variety was more abundant than that of the sensitive silkworm variety. This was found even when infection with BmNPV caused a sharp decline in the number of intestinal floral species in both resistant and sensitive silkworm varieties. The abundances of the intestinal flora, including Aureimonas, Ileibacterium, Peptostreptococcus, Pseudomonas, Enterococcus, and Halomonas, in the resistant variety were considerably greater after infection with BmNPV than those in the sensitive variety. After infection with BmNPV, four kinds of important intestinal bacteria, namely, f_Saccharimonadaceae, Peptostreptococcus, Aureirmonas, and f_Rhizobiaceae, were found in the resistant silkworm variety. In the sensitive silkworm variety, only Faecalibaculum was an important intestinal bacterium. The differential or important bacteria mentioned above might be involved in immunoreaction or antiviral activities, especially in the intestines of BmNPV-resistant silkworms. By conducting a functional enrichment analysis, we found that BmNPV infection did not change the abundance of important functional components of the intestinal flora in resistant or sensitive silkworm varieties. However, some functional factors, such as the biosynthesis, transport, and catabolism of secondary metabolites (e.g., terpenoids and polyketides) and lipid transport and metabolism, were more important in the resistant silkworm variety than in the sensitive variety; thus, these factors may increase the resistance of the host to BmNPV. To summarize, we found significant differences in the composition, abundance, and function of the intestinal flora between resistant and sensitive silkworm varieties, especially after infection with BmNPV, which might be closely related to the resistance of resistant silkworm varieties to BmNPV.


Asunto(s)
Bacterias , Bombyx , Microbioma Gastrointestinal , Nucleopoliedrovirus , ARN Ribosómico 16S , Animales , Bombyx/virología , Bombyx/microbiología , Nucleopoliedrovirus/fisiología , Nucleopoliedrovirus/genética , Microbioma Gastrointestinal/genética , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , ARN Ribosómico 16S/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Resistencia a la Enfermedad , ADN Ribosómico/genética , ADN Bacteriano/genética
19.
Microbiome ; 12(1): 40, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409012

RESUMEN

BACKGROUND: Bacterial transfers from plants to insect herbivore guts have been well investigated. However, bacterial exchanges between plant phyllospheres and insect cuticles remain unclear, as does their related biological function. RESULTS: Here, we report that the cuticular bacterial loads of silkworm larvae quickly increased after molting and feeding on the white mulberry (Morus alba) leaves. The isolation and examination of silkworm cuticular bacteria identified one bacterium Mammaliicoccus sciuri that could completely inhibit the spore germination of fungal entomopathogens Metarhizium robertsii and Beauveria bassiana. Interestingly, Ma. sciuri was evident originally from mulberry leaves, which could produce a secreted chitinolytic lysozyme (termed Msp1) to damage fungal cell walls. In consistency, the deletion of Msp1 substantially impaired bacterial antifungal activity. Pretreating silkworm larvae with Ma. sciuri cells followed by fungal topical infections revealed that this bacterium could help defend silkworms against fungal infections. Unsurprisingly, the protective efficacy of ΔMsp1 was considerably reduced when compared with that of wild-type bacterium. Administration of bacterium-treated diets had no negative effect on silkworm development; instead, bacterial supplementation could protect the artificial diet from Aspergillus contamination. CONCLUSIONS: The results of this study evidence that the cross-kingdom transfer of bacteria from plant phyllospheres to insect herbivore cuticles can help protect insects against fungal parasite attacks. Video Abstract.


Asunto(s)
Bombyx , Morus , Parásitos , Animales , Bombyx/microbiología , Antifúngicos/farmacología , Morus/parasitología , Proteína 1 de Superficie de Merozoito , Insectos , Bacterias , Larva/microbiología
20.
Med Mycol J ; 65(1): 7-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38417885

RESUMEN

Experimental animal models are necessary for research on infectious diseases. Generally, mammalian animals, such as mice, are used for infection experiments. However, there are ethical issues associated with conducting infection experiments in mammals. This has made it difficult to perform infection experiments with a large number of individuals. The invertebrate silkworm, Bombyx mori, is gaining attention as a model animal for infection experiments, and silkworm infection models with various pathogens have been established. This review provides information on the use of silkworm infection models for fungal infection research and evaluation of in vivo biofilm formation by pathogenic fungi using a novel silkworm experimental system. Various silkworm infection models with pathogenic fungi have been used for the development of antifungal drugs and the identification of fungal virulence-related genes. Furthermore, a catheter-material-inserted silkworm infection model was established to evaluate biofilm formation in vivo. Silkworm infection models have contributed to research on fungal infections.


Asunto(s)
Bombyx , Micosis , Animales , Ratones , Bombyx/microbiología , Modelos Animales de Enfermedad , Hongos , Biopelículas , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA