Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124384, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701576

RESUMEN

The bioactive compounds Acetyl-11-keto-ß-boswellic acid (AKBA) and 11-keto-ß-boswellic acid (KBA), found in the resin of the Boswellia tree, exhibit anti-inflammatory properties, rendering Boswellia resin an intriguing natural medicinal products. However, the content of boswellic acids varies across different Boswellia species and proper knowledge of its species-dependent nature, as well as alternatives to the resource- and time-intensive HPLC analysis, are lacking. Here we present a comprehensive investigation into the boswellic acid content of seven Boswellia species from ten countries and introduce a novel and non-destructive Near-Infrared spectroscopy method for predicting boswellic acid concentrations in solid resin samples. The HPLC-UV reference analysis revealed AKBA concentrations of up to 7.27 % (w/w) with KBA concentrations reaching up to 1.28 % (w/w). Principal Component Analysis of the HPLC and NIR spectroscopy data unveiled species-specific variations, facilitating differentiation based on boswellic acid content, characteristic chromatograms and NIR spectra. Using the HPLC-UV quantification as reference, we developed a Partial Least Squares regression model based on NIR spectra of the resin samples. This model demonstrated highly satisfactory predictive capabilities for AKBA content, achieving a root mean square error of prediction of 0.74 % (w/w) and an R2val of 0.79 in independent test set validation. Although the model was less effective for predicting KBA content, it still offered valuable estimates. The spectroscopic method introduced in this study provides a cost-effective and solvent-free approach for predicting boswellic acid content, demonstrating the potential for application in non-laboratory settings through the use of miniaturized NIR spectrometers. Consequently, this method aligns well with the principles of green chemistry and addresses the growing demand for alternative analytical techniques.


Asunto(s)
Boswellia , Análisis de Componente Principal , Resinas de Plantas , Espectroscopía Infrarroja Corta , Triterpenos , Boswellia/química , Espectroscopía Infrarroja Corta/métodos , Triterpenos/análisis , Cromatografía Líquida de Alta Presión/métodos , Resinas de Plantas/química , Resinas de Plantas/análisis , Análisis Multivariante , Especificidad de la Especie
2.
PLoS One ; 18(12): e0294067, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127865

RESUMEN

Frankincense oil has gained increased popularity in skin care, yet its anti-aging effect remains unclear. The current study aimed to investigate the anti-photoaging effect of frankincense (Boswellia papyrifera (Del.) Hochst., Family Burseraceae) essential oil in an in vivo model. The oil was initially extracted by two methods: hydro-distillation (HD) and microwave-assisted hydro-distillation (MAHD). GC/MS analysis revealed the dominance of n-octyl acetate, along with other marker compounds of B. papyrifera including octanol and diterpene components (verticilla 4(20) 7, 11-triene and incensole acetate). Thereafter, preliminary investigation of the anti-collagenase and anti-elastase activities of the extracted oils revealed the superior anti-aging effect of HD-extracted oil (FO), comparable to epigallocatechin gallate. FO was subsequently formulated into solid lipid nanoparticles (FO-SLNs) via high shear homogenization to improve its solubility and skin penetration characteristics prior to in vivo testing. The optimimal formulation prepared with 0.5% FO, and 4% Tween® 80, demonstrated nanosized spherical particles with high entrapment efficiency percentage and sustained release for 8 hours. The anti-photoaging effect of FO and FO-SLNs was then evaluated in UVB-irradiated hairless rats, compared to Vitamin A palmitate as a positive standard. FO and FO-SLNs restored the antioxidant capacity (SOD and CAT) and prohibited inflammatory markers (IL6, NFκB p65) in UVB-irradiated rats via downregulation of MAPK (pERK, pJNK, and pp38) and PI3K/AKT signaling pathways, alongside upregulating TGF-ß expression. Subsequently, our treatments induced Procollagen I synthesis and downregulation of MMPs (MMP1, MMP9), where FO-SLNs exhibited superior anti-photoaging effect, compared to FO and Vitamin A, highlighting the use of SLNs as a promising nanocarrier for FO. In particular, FO-SLNs revealed normal epidermal and dermal histological structures, protected against UVß-induced epidermal thickness and dermal collagen degradation. Our results indicated the potential use of FO-SLNs as a promising topical anti-aging therapy.


Asunto(s)
Boswellia , Olíbano , Nanopartículas , Aceites Volátiles , Envejecimiento de la Piel , Ratas , Animales , Aceites Volátiles/farmacología , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Boswellia/química , Transducción de Señal , Nanopartículas/química , Envejecimiento , Rayos Ultravioleta/efectos adversos
3.
Phytochemistry ; 216: 113897, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866446

RESUMEN

Seven previously undescribed polyhydroxy cembrane-type diterpenoids, olibanols A-G (1-7) were obtained from the gum resin of Boswellia carterii by means of MS/MS molecular networking. Compound 2 possessed four hydroxy groups, 1, 3, 4, 5, and 6 had three hydroxy groups, 7 with one hydroxy group, among which 1 and 4 were a pair of epimers with double bond at C-3 and hydroxy at C-8. Structures of these previously undescribed compounds were determined by NMR analysis and ECD calculations. All the polyhydroxy cembrane-type diterpenoids obtained were assayed for their hepatoprotective effects against the anti-tuberculosis drug-induced hepatic damage to the HRZ-induced HepG2 cells. As results indicated, compounds 3, 4, and 6 showed significant hepatoprotective effects against the hepatic damage via the Nrf2 signal pathway, which could be developed as potential hepatoprotective agents against the anti-tuberculosis drug-induced hepatic damage.


Asunto(s)
Boswellia , Diterpenos , Estructura Molecular , Boswellia/química , Espectrometría de Masas en Tándem , Diterpenos/farmacología , Diterpenos/química , Resinas de Plantas/química , Antituberculosos/farmacología
4.
Zhongguo Zhong Yao Za Zhi ; 48(9): 2464-2470, 2023 May.
Artículo en Chino | MEDLINE | ID: mdl-37282875

RESUMEN

This paper explored the chemical constituents of Boswellia carterii by column chromatography on silica gel, Sephadex LH-20, ODS column chromatography, and semi-preparative HPLC. The structures of the compounds were identified by physicochemical properties and spectroscopic data such as infrared radiation(IR), ultra violet(UV), mass spectrometry(MS), and nuclear magnetic resonance(NMR). Seven diterpenoids were isolated and purified from n-hexane of B. carterii. The isolates were identified as(1S,3E,7E,11R,12R)-11-hydroxy-1-isopropyl-4,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadeca-3,7-dien-5-one(1),(1R,3S,4R,7E,11E)-4,8,12,15,15-pentamethyl-14-oxabicyclo[11.2.1]hexadeca-7,11-dien-4-ol(2), incensole(3),(-)-(R)-nephthenol(4), euphraticanoid F(5), dilospirane B(6), and dictyotin C(7). Among them, compounds 1 and 2 were new and their absolute configurations were determined by comparison of the calculated and experimental electronic circular dichroisms(ECDs). Compounds 6 and 7 were obtained from B. carterii for the first time.


Asunto(s)
Boswellia , Diterpenos , Estructura Molecular , Boswellia/química , Diterpenos/química , Espectrometría de Masas
5.
Phytochemistry ; 213: 113751, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37307887

RESUMEN

Boswellia dalzielii is a resin-producing tree endemic to West and Central Africa, used by local populations for various medicinal purposes. In this study, B. dalzielii gum resin was analyzed by GC-MS and UHPLC-MS to identify and quantify volatile and non-volatile compounds. Its main volatile constituents were α-pinene (54.9%), followed by α-thujene (4.4%) and α-phellandren-8-ol (4.0%). Pentacyclic triterpenoids such as ß-boswellic acids and their derivatives were quantified by UHPLC-MS and their content was shown to reach around 22% of the gum resin. Since some of the volatile and non-volatile compounds identified in this work are known to possess biological effects, the bioactivities of B. dalzielii ethanolic extract, essential oil, as well as fractions of the oil and extract were evaluated. Some of these samples exhibited interesting anti-inflammatory properties, and their antioxidant, anti-ageing and skin-bleaching activities were also tested.


Asunto(s)
Boswellia , Fitoquímicos , Resinas de Plantas , Envejecimiento/efectos de los fármacos , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Boswellia/química , Aceites Volátiles/farmacología , Aceites Volátiles/química , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Resinas de Plantas/química , Preparaciones para Aclaramiento de la Piel/química , Preparaciones para Aclaramiento de la Piel/farmacología , Triterpenos/química , Triterpenos/farmacología
6.
Anal Sci ; 39(10): 1741-1756, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37386278

RESUMEN

Boswellia serrata (B. serrata) is an important medicinal plant widely used as dietary supplements to provide a support for osteoarthritic and inflammatory diseases. The occurrence of triterpenes in leaves of B. serrata is very little or none. Therefore, the qualitative and quantitative determination of phytoconstituents (triterpenes and phenolics) present in the leaves of B. serrata is very much needed. The aim of this study was to develop an easy, rapid, efficient and simultaneous liquid chromatography-mass spectrometry (LC-MS/MS) method for the identification and quantification of the compounds present in the leaves extract of B. serrata. The purification of ethyl acetate extracts of B. serrata was performed by solid phase extraction method, followed by HPLC-ESI-MS/MS analysis. Chromatographic parameters of the analytical method included negative electrospray ionization (ESI-) with a flow of 0.5 mL/min in gradient mode consisting of acetonitrile (A) and water (B) containing 0.1% formic acid, at 20 °C. Total 19 compounds (13 triterpenes and 6 phenolic compounds) were separated, and simultaneously quantified using a validated LC-MS/MS method with high accuracy and sensitivity. Good linearity was obtained with r2 > 0.973 in the calibration range. The overall recoveries were in a range between 95.78 and 100.2% with relative standard deviations (RSD) below 5% for the entire procedure of matrix spiking experiments. Overall, there was no ion suppression from the matrix. The quantification data showed that the total amount of triterpenes and phenolic compounds in the leaves of B. serrata ethyl acetate extract samples ranged from 14.54 to 102.14 mg/g and 2.14 to 93.12 mg/g of dry extract, respectively. This work provides, for the first time, a chromatographic fingerprinting analysis on the leaves of B. serrata. A rapid, efficient, and simultaneous liquid chromatography-mass spectrometry (LC-MS/MS) method was developed and used for the both identification and quantification of triterpenes and phenolic compounds in the leaves extracts of B. serrata. The method established in this work can be used as quality-control method for other market formulations or dietary supplements containing leaf extract of B. serrata.


Asunto(s)
Boswellia , Triterpenos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Boswellia/química , Triterpenos Pentacíclicos/análisis , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión/métodos , Triterpenos/análisis
7.
Chemistry ; 29(33): e202300559, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-36949022

RESUMEN

Thirty new, highly oxygenated and stereogenic 14-membered macrocyclic diterpenoids, papyrifuranols A-Z (1-26) and AA-AD (27-30), and eight known analogs have been isolated from Boswellia papyrifera resins. All the structures were characterized by detailed spectral analyses, quantum calculations, X-ray diffraction, and modified Mosher's methods. Notably, six previously reported structures were revised. Our study points out misleading factors of macrocyclic cembranoid (CB) representation in the past seven decades by analyzing of 25 X-ray structures, lending a hand for the innately challenging structure identification of such flexible macrocyclic CBs and avoiding following the tracks of an overturned cart during future structure characterization and total synthesis. Biosynthetic conversions of all the isolates are proposed, and wound healing bioassays reveal that papyrifuranols N-P could significantly stimulate the proliferation and differentiation of umbilical cord mesenchymal stem cells.


Asunto(s)
Boswellia , Diterpenos , Boswellia/química , Rayos X , Resinas de Plantas/química , Diterpenos/química , Difracción de Rayos X
8.
J Chromatogr Sci ; 61(10): 953-962, 2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36892162

RESUMEN

This study was planned to develop a simple high-performance thin-layer chromatography method for qualitative and quantitative estimation of 3-acetyl-11-keto-ß-boswellic acid (AKBBA), ß-boswellic acid (BBA), 3-oxo-tirucallic acid (TCA) and serratol (SRT) with HPTLC-ESI-MS/MS for characterization in Boswellia serrata Roxb. oleo gum resin extract. The method was developed with hexane-ethyl acetate-toluene-chloroform-formic acid as mobile phase. RF values observed for AKBBA, BBA, TCA and SRT were 0.42, 0.39, 0.53 and 0.72, respectively. The method was validated according to International Council for Harmonisation guidelines. The concentration range for linearity was 100-500 ng/band for AKBBA and 200-700 ng/band for the other three markers with r2 > 0.99. The method resulted in good recoveries as 101.56, 100.68, 98.64 and 103.26%. The limit of detection was noticed as 25 , 37, 54 and 38 ng/band, with a limit of quantification as 76, 114, 116 and 115 ng/band, for AKBBA, BBA, TCA and SRT, respectively. The four markers were identified and confirmed in B. serrata extract using TLC-MS by indirect profiling by LC-ESI-MS/MS and were identified as terpenoids, TCA and cembranoids: AKBBA (mass/charge (m/z) = 513.00), BBA (m/z = 455.40), 3-oxo-tirucallic acid (m/z = 455.70) and SRT (m/z = 291.25), respectively.


Asunto(s)
Boswellia , Triterpenos , Espectrometría de Masas en Tándem , Boswellia/química , Extractos Vegetales/química , Triterpenos/química
9.
Fitoterapia ; 166: 105460, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36801349

RESUMEN

Two new verticillane-diterpenoids (1 and 2) were isolated from the gum resin Boswellia sacra. Their structures were elucidated by physiochemical and spectroscopic analysis, as well as ECD calculation. In addition, the in vitro anti-inflammatory activities of the isolated compounds were evaluated by determining the inhibitory effects on lipopolysaccharide (LPS)-induced NO production in RAW 264.7 mouse monocyte-macrophages. The results showed that compound 1 exhibited significant inhibitory effect on NO generation with an IC50 value of 23.3 ± 1.7 µM suggesting that it might be a candidate for an anti-inflammatory agent. Furthermore, 1 potently inhibited the release of inflammatory cytokines IL-6 and TNF-α induced by LPS in a dose-dependent manner. Using Western blot and Immunofluorescence methods, compound 1 was found to inhibit inflammation mainly by restraining the activation of NF-κB pathway. And in the MAPK signaling pathway, it was found to have inhibitory effects on the phosphorylation of JNK and ERK proteins and have no effect on the phosphorylation of p38 protein.


Asunto(s)
Boswellia , Diterpenos , Animales , Ratones , FN-kappa B/metabolismo , Boswellia/química , Lipopolisacáridos/farmacología , Estructura Molecular , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológico , Células RAW 264.7
10.
Nat Prod Res ; 37(14): 2451-2456, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35200079

RESUMEN

Oleo-gum-resin is a complex mixture of essential oils, polysaccharides, and resin acids. The objectives of the present study were to evaluate the variation in chemical components and antimicrobial activity of essential oils extracted by superheated steam at various temperatures. The optimum essential oil yield was obtained at the highest superheated steam temperature (210 °C). In total, twenty-one compounds were quantified by GC-MS with α-pinene as the major compound, followed by α-thujene, trans-verbenol, ß-thujone, p-cymene, m-cymene, and sabinene. Antimicrobial activity was performed by disc diffusion, resazurin microtitre-plate and micro-dilution broth susceptibility assays in which essential oil extracted at 150 °C and 180 °C revealed the highest antibacterial and antifungal activity, respectively. It is concluded that superheated steam is an effective method for the isolation of essential oil from oleo-gum-resin that improves the recovery of essential oil as well as antimicrobial activity.


Asunto(s)
Boswellia , Aceites Volátiles , Boswellia/química , Vapor , Aceites Volátiles/química , Antibacterianos , Antifúngicos/farmacología , Resinas de Plantas/química
11.
J Am Nutr Assoc ; 42(2): 159-168, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35512759

RESUMEN

BACKGROUND AND OBJECTIVE: Aflapin®, also known as AprèsFlex® was developed as an enhanced bioavailable extract of Boswellia serrata gum resin, standardized to 20% 3-O-acetyl-11-keto-ß-boswellic acid. This randomized, double-blind, placebo-controlled clinical trial confirms the efficacy of Aflapin in ameliorating the symptoms of osteoarthritis (OA) of the knee. METHODS: Based on the inclusion/exclusion criteria of the American College of Rheumatology, seventy subjects were recruited and randomized into Placebo (n = 35) and Aflapin (n = 35) groups. Subjects received either 100 mg Aflapin or a placebo for 30 days. All subjects were evaluated for pain and physical function using the standard tools i.e., Visual Analog Scale (VAS), Lequesne Functional Index (LFI), and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) at the baseline (Day 0), 5, and 30 days of treatment. Additionally, several inflammatory and cartilage biomarkers, including matrix metalloproteinase-3 (MMP-3), tumor necrosis factor-α (TNFα), high-sensitive C-reactive protein (hsCRP), Cartilage Oligomeric Matrix Protein (COMP), and collagen type II cleavage (C2C) were evaluated. Total blood chemistry analyses were conducted to affirm the safety of Aflapin. RESULTS: Sixty-seven subjects completed the study. Aflapin conferred significant improvements in pain scores as early as five days of treatment. Post-trial, VAS, LFI, WOMAC pain, WOMAC stiffness, WOMAC function, and total WOMAC scores decreased in the Aflapin group by 45%, 40.9%, 44.4%, 66.3%, 44.4%, and 48%, respectively. Aflapin supplementation also reduced circulating MMP-3, TNFα, hsCRP, and C2C. CONCLUSION: This investigation affirms that Aflapin is clinically efficacious, fast-acting, and safe in the management of osteoarthritis. No significant adverse effects were observed.


Asunto(s)
Boswellia , Osteoartritis de la Rodilla , Extractos Vegetales , Humanos , Boswellia/química , Proteína C-Reactiva/uso terapéutico , Metaloproteinasa 3 de la Matriz/metabolismo , Osteoartritis de la Rodilla/tratamiento farmacológico , Dolor/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/uso terapéutico , Extractos Vegetales/uso terapéutico
12.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-981322

RESUMEN

This paper explored the chemical constituents of Boswellia carterii by column chromatography on silica gel, Sephadex LH-20, ODS column chromatography, and semi-preparative HPLC. The structures of the compounds were identified by physicochemical properties and spectroscopic data such as infrared radiation(IR), ultra violet(UV), mass spectrometry(MS), and nuclear magnetic resonance(NMR). Seven diterpenoids were isolated and purified from n-hexane of B. carterii. The isolates were identified as(1S,3E,7E,11R,12R)-11-hydroxy-1-isopropyl-4,8,12-trimethyl-15-oxabicyclo[10.2.1]pentadeca-3,7-dien-5-one(1),(1R,3S,4R,7E,11E)-4,8,12,15,15-pentamethyl-14-oxabicyclo[11.2.1]hexadeca-7,11-dien-4-ol(2), incensole(3),(-)-(R)-nephthenol(4), euphraticanoid F(5), dilospirane B(6), and dictyotin C(7). Among them, compounds 1 and 2 were new and their absolute configurations were determined by comparison of the calculated and experimental electronic circular dichroisms(ECDs). Compounds 6 and 7 were obtained from B. carterii for the first time.


Asunto(s)
Estructura Molecular , Boswellia/química , Diterpenos/química , Espectrometría de Masas
13.
Bioorg Chem ; 129: 106155, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36209562

RESUMEN

Eight new tirucallane triterpenoids (1-2, 5-10) along with two known compounds (3-4) were isolated from the gum resin of Boswellia sacra. Their structures were elucidated by extensive physicochemical and spectroscopic analysis, as well as computational calculations, and single crystal X-ray diffraction. Spirosacraoic acid A (1) and B (2), possess an unusual 6/5/6/5 rearranged spirocyclic carbon skeleton. All the isolates were evaluated for their anti-proliferative activity against two tumor cell lines (HepG2 and HCT-116 cells). Compound 10 displayed remarkable inhibitory activity against HepG2 cells in a dose-dependent manner with the IC50 value of 28.01 µM. High content analysis (HCA) showed that 10 induces apoptosis in HepG2 cells. The western blotting results revealed that 10 could up-regulate the ratio of the expression of Bax/BCL-2, and promote the caspase 3 activation and PARP cleavage. Mechanically, molecular modeling studies demonstrated that 10 could dock into EGFR active site. Meanwhile 10 significantly decreased the protein expression of p-EGFR. Furthermore, inhibition of EGFR by addition of EGFR siRNA enhanced the growth inhibitory effects of 10 on HepG2 cells, indicating that the anti-tumor effect of 10 on HepG2 cells was mediated by inhibition of EGFR.


Asunto(s)
Boswellia , Triterpenos , Humanos , Boswellia/química , Triterpenos/química , Células Hep G2 , Receptores ErbB , Estructura Molecular
14.
Arch Razi Inst ; 77(2): 545-552, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36284973

RESUMEN

Boswellia serrate has been traditionally used for the treatment of several inflammatory diseases, and bacterial resistance to antibiotics has recently increased the use of bioproducts. The present study aimed to assess the antibacterial effect and phagocytic ability of the aqueous extract of the Boswellia serrata in bacteria isolated in nosocomial infections. Boswellia carterii plant was collected and prepared from the aqueous extract in different concentrations. A total of 125 samples were collected from various clinical sources, including urine, sputum, wounds, otitis, and blood, from patients of both genders in different age groups. The results demonstrated that out of the 59 infected samples, urine samples had the highest infection (68%), followed by wounds, sputum, and otitis reported as (60%), (44%), and (40%), respectively. On the other hand, blood samples had the lowest percentage of infection (28%). Microscopic diagnostic results, biochemical tests, API Staph System, API 20E System, and Vitek 2 Compact pointed out that the highest infection rates were related to Staphylococcus aureus (32.20%), Pseudomonas aeruginosa (25.33%), and Escherichia coli (22.03%), while the lowest infection rate was detected in Klebsiella pneumonia (20.33%). The results indicated that aqueous extract of Boswellia carterii had an antibacterial activity for all bacterial isolates, 25 mg/ml of extract gave an inhibition zone of 10.8 mm,10.4 mm, 7mm, and 10mm for S. aureus, E. coli, P aeruginosa, and K. pneumonia, respectively, while 200 mg/ml of extract gave 24 mm, 22 mm, 18.4 mm, and 20 mm, respectively. The results pointed to a significant increase in the phagocytosis rate, with the phagocytosis of blood samples treated with Boswellia carterii extract (79.7%), as compared to control samples (57.75%). As evidenced by the results of this study, the aqueous extract of the Boswellia carterii plant showed antibacterial effects and a positive impact on the phagocytic ratio; nonetheless, it is recommended that further studies be conducted to characterize the compounds of this herb.


Asunto(s)
Boswellia , Femenino , Masculino , Antibacterianos/farmacología , Boswellia/química , Escherichia coli , Fagocitosis , Staphylococcus aureus , Humanos
15.
Biomed Res Int ; 2022: 5791308, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35978631

RESUMEN

Pharmaceutical excipients derived from natural sources like resins are nowadays meritoriously used in the formulation of drugs. Resins of natural origin have many advantages over chemically synthesized substances; they are safer, nontoxic, less expensive, biodegradable, and widely available. To our knowledge, resins from plants have been not sufficiently explored for application in pharmaceutical formulations. Thus, in the present study, a resin isolated from Boswellia rivae Engl was characterized for its potential use as a pharmaceutical excipient. Method. The resin was extracted from the oleo gum resin of Boswellia rivae Engl, which involved the removal of volatile oils, gum, and Boswellic acid contents. The dried resin powder was then characterized for its micromeritic properties, heavy metal contents, moisture content, moisture absorption power, pH, solubility, swelling property, and acute toxicity profile. Moreover, the crystal nature and the chemical functionality of the resin were evaluated by using X-ray diffraction and Fourier transform infrared spectrometry, respectively. Results. The yield of the neutral resin was 13.17%, and the powder was pale yellow and had irregular surfaces. The resin was freely soluble in organic solvents but almost insoluble in water. The moisture content of the dried extract was 2.5% while its moisture absorption capacity was 2.5%, 4%, and 5.47% at 40%, 60%, and 75% RH, respectively. Besides, the maximum swelling capacities of the resin observed were 40%, 37%, and 30% at 350C, 300C, and 250C, respectively. The bulk powder exhibited a 1.21 Hausner ratio, 36.497 angles of repose, and 17.03% Carr's index, indicating the fair flowability of the powder. Heavy metals such as zinc, chromium, and cobalt were detected at a low level while elements like copper, manganese, lead, and cadmium were absent. The X-ray diffraction study revealed that the crystallinity index of the powder was 42.7% with a crystal size of 994.5A. The Boswellia resin could be safe in mice up to 3 g/kg of their body weight. In conclusion, the physicochemical properties of the resin powder investigated reveal its potential application as pharmaceutical additives in the formulation of modified release solid dosages forms like tablets and microcapsules.


Asunto(s)
Boswellia , Animales , Boswellia/química , Excipientes/química , Ratones , Polvos , Resinas de Plantas/química , Comprimidos/química
16.
Molecules ; 27(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897864

RESUMEN

Boswellia sacra oleo gum resin (Burseraceae) commonly known as frankincense is traditionally used in many countries for its beneficial effect on male fertility. This study explores its effect on the male reproductive system after a 60-day repeated administration at two different doses to rats (in vivo) and on human Leydig cells (in vitro). The methanolic extract of B. sacra was analyzed for the presence of various constituents by preliminary phytochemical analysis and gas chromatography-mass spectrometry (GC-MS) while quantitative analysis of boswellic acids was done by high-performance liquid chromatography (HPLC). Administration of B. sacra extract to rats elevated the serum testosterone levels with an associated reduction in serum levels of FSH and LH. An increase in the activity of antioxidant enzymes, superoxide dismutase and catalase, was seen. A dose-dependent increase in the sperm count and sperm motility was also observed. The in vivo results were supported by changes in the expression of the Bcl-2 gene and caspase-3 gene in human Leydig cells in vitro. The results of this study support the traditional use of B. sacra to increase male fertility.


Asunto(s)
Boswellia , Olíbano , Animales , Apoptosis , Boswellia/química , Olíbano/farmacología , Humanos , Masculino , Metanol/farmacología , Estrés Oxidativo , Extractos Vegetales/farmacología , Ratas , Semillas , Motilidad Espermática , Testículo
17.
J Cosmet Dermatol ; 21(11): 6199-6208, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35778893

RESUMEN

BACKGROUND: Today, despite the existence of various chemical and physical treatments for wound healing, the use of traditional medicine including herbal medicine is still widely used in most developed and developing countries. OBJECTIVES: To investigate the antimicrobial and wound-healing activities of alcoholic extract of Boswellia carterii (BC) plant. METHODS: The BC extract was prepared using alcohol 70%. The chemical groups and extract compounds were determined using Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC) analysis, respectively. The antimicrobial and wound-healing activities of different concentrations of BC extract and its combination with penicillin-streptomycin were assessed by agar well diffusion and infected wound model in albino rabbits, respectively. RESULTS: FTIR revealed the presence of hydroxyl, amide, carboxyl, alkyl C-H stretches, aromatic C=C bends, and aromatic C-H bends in the BC extract. The HPLC revealed 14 different compounds including thujene (48.0%) as the most abundant ingredient. All BC concentrations showed antibacterial and wound-healing activities. The 10% concentration of BC extract had the strongest antibacterial effect. Also, the combination of penicillin-streptomycin with BC extract showed synergistic antibacterial effect. The 5% concentration of BC was the best wound-healing compound which healed the wound in 6 days and decreased the wound size 10 mm each day. CONCLUSIONS: This study demonstrated the potential abilities of BC as an antibacterial and wound-healing medicinal plant. Further studies are required to justify the in vivo use of this plant.


Asunto(s)
Antiinfecciosos , Boswellia , Humanos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Boswellia/química , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas , Antiinfecciosos/farmacología , Estreptomicina/farmacología , Penicilinas/farmacología
18.
Sci Rep ; 12(1): 12625, 2022 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-35871254

RESUMEN

Frankincense (Boswellia sacra Fluck.,) is traditionally used in the treatment of altered male fertile potential in several countries. This study evaluated the cytoprotective action of B. sacra oleo gum resin extract against cyclophosphamide (CP) induced testicular toxicity in rats (in-vivo) and lipopolysaccharide (LPS) induced cytotoxicity in human Leydig cells (in-vitro). The methanolic extract of B. sacra was standardized for the presence of different boswellic acids using high-performance liquid chromatography (HPLC) and volatile constituents in the extract were detected by gas chromatography-mass spectrometry (GC-MS). Two doses of B. sacra extract were used in the in-vivo study. The HPLC analysis showed that extract contains about 36% w/w of total boswellic acids and GC-MS analysis revealed the presence of another 71 different constituents. Administration of B. sacra extract to rats increased serum testosterone levels, antioxidant enzyme activities, and sperm count with improved sperm quality in a dose-dependent manner, when compared to CP treated animals. Boswellia sacra extract also protected the human Leydig cells against LPS-induced damage and increased the expression of the Bcl-2 gene along with a decrease in caspase-3 gene expression. The results of this study show that B. sacra extract has a protective effect on the male reproductive system.


Asunto(s)
Boswellia , Olíbano , Extractos Vegetales , Animales , Antioxidantes/farmacología , Boswellia/química , Mecanismos de Defensa , Olíbano/química , Expresión Génica , Humanos , Lipopolisacáridos , Masculino , Extractos Vegetales/farmacología , Ratas , Semillas
19.
Mol Biol Rep ; 49(8): 7425-7435, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716287

RESUMEN

BACKGROUND: Boswellia serrate is an ancient and highly valued ayurvedic herb. Its extracts have been used in medicine for centuries to treat a wide variety of chronic inflammatory diseases. However, the mechanism by which B. serrata hydro alcoholic extract inhibited pro-inflammatory cytokines in zebrafish (Danio rerio) larvae with LPS-induced inflammation remained unknown. METHODS: LC-MS analysis was used to investigate the extract's phytochemical components. To determine the toxicity of B. serrata extract, cytotoxicity and embryo toxicity tests were performed. The in-vivo zebrafish larvae model was used to evaluate the antioxidant and anti-inflammatory activity of B. serrata extract. RESULTS: According to an in silico study using molecular docking and ADMET, the compounds acetyl-11-keto-boswellic and 11-keto-beta-boswellic acid present in the extract had higher binding affinity for the inflammatory specific receptor, and it is predicted to be an orally active molecule. In both in-vitro L6 cells and in-vivo zebrafish larvae, 160 µg/mL concentration of extract caused a high rate of lethality. The extract was found to have a protective effect against LPS-induced inflammation at concentrations ranged between 10 and 80 µg/mL. In zebrafish larvae, 80 µg/mL of treatment significantly lowered the level of intracellular ROS, apoptosis, lipid peroxidation, and nitric oxide. Similarly, zebrafish larvae treated with B. serrata extract (80 µg/mL) showed an increased anti-inflammatory activity by lowering inflammatory specific gene expression (iNOS, TNF-α, COX-2, and IL-1). CONCLUSIONS: Overall, our findings suggest that B. serrata can act as a potent redox scavenger against LPS-induced inflammation in zebrafish larvae and an inhibitor of specific inflammatory genes.


Asunto(s)
Boswellia , Triterpenos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Boswellia/química , Citocinas/uso terapéutico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Larva , Lipopolisacáridos/toxicidad , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Triterpenos/química , Pez Cebra
20.
Bioorg Chem ; 126: 105900, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35671644

RESUMEN

Encouraged by the potent anti-depression activities of incensole (1) and incensole acetate (2) isolated from the resin of Boswellia papyrifera in our previous work, different derivatives of 1 and 2 were synthesized in the present study. The reaction of 1 with m-CPBA afforded the mono-epoxide derivative 3a, while the same reaction with 2 led to three different epoxide derivatives 3a, 3b, and 3c. Oxidation of 1 with PCC to get compound 3b, however along with the target 3b, the reaction gave three interesting side products (3c-3e). Oxime (3b-1) resulted from the reaction of 3b with hydroxylamine hydrochloride in pyridine, while epoxidation of 2 generate three epoxide products (4a-4c). The structures of all products were unambiguously confirmed using NMR and Mass spectrometry. Compounds 3a-e and 4a-c (0.1-3 mg/kg, i.p.) demonstrated promising anti-depression activities in classical mouse models of depression of FST and TST. The results showed that compounds 3a-e and 4a-c (0.1-3 mg/kg, i.p.) caused dose dependent reduction in immobility time compared to the vehicle control, with 3c-3e and 4b-4c demonstrating higher potency and efficacy. The findings of the open field test excluded the motor effects of these compounds, thus further confirming their anti-depression activity. Preliminary investigation into their mechanism of action using GABA antagonist, PTZ and molecular docking has predicted that compounds 3e and 4c bind at the GABA binding site of GABAA receptor to produce GABAergic effects. Furthermore, the promising anti-depression potency of compounds 1 and 2 and their derivatives make them lead compounds for drug discovery.


Asunto(s)
Boswellia , Olíbano , Animales , Boswellia/química , Diterpenos , Compuestos Epoxi , Ratones , Simulación del Acoplamiento Molecular , Receptores de GABA-A
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...