Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.998
Filtrar
1.
Braz J Biol ; 84: e279474, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747862

RESUMEN

Variability in snake venom composition is well-documented and crucial for understanding snake ecology and predicting snakebites. In this study, we characterize the venom composition and biological activities of newborn female and male Bothrops moojeni and their mother. Our results reveal significant differences between the venom of newborn females and males, demonstrating a broad and diverse range of proteins. The venoms of newborn females showed higher serine protease effects, increased hemorrhagic activity, and greater lethality compared to the venom of newborn males. However, no differences were observed in phospholipase A2 and coagulant activity. The differences in protein composition and toxic activities between maternal and neonatal venom, as well as between the venoms of newborn females and males, contribute to understanding the diverse outcomes of snakebites. These results underscore the importance of considering sex and ontogeny in understanding venom composition in snakes.


Asunto(s)
Animales Recién Nacidos , Bothrops , Venenos de Crotálidos , Animales , Bothrops/clasificación , Bothrops/fisiología , Femenino , Masculino , Factores Sexuales
2.
Toxicon ; 243: 107742, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38705486

RESUMEN

Phospholipases A2 (PLA2s) from snake venom possess antitumor and antiangiogenic properties. In this study, we evaluated the antimetastatic and antiangiogenic effects of MjTX-II, a Lys49 PLA2 isolated from Bothrops moojeni venom, on lung cancer and endothelial cells. Using in vitro and ex vivo approaches, we demonstrated that MjTX-II reduced cell proliferation and inhibited fundamental processes for lung cancer cells (A549) growth and metastasis, such as adhesion, migration, invasion, and actin cytoskeleton decrease, without significantly interfering with non-tumorigenic lung cells (BEAS-2B). Furthermore, MjTX-II caused cell cycle alterations, increased reactive oxygen species production, modulated the expression of pro- and antiangiogenic genes, and decreased vascular endothelial growth factor (VEGF) expression in HUVECs. Finally, MjTX-II inhibited ex vivo angiogenesis processes in an aortic ring model. Therefore, we conclude that MjTX-II exhibits antimetastatic and antiangiogenic effects in vitro and ex vivo and represents a molecule that hold promise as a pharmacological model for antitumor therapy.


Asunto(s)
Inhibidores de la Angiogénesis , Bothrops , Proliferación Celular , Venenos de Crotálidos , Neoplasias Pulmonares , Animales , Humanos , Inhibidores de la Angiogénesis/farmacología , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Fosfolipasas A2/farmacología , Movimiento Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células A549 , Línea Celular Tumoral , Antineoplásicos/farmacología , Neovascularización Patológica/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Serpientes Venenosas
3.
Sci Rep ; 14(1): 10230, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702318

RESUMEN

Snakebites affect millions of people worldwide. The majority of research and management about snakebites focus on venom and antivenom, with less attention given to snake ecology. The fundamental factor in snakebites is the snakes' defensive biting behavior. Herein we examine the effects of environmental variables (temperature, time of day, and human stimulus) and biological variables (sex and body size) on the biting behavior of a medically significant pit viper species in Brazil, Bothrops jararaca (Viperidae), and associate it with the epidemiology of snakebites. Through experimental simulations of encounters between humans and snakes, we obtained behavioral models applicable to epidemiological situations in the State of São Paulo, Brazil. We found a significant overlap between behavioral, morphological, environmental, and epidemiological data. Variables that increase snakebites in epidemiological data also enhance the tendency of snakes to bite defensively, resulting in snakebites. We propose that snakebite incidents are influenced by environmental and morphological factors, affecting the behavior of snakes and the proportion of incidents. Thus, investigating behavior of snakes related to snakebite incidents is a valuable tool for a better understanding of the epidemiology of these events, helping the prediction and, thus, prevention of snakebites.


Asunto(s)
Conducta Animal , Bothrops , Mordeduras de Serpientes , Mordeduras de Serpientes/epidemiología , Mordeduras de Serpientes/psicología , Animales , Humanos , Masculino , Femenino , Brasil/epidemiología , Serpientes Venenosas
4.
Anat Histol Embryol ; 53(3): e13038, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563615

RESUMEN

We used ultrasonography and radiography to assess the sexual organs and characterize the reproductive cycle of captive golden lancehead (Bothrops insularis) and Alcatrazes lancehead (B. alcatraz), two endangered island snake species in Brazil. We assessed 46- individuals of golden lancehead and 12 of Alcatrazes lancehead kept in captivity between 2014 and 2020. Follicular development was similar between species, but follicles in Alcatrazes lancehead were smaller than in the golden lanceheads. Female golden lanceheads produced 24 live young, seven stillborn and 73 undeveloped eggs. Parturition of live young occurred between midsummer (February) and early autumn and gestation averaged 8 months. Female Alcatrazes lanceheads produced four live young in midsummer, and one undeveloped egg in early autumn. Males and females of both species have seasonal and biennial reproductive cycles. Sperm storage in both sexes is essential to coordinate male and female cycles. The data obtained with golden lancehead and Alcatrazes lancehead in captivity, demonstrate a degree of conservatism, following data from other Bothrops.


Asunto(s)
Bothrops , Serpientes Venenosas , Viperidae , Humanos , Animales , Masculino , Femenino , Semen , Radiografía , Ultrasonografía/veterinaria , Especies en Peligro de Extinción
5.
J Ethnopharmacol ; 330: 118188, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38608797

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The species Jatropha gossypiifolia, popularly known as "pinhão-roxo", is distributed throughout Brazil, is commonly employed for topical or oral administration in treating wounds, inflammations, and snake bites. Given the significant impact of snakebites on public health and the limitations of antivenom, coupled with the diverse molecular composition of this plant species, investigating its healing and antidermonecrotic capacities is relevant. AIM OF THE STUDY: This study aimed to develop a topical nanoemulsion incorporating the hydroethanolic extract of J. gossypiifolia leaves, to evaluate its therapeutic potential, particularly in terms of its efficacy in wound healing and inhibition of dermonecrosis induced by B. erythromelas venom (BeV). MATERIAL AND METHODS: The extract of J. gossypiifolia (JgE) leaves was obtained by maceration and remaceration. The phytochemical analysis was conducted and J. gossypiifolia nanoemulsion (JgNe) was obtained, characterized and assessed for stability. The cytotoxicity was determined in normal cells (erythrocytes and 3T3) using hemolytic assay and cell viability assay using crystal violet staining. The antioxidant activity was evaluated by the reduction of ABTS and DPPH radicals. The evaluation of wound healing was conducted in vivo following treatment with JgNe, wherein the percentage of wound closure and inflammatory mediators. The skin irritation test was assessed in vivo by applying JgNe directly to the animal's skin. In vitro, the antivenom capacity was evaluated through enzymatic inhibition assays (phospholipase A2 and hyaluronidase) of BeV. Additionally, the in vivo antidermonecrotic activity of JgNe was evaluated by measuring the reduction of the dermonecrotic halo. RESULTS: The HPLC-DAD analysis identified flavonoids, specifically vitexin, luteolin derivatives and apigenin derivatives. In addition, 95.08 ± 5.46 mg of gallic acid/g of extract and 137.92 ± 0.99 mg quercetin/g extract, was quantified. JgNe maintained stability over a 4-week period. Moreover, JgE and JgNe demonstrated no cytotoxicity in human erythrocytes and murine fibroblasts at tested concentrations (32.25-250 µg/mL). Additionally, exhibited significant antioxidant activity by reducing ABTS and DPPH radicals. The treatment with JgNe did not induce skin irritation and accelerated wound healing, with significant wound closure observed from 5th day and reduction in nitrite levels, myeloperoxidase activity, and cytokine. Both JgE and JgNe demonstrated in vitro inhibition of the phospholipase and hyaluronidase enzymes of BeV. Moreover, JgNe exhibited antidermonecrotic activity by reducing the dermonecrotic halo caused by BeV after 24 h. CONCLUSIONS: JgNe and JgE exhibited no cytotoxicity at the tested concentrations. Additionally, our findings demonstrate that JgNe has the ability to accelerate wound closure and reduce dermonecrosis caused by BeV, indicating to be promising formulation for complementary therapy to antivenom treatment.


Asunto(s)
Bothrops , Venenos de Crotálidos , Emulsiones , Necrosis , Extractos Vegetales , Hojas de la Planta , Cicatrización de Heridas , Animales , Extractos Vegetales/farmacología , Extractos Vegetales/química , Cicatrización de Heridas/efectos de los fármacos , Hojas de la Planta/química , Venenos de Crotálidos/toxicidad , Ratones , Masculino , Necrosis/tratamiento farmacológico , Piel/efectos de los fármacos , Piel/patología , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Supervivencia Celular/efectos de los fármacos , Células 3T3 , Hemólisis/efectos de los fármacos , Ratas Wistar , Nanopartículas/química , Serpientes Venenosas
6.
Toxicon ; 243: 107716, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38614247

RESUMEN

The phagocytic activity of macrophages activated with MT-II, a Lys-49 PLA2 homolog, and MT-III, an Asp-49 PLA2, from Bothrops asper snake venom, was investigated in this study using a pharmacological approach. Stimulating thioglycollate-elicited macrophages with both venom components enhanced their ability to phagocytose non-opsonized zymosan particles. MT-II and MT-III-induced phagocytosis was drastically inhibited by pretreating cells with L-NAME, aminoguanidine or L-NIL, cNOS or iNOS inhibitors, or with ODQ (sGC inhibitor) or Rp-cGMPS (PKG inhibitor). These results indicate that the NO/sGC/GMP/PKG pathway plays an essential role in the ß-glucan-mediated phagocytosis induced in macrophages by these venom-secretory PLA2s.


Asunto(s)
Bothrops , Venenos de Crotálidos , Macrófagos , Óxido Nítrico , Fagocitosis , Transducción de Señal , Zimosan , Animales , Fagocitosis/efectos de los fármacos , Zimosan/farmacología , Transducción de Señal/efectos de los fármacos , Óxido Nítrico/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Fosfolipasas A2 Secretoras/metabolismo
7.
Toxins (Basel) ; 16(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38668612

RESUMEN

Accidents caused by Bothrops jararaca (Bj) snakes result in several local and systemic manifestations, with pain being a fundamental characteristic. The inflammatory process responsible for hyperalgesia induced by Bj venom (Bjv) has been studied; however, the specific roles played by the peripheral and central nervous systems in this phenomenon remain unclear. To clarify this, we induced hyperalgesia in rats using Bjv and collected tissues from dorsal root ganglia (DRGs) and spinal cord (SC) at 2 and 4 h post-induction. Samples were labeled for Iba-1 (macrophage and microglia), GFAP (satellite cells and astrocytes), EGR1 (neurons), and NK1 receptors. Additionally, we investigated the impact of minocycline, an inhibitor of microglia, and GR82334 antagonist on Bjv-induced hyperalgesia. Our findings reveal an increase in Iba1 in DRG at 2 h and EGR1 at 4 h. In the SC, markers for microglia, astrocytes, neurons, and NK1 receptors exhibited increased expression after 2 h, with EGR1 continuing to rise at 4 h. Minocycline and GR82334 inhibited venom-induced hyperalgesia, highlighting the crucial roles of microglia and NK1 receptors in this phenomenon. Our results suggest that the hyperalgesic effects of Bjv involve the participation of microglial and astrocytic cells, in addition to the activation of NK1 receptors.


Asunto(s)
Bothrops , Venenos de Crotálidos , Ganglios Espinales , Hiperalgesia , Receptores de Neuroquinina-1 , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Venenos de Crotálidos/toxicidad , Masculino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Receptores de Neuroquinina-1/metabolismo , Minociclina/farmacología , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Microglía/efectos de los fármacos , Microglía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Ratas , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteínas de Unión al Calcio/metabolismo , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas de Microfilamentos/metabolismo , Antagonistas del Receptor de Neuroquinina-1/farmacología , Ratas Sprague-Dawley
8.
Toxins (Basel) ; 16(4)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38668613

RESUMEN

BACKGROUND: Snakebite envenomation (SBE) causes diverse toxic effects in humans, including disability and death. Current antivenom therapies effectively prevent death but fail to block local tissue damage, leading to an increase in the severity of envenomation; thus, seeking alternative treatments is crucial. METHODS: This study analyzed the potential of two fucoidan sulfated polysaccharides extracted from brown seaweeds Fucus vesiculosus (FVF) and Undaria pinnatifida (UPF) against the fibrinogen or plasma coagulation, proteolytic, and phospholipase A2 (PLA2) activities of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom. The toxicity of FVF and UPF was assessed by the hemocompatibility test. RESULTS: FVF and UPF did not lyse human red blood cells. FVF and UPF inhibited the proteolytic activity of Bothrops jararaca, B. jararacussu, and B. neuwiedi venom by approximately 25%, 50%, and 75%, respectively, while all venoms led to a 20% inhibition of PLA2 activity. UPF and FVF delayed plasma coagulation caused by the venoms of B. jararaca and B. neuwiedi but did not affect the activity of B. jararacussu venom. FVF and UPF blocked the coagulation of fibrinogen induced by all these Bothropic venoms. CONCLUSION: FVF and UPF may be of importance as adjuvants for SBE caused by species of Bothrops, which are the most medically relevant snakebite incidents in South America, especially Brazil.


Asunto(s)
Coagulación Sanguínea , Venenos de Crotálidos , Fucus , Fosfolipasas A2 , Polisacáridos , Undaria , Animales , Antivenenos/farmacología , Coagulación Sanguínea/efectos de los fármacos , Bothrops , Bothrops jararaca , Venenos de Crotálidos/toxicidad , Venenos de Crotálidos/enzimología , Algas Comestibles/química , Fucus/química , Fosfolipasas A2/metabolismo , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Proteolisis/efectos de los fármacos , Algas Marinas/química , Undaria/química , Serpientes Venenosas
9.
Chem Biol Interact ; 394: 110986, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583853

RESUMEN

Snake venom metalloproteases (SVMPs) are hydrolytic enzymes dependent on metal binding, primarily zinc (Zn2+), at their catalytic site. They are classified into three classes (P-I to P-III). BjussuMP-II, a P-I SVMP isolated from Bothrops jararacussu snake venom, has a molecular mass of 24 kDa. It exhibits inhibitory activity on platelet aggregation and hydrolyzes fibrinogen. TNF-α upregulates the expression of adhesion molecules on endothelial cell surfaces, promoting leukocyte adhesion and migration during inflammation. Literature indicates that SVMPs may cleave the TNF-α precursor, possibly due to significant homology between metalloproteases from mammalian extracellular matrix and SVMPs. This study aimed to investigate BjussuMP-II's effects on human umbilical vein endothelial cells (HUVEC), focusing on viability, detachment, adhesion, release, and cleavage of TNF-α, IL-1ß, IL-6, IL-8, and IL-10. HUVEC were incubated with BjussuMP-II (1.5-50 µg/mL) for 3-24 h. Viability was determined using LDH release, MTT metabolization, and 7AAD for membrane integrity. Adhesion and detachment were assessed by incubating cells with BjussuMP-II and staining with Giemsa. Cytokines were quantified in HUVEC supernatants using EIA. TNF-α cleavage was evaluated using supernatants from PMA-stimulated cells or recombinant TNF-α. Results demonstrated BjussuMP-II's proteolytic activity on casein. It was not toxic to HUVEC at any concentration or duration studied but interfered with adhesion and promoted detachment. PMA induced TNF-α release by HUVEC, but this effect was not observed with BjussuMP-II, which cleaved TNF-α. Additionally, BjussuMP-II cleaved IL-1ß, IL-6, and IL-10. These findings suggest that the zinc metalloprotease BjussuMP-II could be a valuable biotechnological tool for treating inflammatory disorders involving cytokine deregulation.


Asunto(s)
Adhesión Celular , Citocinas , Células Endoteliales de la Vena Umbilical Humana , Metaloproteasas , Humanos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Citocinas/metabolismo , Metaloproteasas/metabolismo , Adhesión Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Bothrops/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Venenos de Crotálidos/metabolismo , Venenos de Crotálidos/toxicidad , Proteolisis/efectos de los fármacos
10.
Toxins (Basel) ; 16(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38535812

RESUMEN

Bothrofav, a monospecific antivenom, was introduced in June 1991 and has shown excellent effectiveness against life-threatening and thrombotic complications of Bothrops lanceolatus envenoming. Because of the reoccurrence of cerebral stroke events despite the timely administration of antivenom, new batches of Bothrofav were produced and introduced into clinical use in January 2011. This study's aim was to evaluate the effectiveness of Bothrofav generations at treating B. lanceolatus envenoming. During the first period of the study (2000-2010), 107 patients were treated with vials of antivenom produced in June 1991, while 282 envenomed patients were treated with vials of antivenom produced in January 2011 in the second study period (2011-2023). Despite timely antivenom administration, thrombotic complications reoccurred after an interval free of thrombotic events, and a timeframe analysis suggested that the clinical efficacy of Bothrofav declined after it reached its 10-year shelf-life. In of the case of an antivenom shortage due to the absence of regular batch production, no adverse effects were identified before the antivenom reached its 10-year shelf-life, which is beyond the accepted shelf-life for a liquid-formulation antivenom. While our study does not support the use of expired antivenom for potent, life-threatening B. lanceolatus envenoming, it can be a scientific message to public entities proving the necessity of new antivenom production for B. lanceolatus envenoming.


Asunto(s)
Antivenenos , Bothrops , Serpientes Venenosas , Humanos , Animales , Martinica , Resultado del Tratamiento
11.
PLoS Negl Trop Dis ; 18(3): e0012072, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38536893

RESUMEN

Acute kidney injury (AKI) is a critical systemic complication caused by Bothrops envenoming, a neglected health problem in the Brazilian Amazon. Understanding the underlying mechanisms leading to AKI is crucial for effectively mitigating the burden of this complication. This study aimed to characterize the urinary protein profile of Bothrops atrox snakebite victims who developed AKI. We analyzed three groups of samples collected on admission: healthy subjects (controls, n = 10), snakebite victims who developed AKI (AKI, n = 10), and those who did not evolve to AKI (No-AKI, n = 10). Using liquid-chromatography tandem mass spectrometry, we identified and quantified (label-free) 1190 proteins. A panel of 65 proteins was identified exclusively in the urine of snakebite victims, with 32 exclusives to the AKI condition. Proteins more abundant or exclusive in AKI's urine were associated with acute phase response, endopeptidase inhibition, complement cascade, and inflammation. Notable proteins include serotransferrin, SERPINA-1, alpha-1B-glycoprotein, and NHL repeat-containing protein 3. Furthermore, evaluating previously reported biomarkers candidates for AKI and renal injury, we found retinol-binding protein, beta-2-microglobulin, cystatin-C, and hepcidin to be significant in cases of AKI induced by Bothrops envenoming. This work sheds light on physiological disturbances caused by Bothrops envenoming, highlighting potential biological processes contributing to AKI. Such insights may aid in better understanding and managing this life-threatening complication.


Asunto(s)
Lesión Renal Aguda , Fenómenos Biológicos , Bothrops , Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/complicaciones , Bothrops atrox , Proteómica , Lesión Renal Aguda/etiología
12.
J Nat Prod ; 87(4): 820-830, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38449376

RESUMEN

Snake venoms contain various bradykinin-potentiating peptides (BPPs). First studied for their vasorelaxant properties due to angiotensin converting enzyme (ACE) inhibition, these molecules present a range of binding partners, among them the argininosuccinate synthase (AsS) enzyme. This has renewed interest in their characterization from biological sources and the evaluation of their pharmacological activities. In the present work, the low molecular weight fraction of Bothrops moojeni venom was obtained and BPPs were characterized by mass spectrometry. Eleven BPPs or related peptides were sequenced, and one of them, BPP-Bm01, was new. Interestingly, some oxidized BPPs were detected. The three most abundant peptides were BPP-Bm01, BPP-Bax12, and BPP-13a, and their putative interactions with the AsS enzyme were investigated in silico. A binding cavity for these molecules was predicted, and docking studies allowed their ranking. Three peptides were synthesized and submitted to vasorelaxation assays using rat aortic rings. While all BPPs were active, BPP-Bm01 showed the highest potency in this assay. This work adds further diversity to BPPs from snake venoms and suggests, for the first time, a putative binding pocket for these molecules in the AsS enzyme. This can guide the design of new and more potent AsS activators.


Asunto(s)
Aorta , Bothrops , Oligopéptidos , Péptidos , Serpientes Venenosas , Animales , Ratas , Brasil , Aorta/efectos de los fármacos , Péptidos/farmacología , Péptidos/química , Bradiquinina/farmacología , Masculino , Venenos de Crotálidos/farmacología , Venenos de Crotálidos/química , Ratas Wistar , Venenos de Serpiente/farmacología , Vasodilatadores/farmacología , Vasodilatadores/química , Estructura Molecular
13.
Altern Lab Anim ; 52(2): 82-93, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38438161

RESUMEN

Antivenom therapy is the only specific treatment for snakebite envenomation, and antivenom potency determination is key in the efficacy assurance quality control process. Nowadays, this process relies on the in vivo murine model - thus, the development of alternative in vitro methods is imperative. In the current study, the principle of the proposed method is the ability of Bothrops venom to induce cytotoxic effects in Vero cells, and the capacity to evaluate the inhibition of this cytotoxicity by the respective antivenom. After exposure to the venom/antivenom, the relative proportions of adherent (viable) cells were evaluated by direct staining with Coomassie Blue. The optical density (OD) of the lysed cell eluate was directly proportional to the number of adherent cells. This cytotoxicity-based alternative method could represent a potential candidate for validation as a replacement for the current in vivo test. The in vitro-determined cytotoxicity of the Brazilian Bothrops reference venom (expressed as the 50% effective concentration; EC50) was 3.61 µg/ml; the in vitro-determined 50% inhibitory concentration (IC50) of the Brazilian Bothrops reference antivenom was 0.133 µl/ml. From these two values, it was possible to calculate the potency of the reference antivenom. The results from the assays exhibited a good linear response, indicating that the method could be a potential candidate replacement method for use in antivenom quality control prior to lot release, subject to further validation.


Asunto(s)
Antivenenos , Bothrops , Chlorocebus aethiops , Ratones , Animales , Antivenenos/farmacología , Veneno de Bothrops Jararaca , Bothrops jararaca , Células Vero , Modelos Animales de Enfermedad
14.
Biochem Biophys Res Commun ; 706: 149748, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38460450

RESUMEN

Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 µg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 µg/mL, respectively, and the number of tubules by 15.9 at 5 µg/mL and 21.6 at 40 µg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 µg/mL and by 66% at 40 µg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.


Asunto(s)
Bothrops , Células Endoteliales , Serpientes Venenosas , Animales , Femenino , Humanos , Células Endoteliales/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Bothrops/metabolismo , Metaloproteasas/metabolismo , Venenos de Serpiente , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inhibidores de la Angiogénesis/farmacología
15.
Toxicon ; 241: 107682, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460605

RESUMEN

Hemorrhagic stroke is a severe complication reported in cases of Bothrops atrox snakebite envenomation. We report an unusual case of a patient who evolved with an intracranial hemorrhagic stroke and was in a coma for more than five years in a tertiary hospital located in Manaus, Amazonas. 52-year-old man, carpenter, resident in the rural area of the municipality of Tabatinga, located 1106 km from Manaus, capital of Amazonas, Brazil, victim of an accident involving Bothrops atrox evolution with cardiorespiratory arrest, acute kidney injury and hemorrhagic stroke. After 43 days of hospitalization in the ICU, he was transferred to the ward, without contact with the environment and family, sent for home treatment, however, without acceptance by family members. During a long hospital stay for a period of 6 years, totally dependent on special care, in a flexed position, using a tracheostomy and mechanical ventilation, diagnosed and treated for hospital infections throughout his hospitalization, he died due to bacterial pneumonia. Losses of autonomy can result in an individual being completely disconnected from social life - a "social death before physical death".


Asunto(s)
Bothrops , Venenos de Crotálidos , Accidente Cerebrovascular Hemorrágico , Mordeduras de Serpientes , Masculino , Animales , Humanos , Persona de Mediana Edad , Mordeduras de Serpientes/complicaciones , Mordeduras de Serpientes/terapia , Bothrops atrox , Brasil , Accidente Cerebrovascular Hemorrágico/complicaciones , Hospitales , Antivenenos
16.
Wilderness Environ Med ; 35(1): 30-35, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379478

RESUMEN

INTRODUCTION: Bothriechis schlegelii is a Crotaline viperid species of Central America and Northern South America. The characteristics of its envenomation have not been well established. We present clinical characteristics of human cases evaluated and treated in a hospital in southwestern Colombia. METHODS: We evaluated data from patients who suffered Bothriechis schlegelii envenomation and were seen at Fundación Valle del Lili Hospital, Cali, Colombia between 2011 and 2022. RESULTS: Eight patients were included, with a median age of 24 years. Snakebites occurred in rural areas. Six (75%) patients were bitten on the upper extremities in relation to the arboreal habits of this animal. The most common symptoms were pain and edema (N = 8, 100%), ecchymoses (N = 2, 25%), and paresthesia (N = 2, 25%). The most common systemic findings were hypofibrinogenemia (N = 8, 100%) and prolonged prothrombin time in five patients (N = 5, 62.5%). All were treated with polyvalent antivenom for Colombian snakes, with a good response and outcome. CONCLUSIONS: Most bite sites from B. schlegelii were on the upper limbs. All patients had both local manifestations, including edema, pain, and systemic effects with hypofibrinogenemia, but none had systemic bleeding. Every patient received antivenom and had favorable outcomes.


Asunto(s)
Afibrinogenemia , Bothrops , Crotalinae , Animales , Humanos , Adulto Joven , Adulto , Colombia/epidemiología , Antivenenos/uso terapéutico , Dolor/tratamiento farmacológico , Dolor/etiología , Edema/etiología
17.
PLoS One ; 19(2): e0295806, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319909

RESUMEN

In Brazil, the genus Bothrops is responsible for most ophidian accidents. Snake venoms have a wide variety of proteins and peptides exhibiting a broad repertoire of pharmacological and toxic effects that elicit systemic injury and characteristic local effects. The snakes' natural resistance to envenomation caused by the presence of inhibitory compounds on their plasma have been extensively studied. However, the presence of these inhibitors in different developmental stages is yet to be further discussed. The aim of this study was to evaluate the ontogeny of Bothrops jararaca plasma inhibitor composition and, to this end, plasma samples of B. jararaca were obtained from different developmental stages (neonates, youngs, and adults) and sexes (female and male). SDS-PAGE, Western blotting, affinity chromatography, and mass spectrometry were performed to analyze the protein profile and interaction between B. jararaca plasma and venom proteins. In addition, the presence of γBjPLI, a PLA2 inhibitor previously identified and characterized in B. jararaca serum, was confirmed by Western blotting. According to our results, 9-17% of plasma proteins were capable of binding to venom proteins in the three developmental stages. The presence of different endogenous inhibitors and, more specifically, different PLA2 inhibitor (PLI) classes and antihemorrhagic factors were confirmed in specimens of B. jararaca from newborn by mass spectrometry. For the first time, the αPLI and ßPLI were detected in B. jararaca plasma, although low or no ontogenetic and sexual correlation were found. The γPLI were more abundant in adult female, than in neonate and young female, but similar to neonate, young and adult male according to the results of mass spectrometry analysis. Our results suggest that there are proteins in the plasma of these animals that can help counteract the effects of self-envenomation from birth.


Asunto(s)
Bothrops , Venenos de Crotálidos , Animales , Masculino , Femenino , Bothrops jararaca , Proteómica/métodos , Inhibidores de Fosfolipasa A2 , Bothrops/metabolismo , Fosfolipasas A2/metabolismo , Venenos de Crotálidos/química
18.
Toxins (Basel) ; 16(2)2024 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-38393161

RESUMEN

Snake venoms have evolved in several families of Caenophidae, and their toxins have been assumed to be biochemical weapons with a role as a trophic adaptation. However, it remains unclear how venom contributes to the success of venomous species for adaptation to different environments. Here we compared the venoms from Bothrocophias hyoprora, Bothrops taeniatus, Bothrops bilineatus smaragdinus, Bothrops brazili, and Bothrops atrox collected in the Amazon Rainforest, aiming to understand the ecological and toxinological consequences of venom composition. Transcriptomic and proteomic analyses indicated that the venoms presented the same toxin groups characteristic from bothropoids, but with distinct isoforms with variable qualitative and quantitative abundances, contributing to distinct enzymatic and toxic effects. Despite the particularities of each venom, commercial Bothrops antivenom recognized the venom components and neutralized the lethality of all species. No clear features could be observed between venoms from arboreal and terrestrial habitats, nor in the dispersion of the species throughout the Amazon habitats, supporting the notion that venom composition may not shape the ecological or toxinological characteristics of these snake species and that other factors influence their foraging or dispersal in different ecological niches.


Asunto(s)
Bothrops , Venenos de Crotálidos , Serpientes Venenosas , Animales , Proteómica , Bosque Lluvioso , Venenos de Crotálidos/química , Antivenenos , Serpientes
19.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38241143

RESUMEN

BACKGROUND: The rapid development of sequencing technologies resulted in a wide expansion of genomics studies using venomous lineages. This facilitated research focusing on understanding the evolution of adaptive traits and the search for novel compounds that can be applied in agriculture and medicine. However, the toxin annotation of genomes is a laborious and time-consuming task, and no consensus pipeline is currently available. No computational tool currently exists to address the challenges specific to toxin annotation and to ensure the reproducibility of the process. RESULTS: Here, we present ToxCodAn-Genome, the first software designed to perform automated toxin annotation in genomes of venomous lineages. This pipeline was designed to retrieve the full-length coding sequences of toxins and to allow the detection of novel truncated paralogs and pseudogenes. We tested ToxCodAn-Genome using 12 genomes of venomous lineages and achieved high performance on recovering their current toxin annotations. This tool can be easily customized to allow improvements in the final toxin annotation set and can be expanded to virtually any venomous lineage. ToxCodAn-Genome is fast, allowing it to run on any personal computer, but it can also be executed in multicore mode, taking advantage of large high-performance servers. In addition, we provide a guide to direct future research in the venomics field to ensure a confident toxin annotation in the genome being studied. As a case study, we sequenced and annotated the toxin repertoire of Bothrops alternatus, which may facilitate future evolutionary and biomedical studies using vipers as models. CONCLUSIONS: ToxCodAn-Genome is suitable to perform toxin annotation in the genome of venomous species and may help to improve the reproducibility of further studies. ToxCodAn-Genome and the guide are freely available at https://github.com/pedronachtigall/ToxCodAn-Genome.


Asunto(s)
Bothrops , Genoma , Serpientes Venenosas , Ponzoñas , Anotación de Secuencia Molecular , Reproducibilidad de los Resultados , Programas Informáticos
20.
Sci Rep ; 14(1): 2567, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38296989

RESUMEN

Bothrops and Lachesis are two of Brazil's medically most relevant snake genera, causing tens of thousands of bites annually. Fortunately, Brazil has good accessibility to high-quality antivenoms at the genus and inter-genus level, enabling the treatment of many of these envenomings. However, the optimal use of these treatments requires that the snake species responsible for the bite is determined. Currently, physicians use a syndromic approach to diagnose snakebite, which can be difficult for medical personnel with limited training in clinical snakebite management. In this work, we have developed a novel monoclonal antibody-based multiplex lateral flow assay for differentiating Bothrops and Lachesis venoms within 15 min. The test can be read by the naked eye or (semi)-quantitatively by a smartphone supported by a 3D-printed attachment for controlling lighting conditions. The LFA can detect Bothrops and Lachesis venoms in spiked plasma and urine matrices at concentrations spanning six orders of magnitude. The LFA has detection limits of 10-50 ng/mL in spiked plasma and urine, and 50-500 ng/mL in spiked sera, for B. atrox and L. muta venoms. This test could potentially support medical personnel in correctly diagnosing snakebite envenomings at the point-of-care in Brazil, which may help improve patient outcomes and save lives.


Asunto(s)
Bothrops , Venenos de Crotálidos , Mordeduras de Serpientes , Animales , Humanos , Mordeduras de Serpientes/tratamiento farmacológico , Venenos de Serpiente/uso terapéutico , Antivenenos/uso terapéutico , Venenos de Crotálidos/uso terapéutico , Anticuerpos Monoclonales/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...