Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Virus Genes ; 60(4): 402-411, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38717669

RESUMEN

A wide diversity of mycoviruses has been reported from Botrytis species, some with the potential to suppress the pathogenic abilities of this fungus. Considering their importance, this study was devised to find potential hypovirulence-associated mycoviruses found in Botrytis cinerea strains isolated from Pakistani strawberry fields. Here we report the complete genome characterization of two fusariviruses co-infecting a single isolate of phytopathogenic fungus B. cinerea (Kst14a). The viral genomes were sequenced by deep sequencing using total RNA fractions of the Kst14a isolate. The identified viruses were tentatively named Botrytis cinerea fusarivirus 9 (BcFV9) and Botrytis cinerea fusarivirus 3a (BcFV3a). Both viruses had a single-segmented (ssRNA) genome having a size of 6424 and 8370 nucleotides encoding two discontinuous open reading frames (ORFs). ORF-1 of both mycoviruses encodes for a polyprotein having a conserved domain of RNA-dependent RNA polymerase (RdRP) and a helicase domain (Hel) which function in RNA replication, while ORF2 encodes a hypothetical protein with an unknown function, respectively. Phylogenetic analysis indicated that BcFV9 made a clade with the genus Alphafusarivirus and BcFV3a fall in the genus Betafusarivirus in the family Fusariviridae. To our knowledge, this is the first report of two fusariviruses identified in isolates of B. cinerea from Pakistan. Both mycoviruses successfully transfected to a compatible strain of B. cinerea (Mst11). A comparison of virus-free (VF) and virus-infected (VI) isogenic lines showed the presence of these viruses was causing hypovirulence in infected strains. Virus-infected strains also had a small lesion size while testing the pathogenicity via apple assay.


Asunto(s)
Botrytis , Virus Fúngicos , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas , Botrytis/virología , Botrytis/genética , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Virus Fúngicos/clasificación , Enfermedades de las Plantas/microbiología , ARN Viral/genética , Fragaria/microbiología , Fragaria/virología , Pakistán , Proteínas Virales/genética , Secuenciación de Nucleótidos de Alto Rendimiento
2.
Viruses ; 14(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35062353

RESUMEN

A hypovirulent SZ-2-3y strain isolated from diseased Paris polyphylla was identified as Botrytis cinerea. Interestingly, SZ-2-3y was coinfected with a mitovirus, two botouliviruses, and a 3074 nt fusarivirus, designated Botrytis cinerea fusarivirus 8 (BcFV8); it shares an 87.2% sequence identity with the previously identified Botrytis cinerea fusarivirus 6 (BcFV6). The full-length 2945 nt genome sequence of the mitovirus, termed Botrytis cinerea mitovirus 10 (BcMV10), shares a 54% sequence identity with Fusarium boothii mitovirus 1 (FbMV1), and clusters with fungus mitoviruses, plant mitoviruses and plant mitochondria; hence BcMV10 is a new Mitoviridae member. The full-length 2759 nt and 2812 nt genome sequences of the other two botouliviruses, named Botrytis cinerea botoulivirus 18 and 19 (BcBoV18 and 19), share a 40% amino acid sequence identity with RNA-dependent RNA polymerase protein (RdRp), and these are new members of the Botoulivirus genus of Botourmiaviridae. Horizontal transmission analysis showed that BcBoV18, BcBoV19 and BcFV8 are not related to hypovirulence, suggesting that BcMV10 may induce hypovirulence. Intriguingly, a partial BcMV10 sequence was detected in cucumber plants inoculated with SZ-2-3y mycelium or pXT1/BcMV10 agrobacterium. In conclusion, we identified a hypovirulent SZ-2-3y fungal strain from P. polyphylla, coinfected with four novel mycoviruses that could serve as potential biocontrol agents. Our findings provide evidence of cross-kingdom mycoviral sequence transmission.


Asunto(s)
Botrytis/virología , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Liliaceae/microbiología , Botrytis/aislamiento & purificación , Coinfección/microbiología , Coinfección/virología , Virus Fúngicos/genética , Fusarium/virología , Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Liliaceae/genética , Enfermedades de las Plantas/virología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , ARN Viral/genética , ARN Polimerasa Dependiente del ARN , Análisis de Secuencia de ARN , Proteínas Virales/genética
3.
Viruses ; 13(7)2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34372522

RESUMEN

Eukaryotic circular single-stranded DNA (ssDNA) viruses were known only to infect plants and vertebrates until the discovery of the isolated DNA mycovirus from the fungus Sclerotinia sclerotiorum. Similar viral sequences were reported from several other sources and classified in ten genera within the Genomoviridae family. The current study reports two circular ssDNA mycoviruses isolated from the phytopathogen Botrytis cinerea, and their assignment to a newly created genus tentatively named Gemydayirivirus. The mycoviruses, tentatively named botrytis gemydayirivirus 1 (BGDaV1) and BGDaV2, are 1701 and 1693 nt long and encode three and two open reading frames (ORFs), respectively. Of the predicted ORFs, only ORF I, which codes for a replication initiation protein (Rep), shared identity with other proteins in GenBank. BGDaV1 is infective as cell-free purified particles and confers hypovirulence on its natural host. Investigation revealed that BGDaV1 is a target for RNA silencing and genomic DNA methylation, keeping the virus at very low titre. The discovery of BGDaV1 expands our knowledge of the diversity of genomoviruses and their interaction with fungal hosts.


Asunto(s)
Botrytis/genética , Botrytis/virología , Virus ADN/genética , Virus ADN/aislamiento & purificación , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Botrytis/patogenicidad , Virus ADN/clasificación , Virus ADN/patogenicidad , Virus Fúngicos/clasificación , Virus Fúngicos/patogenicidad , Genoma Viral , Interacciones Microbiota-Huesped , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/genética , Virulencia
4.
J Virol ; 95(17): e0026421, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34132570

RESUMEN

Uncharacterized viral genomes that encode circular replication-associated proteins of single-stranded DNA viruses have been discovered by metagenomics/metatranscriptomics approaches. Some of these novel viruses are classified in the newly formed family Genomoviridae. Here, we determined the host range of a novel genomovirus, SlaGemV-1, through the transfection of Sclerotinia sclerotiorum with infectious clones. Inoculating with the rescued virions, we further transfected Botrytis cinerea and Monilinia fructicola, two economically important members of the family Sclerotiniaceae, and Fusarium oxysporum. SlaGemV-1 causes hypovirulence in S. sclerotiorum, B. cinerea, and M. fructicola. SlaGemV-1 also replicates in Spodoptera frugiperda insect cells but not in Caenorhabditis elegans or plants. By expressing viral genes separately through site-specific integration, the replication protein alone was sufficient to cause debilitation. Our study is the first to demonstrate the reconstruction of a metagenomically discovered genomovirus without known hosts with the potential of inducing hypovirulence, and the infectious clone allows for studying mechanisms of genomovirus-host interactions that are conserved across genera. IMPORTANCE Little is known about the exact host range of widespread genomoviruses. The genome of soybean leaf-associated gemygorvirus-1 (SlaGemV-1) was originally assembled from a metagenomic/metatranscriptomic study without known hosts. Here, we rescued SlaGemV-1 and found that it could infect three important plant-pathogenic fungi and fall armyworm (S. frugiperda Sf9) insect cells but not a model nematode, C. elegans, or model plant species. Most importantly, SlaGemV-1 shows promise for inducing hypovirulence of the tested fungal species in the family Sclerotiniaceae, including Sclerotinia sclerotiorum, Botrytis cinerea, and Monilinia fructicola. The viral determinant of hypovirulence was further identified as replication initiation protein. As a proof of concept, we demonstrate that viromes discovered in plant metagenomes can be a valuable genetic resource when novel viruses are rescued and characterized for their host range.


Asunto(s)
Ascomicetos/virología , Geminiviridae/aislamiento & purificación , Especificidad del Huésped , Metagenoma , Nicotiana/crecimiento & desarrollo , Enfermedades de las Plantas/prevención & control , Virulencia , Animales , Ascomicetos/genética , Ascomicetos/patogenicidad , Botrytis/genética , Botrytis/patogenicidad , Botrytis/virología , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/virología , Fusarium/genética , Fusarium/patogenicidad , Fusarium/virología , Geminiviridae/clasificación , Geminiviridae/genética , Genoma Viral , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/microbiología , Hojas de la Planta/virología , Glycine max/crecimiento & desarrollo , Glycine max/microbiología , Nicotiana/microbiología , Nicotiana/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Virión
5.
mBio ; 12(3)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33975945

RESUMEN

Botrytis cinerea is one of the most important plant-pathogenic fungus. Products based on microorganisms can be used in biocontrol strategies alternative to chemical control, and mycoviruses have been explored as putative biological agents in such approaches. Here, we have explored the mycovirome of B. cinerea isolates from grapevine of Italy and Spain to increase the knowledge about mycoviral diversity and evolution, and to search for new widely distributed mycoviruses that could be active ingredients in biological products to control this hazardous fungus. A total of 248 B. cinerea field isolates were used for our metatranscriptomic study. Ninety-two mycoviruses were identified: 62 new mycoviral species constituting putative novel viral genera and families. Of these mycoviruses, 57 had a positive-sense single-stranded RNA (ssRNA) genome, 19 contained a double-stranded RNA (dsRNA) genome, 15 had a negative-sense ssRNA genome, and 1 contained a single-stranded DNA (ssDNA) genome. In general, ssRNA mycoviruses were widely distributed in all sampled regions, the ssDNA mycovirus was more frequently found in Spain, and dsRNA mycoviruses were scattered in some pools of both countries. Some of the identified mycoviruses belong to clades that have never been found associated with Botrytis species: Botrytis-infecting narnaviruses; alpha-like, umbra-like, and tymo-like ssRNA+ mycoviruses; trisegmented ssRNA- mycovirus; bisegmented and tetrasegmented dsRNA mycoviruses; and finally, an ssDNA mycovirus. Among the results obtained in this massive mycovirus screening, the discovery of novel bisegmented viruses, phylogenetically related to narnaviruses, is remarkable.IMPORTANCE The results obtained here have expanded our knowledge of mycoviral diversity, horizontal transfers, and putative cross-kingdom events. To date, this study presents the most extensive and wide diversity collection of mycoviruses infecting the necrotrophic fungus B. cinerea The collection included all types of mycoviruses, with dsRNA, ssRNA+, ssRNA-, and ssDNA genomes, most of which were discovered here, and some of which were previously reported as infecting B. cinerea or other plant-pathogenic fungi. Some of these mycoviruses are reported for the first time here associated with B. cinerea, as a trisegmented ssRNA- mycovirus and as an ssDNA mycovirus, but even more remarkablly, we also describe here four novel bisegmented viruses (binarnaviruses) not previously described in nature. The present findings significantly contribute to general knowledge in virology and more particularly in the field of mycovirology.


Asunto(s)
Botrytis/virología , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Genoma Viral , Filogenia , Viroma , Virus Fúngicos/aislamiento & purificación , Italia , Enfermedades de las Plantas/microbiología , ARN Viral/genética , Vitis/microbiología
6.
Virology ; 553: 111-116, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33264653

RESUMEN

This study characterized a single-stranded circular DNA virus in Botrytis cinerea-namely, Botrytis cinerea genomovirus 1 (BcGV1). The genome of BcGV1 was 1710 nucleotides (nts) long, possessing two ORFs, encoding a putative replication initiation protein (Rep) and a hypothetical protein. The Rep contained seven conserved motifs. The two ORFs were separated by two intergenic regions; the large intergenic region (LIR) contained 259 nts while the small intergenic region (SIR) contained 95 nts. A nonanucleotide, TAACAGTAC, in the LIR was predicted to be associated with the initiation of viral replication. Based on the phylogenetic tree constructed by Reps, BcGV1 belongs to the family Genomoviridae, forming an independent branch, indicating that BcGV1 may belong to a new genus. BcGV1 could be detected in 6.7% of tested B. cinerea strains, suggesting that BcGV1 may be widely distributed in the Chinese B. cinerea population.


Asunto(s)
Botrytis/virología , Virus ADN/clasificación , Virus ADN/aislamiento & purificación , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , China , Virus ADN/genética , Virus ADN/fisiología , Virus Fúngicos/genética , Virus Fúngicos/fisiología , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
7.
Arch Virol ; 164(5): 1479-1483, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30848387

RESUMEN

Eight different double-stranded RNA (dsRNA) molecules were found in the wild-type fungal strain Botrytis cinerea CCg427. The electrophoretic profile displayed molecules with approximate sizes of 1, 1.3, 1.6, 1.8, 3.3, 4.1, 6.5, and 12 kbp. Sequences analysis of the molecules in the 6.5-kbp band revealed the presence of two different dsRNA molecules (dsRNA-1 and dsRNA-2) of 6192 and 5567 bp. Each molecule contained a unique ORF (5487 and 4836 nucleotides in dsRNA-1 and dsRNA-2, respectively). The ORF of dsRNA-1 encodes a 205-kDa polypeptide that shares 58% amino acid sequence identity with the RNA-dependent RNA polymerase (RdRp) encoded by dsRNA-1 of Alternaria sp. SCFS-3 botybirnavirus (ABRV1), whereas the ORF of dsRNA-2 encodes a 180-kDa polypeptide that shares 52% amino acid sequence identity with an unclassified protein encoded by dsRNA-2 of ABRV1. Genome organization and phylogenetic analysis based on the amino acid sequences of RdRps in members of different dsRNA virus families showed that the dsRNAs in the 6.5-kbp band correspond to the genome of a new botybirnavirus that we have named "Botrytis cinerea botybirnavirus 1".


Asunto(s)
Botrytis/virología , Virus Fúngicos/genética , Genoma Viral/genética , Virus ARN/genética , ARN Viral/genética , Secuencia de Aminoácidos , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Filogenia , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética
8.
Viruses ; 11(1)2019 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-30609795

RESUMEN

A pink isolate (QT5-19) of Botrytis cinerea was compared with three gray isolates of B. cinerea for growth and morphogenesis on potato dextrose agar (PDA), and for pathogenicity on tobacco. A double-stranded (ds) RNA mycovirus infecting QT5-19 was identified based on its genome feature and morphology of the virus particles. The results showed that QT5-19 grew rapidly and established flourishing colonies as the gray isolates did. However, it is different from the gray isolates, as it failed to produce conidia and sclerotia asthe gray isolates did. QT5-19 hardly infected tobacco, whereas the gray isolates aggressively infected tobacco. Two dsRNAs were detected in QT5-19, dsRNA 1 and dsRNA 2, were deduced to encode two polypepetides with homology to viral RNA-dependent RNA polymerase (RdRp) and coat protein (CP), respectively. Phylogenetic analysis of the amino acid sequences of RdRp and CP indicated that the two dsRNAs represent the genome of a novel partitivirus in the genus Alphapartitivirus, designated here as Botrytis cinerea partitivirus 2 (BcPV2). BcPV2 in QT5-19 was successfully transmitted to the three gray isolates through hyphal contact. The resulting BcPV2-infected derivatives showed rapid growth on PDA with defects in conidiogenesis and sclerogenesis, and hypovirulence on tobacco. This study suggests that BcPV2 is closely associated with hypovirulence of B. cinerea.


Asunto(s)
Botrytis/virología , Virus Fúngicos/clasificación , Genoma Viral , Botrytis/crecimiento & desarrollo , Proteínas de la Cápside/genética , Virus Fúngicos/aislamiento & purificación , Filogenia , Pigmentación , Enfermedades de las Plantas/microbiología , ARN Bicatenario , ARN Viral , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADN , Esporas Fúngicas/crecimiento & desarrollo , Nicotiana/microbiología
9.
Arch Virol ; 163(11): 3181-3183, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30074093

RESUMEN

As part of a grapevine metagenome study, total RNA extracted from grapevine phloem scrapings was analyzed by Illumina sequencing. For one 420A rootstock sample, reads mapping against a reference database and BLAST annotation of contigs identified the presence of a divergent isolate of Botrytis virus F (BVF). The full genome sequence of this isolate (IVC-5-77) was determined (6,828 nucleotides [nt], excluding the poly(A) tail) and shown to be collinear with that of the BVF reference isolate, with the two open reading frames encoding a replication-associated protein (REP) and a coat protein (CP). The IVC-5-77 isolate, however, is very divergent, showing only 81.3-81.6% nucleotide sequence identity to the two other sequenced BVF isolates. The internal non-coding region was also found to be highly variable between BVF isolates. Analysis of the RNASeq reads demonstrated that close to 20% of them belong to Botrytis cinerea, the putative host of the IVC-5-77 isolate. These results extend our knowledge of the diversity and variability of BVF and demonstrate its detectability, together with that of its B. cinerea host, in total RNA RNASeq data from grapevine phloem scrapings.


Asunto(s)
Botrytis/virología , Virus Fúngicos/genética , Genoma Viral , Vitis/virología , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Metagenoma , Sistemas de Lectura Abierta , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , ARN Viral/genética , Proteínas Virales/genética , Vitis/microbiología
10.
Viruses ; 10(8)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-30111764

RESUMEN

Here, we characterized a negative single-stranded (-ss)RNA mycovirus, Botrytis cinerea mymonavirus 1 (BcMyV1), isolated from the phytopathogenic fungus Botrytis cinerea. The genome of BcMyV1 is 7863 nt in length, possessing three open reading frames (ORF1⁻3). The ORF1 encodes a large polypeptide containing a conserved mononegaviral RNA-dependent RNA polymerase (RdRp) domain showing homology to the protein L of mymonaviruses, whereas the possible functions of the remaining two ORFs are still unknown. The internal cDNA sequence (10-7829) of BcMyV1 was 97.9% identical to the full-length cDNA sequence of Sclerotinia sclerotiorum negative stranded RNA virus 7 (SsNSRV7), a virus-like contig obtained from Sclerotinia sclerotiorum metatranscriptomes, indicating BcMyV1 should be a strain of SsNSRV7. Phylogenetic analysis based on RdRp domains showed that BcMyV1 was clustered with the viruses in the family Mymonaviridae, suggesting it is a member of Mymonaviridae. BcMyV1 may be widely distributed in regions where B. cinerea occurs in China and even over the world, although it infected only 0.8% of tested B. cinerea strains.


Asunto(s)
Botrytis/virología , Virus Fúngicos/genética , Genoma Viral , Nicotiana/microbiología , Poliproteínas/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , China , Secuencia Conservada , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Expresión Génica , Sistemas de Lectura Abierta , Filogenia , Filogeografía , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Poliproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas Virales/metabolismo
11.
Viruses ; 10(5)2018 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-29757259

RESUMEN

Botrytis cinerea is a necrotrophic fungus causing disease on many important agricultural crops. Two novel mycoviruses, namely Botrytis cinerea hypovirus 1 (BcHV1) and Botrytis cinerea fusarivirus 1 (BcFV1), were fully sequenced. The genome of BcHV1 is 10,214 nt long excluding a poly-A tail and possesses one large open reading frame (ORF) encoding a polyprotein possessing several conserved domains including RNA-dependent RNA polymerase (RdRp), showing homology to hypovirus-encoded polyproteins. Phylogenetic analysis indicated that BcHV1 may belong to the proposed genus Betahypovirus in the viral family Hypoviridae. The genome of BcFV1 is 8411 nt in length excluding the poly A tail and theoretically processes two major ORFs, namely ORF1 and ORF2. The larger ORF1 encoded polypeptide contains protein domains of an RdRp and a viral helicase, whereas the function of smaller ORF2 remains unknown. The BcFV1 was phylogenetically clustered with other fusariviruses forming an independent branch, indicating BcFV1 was a member in Fusariviridae. Both BcHV1 and BcFV1 were capable of being transmitted horizontally through hyphal anastomosis. Infection by BcHV1 alone caused attenuated virulence without affecting mycelial growth, significantly inhibited infection cushion (IC) formation, and altered expression of several IC-formation-associated genes. However, wound inoculation could fully rescue the virulence phenotype of the BcHV1 infected isolate. These results indicate the BcHV1-associated hypovirulence is caused by the viral influence on IC-formation-associated pathways.


Asunto(s)
Botrytis/virología , Virus Fúngicos/clasificación , Genoma Viral , Botrytis/patogenicidad , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Sistemas de Lectura Abierta/genética , Filogenia , Enfermedades de las Plantas/microbiología , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/aislamiento & purificación , ARN Bicatenario , ARN Viral/genética , Análisis de Secuencia de ADN , Virulencia
12.
Mol Plant Pathol ; 18(8): 1127-1137, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27578449

RESUMEN

RNA silencing is an ancient regulatory mechanism operating in all eukaryotic cells. In fungi, it was first discovered in Neurospora crassa, although its potential as a defence mechanism against mycoviruses was first reported in Cryphonectria parasitica and, later, in several fungal species. There is little evidence of the antiviral potential of RNA silencing in the phytopathogenic species of the fungal genus Botrytis. Moreover, little is known about the RNA silencing components in these fungi, although the analysis of public genome databases identified two Dicer-like genes in B. cinerea, as in most of the ascomycetes sequenced to date. In this work, we used deep sequencing to study the virus-derived small RNA (vsiRNA) populations from different mycoviruses infecting field isolates of Botrytis spp. The mycoviruses under study belong to different genera and species, and have different types of genome [double-stranded RNA (dsRNA), (+)single-stranded RNA (ssRNA) and (-)ssRNA]. In general, vsiRNAs derived from mycoviruses are mostly of 21, 20 and 22 nucleotides in length, possess sense or antisense orientation, either in a similar ratio or with a predominance of sense polarity depending on the virus species, have predominantly U at their 5' end, and are unevenly distributed along the viral genome, showing conspicuous hotspots of vsiRNA accumulation. These characteristics reveal striking similarities with vsiRNAs produced by plant viruses, suggesting similar pathways of viral targeting in plants and fungi. We have shown that the fungal RNA silencing machinery acts against the mycoviruses used in this work in a similar manner independent of their viral or fungal origin.


Asunto(s)
Botrytis/genética , Botrytis/virología , Virus Fúngicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Viral/genética , Secuencia de Bases , Genoma Viral , Conformación de Ácido Nucleico , Nucleótidos/genética , ARN Viral/química , Análisis de Secuencia de ARN
13.
Arch Virol ; 162(1): 313-316, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27722992

RESUMEN

The complete sequence of a novel endornavirus (Botrytis cinerea endornavirus 1, BcEV1) from the phytopathogenic fungus Botrytis cinerea strain HBtom-372 was determined. The BcEV1 coding strand is 11,557 nucleotides long, possessing an open reading frame (ORF) that codes for a polyprotein of 3,787 amino acid residues and lacks a site-specific nick. The polyprotein contains viral methyltransferase (MTR) domain, a cysteine-rich region (CRR), two putative viral helicase (DEXDc-like and Hel-1) domains, and an RNA-dependent RNA polymerase_2 (RdRp_2) domain. In phylogenetic analysis, BcEV1 clustered with several fungal endornaviruses, forming an independent clade, and it was detected in 4.2 % of B. cinerea strains collected from central China.


Asunto(s)
Botrytis/virología , Virus Fúngicos/genética , Virus Fúngicos/aislamiento & purificación , Genoma Viral , Virus ARN/genética , Virus ARN/aislamiento & purificación , Análisis de Secuencia de ADN , China , Análisis por Conglomerados , Virus Fúngicos/clasificación , Sistemas de Lectura Abierta , Filogenia , Poliproteínas/genética , Dominios Proteicos , Virus ARN/clasificación , ARN Viral/genética , Homología de Secuencia , Proteínas Virales/genética
14.
Virology ; 499: 212-218, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27685856

RESUMEN

The molecular characterization of a novel negative single-stranded RNA virus infecting the plant pathogenic fungus Botrytis cinerea is reported here. Comparison of the sequence of Botrytis cinerea negative-stranded RNA virus 1 (BcNSRV-1) showed a strong identity with RNA dependent RNA polymerases (RdRps) of plant pathogenic emaraviruses and tospoviruses. We have also found all the molecular signatures present in the RdRp of the genus Emaravirus and in other genera of family Bunyaviridae: the conserved TPD triplet and RY dinucleotide, the three basic residues in premotif A and the conserved motifs A, B, C, D, and E. Our results showed that BcNSRV-1 is phylogenetically close to members of the genus Emaravirus and of the family Bunyaviridae, and an ancestral state reconstruction using the conserved RdRp motifs of type members of each family of (-)ssRNA viruses indicated that BcNSRV-1 could possibly derive from an invertebrate and vertebrate-infecting virus.


Asunto(s)
Botrytis/virología , Evolución Molecular , Virus Fúngicos/genética , Virus de Plantas/genética , Virus ARN/genética , Secuencia de Aminoácidos , Virus Fúngicos/química , Virus Fúngicos/clasificación , Virus Fúngicos/aislamiento & purificación , Genoma Viral , Datos de Secuencia Molecular , Filogenia , Virus de Plantas/química , Virus de Plantas/clasificación , Virus ARN/química , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética
15.
Virology ; 489: 158-64, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26765967

RESUMEN

The molecular characterization of a novel single-stranded RNA virus, obtained by next generation sequencing using Illumina platform, in a field grapevine isolate of the plant pathogenic fungus Botrytis, is reported in this work. The sequence comparison of this virus against the NCBI database showed a strong identity with RNA dependent RNA polymerases (RdRps) of plant pathogenic viruses belonging to the genus Ourmiavirus, therefore, this novel virus was named Botrytis ourmia-like virus (BOLV). BOLV has one open reading frame of 2169 nucleotides, which encodes a protein of 722 amino acids showing conserved domains of plant RNA viruses RdRps such as the most conserved GDD active domain. Our analyses showed that BOLV is phylogenetically closer to the fungal Narnavirus and the plant Ourmiavirus than to Mitovirus of the family Narnaviridae. Hence, we proposed that BOLV might represent the link between fungal viruses of the family Narnaviridae and the plant ourmiaviruses.


Asunto(s)
Botrytis/virología , Virus Fúngicos/aislamiento & purificación , Enfermedades de las Plantas/virología , Virus ARN/aislamiento & purificación , Secuencia de Aminoácidos , Virus Fúngicos/química , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Genoma Viral , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Filogenia , Virus ARN/clasificación , Virus ARN/genética , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo , Alineación de Secuencia , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Appl Environ Microbiol ; 81(7): 2299-310, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25595766

RESUMEN

Botrytis cinerea is a pathogenic fungus causing gray mold on numerous economically important crops and ornamental plants. This study was conducted to characterize the biological and molecular features of a novel RNA mycovirus, Botrytis cinerea RNA virus 1 (BcRV1), in the hypovirulent strain BerBc-1 of B. cinerea. The genome of BcRV1 is 8,952 bp long with two putative overlapped open reading frames (ORFs), ORF1 and ORF2, coding for a hypothetical polypeptide (P1) and RNA-dependent RNA polymerase (RdRp), respectively. A -1 frameshifting region (designated the KNOT element) containing a shifty heptamer, a heptanucleotide spacer, and an H-type pseudoknot was predicted in the junction region of ORF1 and ORF2. The -1 frameshifting role of the KNOT element was experimentally confirmed through determination of the production of the fusion protein red fluorescent protein (RFP)-green fluorescent protein (GFP) by the plasmid containing the construct dsRed-KNOT-eGFP in Escherichia coli. BcRV1 belongs to a taxonomically unassigned double-stranded RNA (dsRNA) mycovirus group. It is closely related to grapevine-associated totivirus 2 and Sclerotinia sclerotiorum nonsegmented virus L. BcRV1 in strain BerBc-1 was found capable of being transmitted vertically through macroconidia and horizontally to other B. cinerea strains through hyphal contact. The presence of BcRV1 was found to be positively correlated with hypovirulence in B. cinerea, with the attenuation effects of BcRV1 on mycelial growth and pathogenicity being greatly affected by the accumulation level of BcRV1.


Asunto(s)
Botrytis/virología , Virus Fúngicos/aislamiento & purificación , Virus ARN/aislamiento & purificación , Análisis por Conglomerados , Sistema de Lectura Ribosómico , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Virus Fúngicos/fisiología , Genes Reporteros , Genoma Viral , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta , Filogenia , Plantas/microbiología , Biosíntesis de Proteínas , Virus ARN/clasificación , Virus ARN/genética , Virus ARN/fisiología , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Proteínas Virales/genética
17.
J Virol ; 88(17): 10120-33, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24965462

RESUMEN

UNLABELLED: Members of the family Partitiviridae have bisegmented double-stranded RNA (dsRNA) genomes and are not generally known to cause obvious symptoms in their natural hosts. An unusual partitivirus, Sclerotinia sclerotiorum partitivirus 1 (SsPV1/WF-1), conferred hypovirulence on its natural plant-pathogenic fungal host, Sclerotinia sclerotiorum strain WF-1. Cellular organelles, including mitochondria, were severely damaged. Hypovirulence and associated traits of strain WF-1 and SsPV1/WF-1 were readily cotransmitted horizontally via hyphal contact to different vegetative compatibility groups of S. sclerotiorum and interspecifically to Sclerotinia nivalis and Sclerotinia minor. S. sclerotiorum strain 1980 transfected with purified SsPV1/WF-1 virions also exhibited hypovirulence and associated traits similar to those of strain WF-1. Moreover, introduction of purified SsPV1/WF-1 virions into strain KY-1 of Botrytis cinerea also resulted in reductions in virulence and mycelial growth and, unexpectedly, enhanced conidial production. However, virus infection suppressed hyphal growth of most germinating conidia of B. cinerea and was eventually lethal to infected hyphae, since very few new colonies could develop following germ tube formation. Taken together, our results support the conclusion that SsPV1/WF-1 causes hypovirulence in Sclerotinia spp. and B. cinerea. Cryo-EM (cryo-electron microscopy) reconstruction of the SsPV1 particle shows that it has a distinct structure with similarity to the closely related partitiviruses Fusarium poae virus 1 and Penicillium stoloniferum virus F. These findings provide new insights into partitivirus biological activities and clues about molecular interactions between partitiviruses and their hosts. IMPORTANCE: Members of the Partitiviridae are believed to occur commonly in their phytopathogenic fungal and plant hosts. However, most partitiviruses examined so far appear to be associated with latent infections. Here we report a partitivirus, SsPV1/WF-1, that was isolated from a hypovirulent strain of Sclerotinia sclerotiorum and describe its biological and molecular features. We have demonstrated that SsPV1 confers hypovirulence. Furthermore, SsPV1 can infect and cause hypovirulence in Botrytis cinerea. Our study also suggests that SsPV1 has a vigorous ability to proliferate and spread via hyphal contact. SsPV1 can overcome vegetative incompatibility barriers and can be transmitted horizontally among different vegetative compatibility groups of S. sclerotiorum, even interspecifically. Cryo-EM reconstruction of SsPV1 shows that it has a distinct structure with similarity to closely related partitiviruses. Our studies exploit a novel system, SsPV1 and its hosts, which can provide the means to explore the mechanisms by which partitiviruses interact with their hosts.


Asunto(s)
Ascomicetos/patogenicidad , Ascomicetos/virología , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , ARN Viral/genética , Arabidopsis/microbiología , Ascomicetos/citología , Ascomicetos/crecimiento & desarrollo , Botrytis/citología , Botrytis/crecimiento & desarrollo , Botrytis/patogenicidad , Botrytis/virología , Microscopía por Crioelectrón , Solanum lycopersicum/microbiología , Datos de Secuencia Molecular , Micelio/crecimiento & desarrollo , Virus ARN/genética , Virus ARN/fisiología , Análisis de Secuencia de ADN , Glycine max/microbiología , Virión/ultraestructura , Virulencia
18.
Virol J ; 10: 220, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23816333

RESUMEN

BACKGROUND: Botrytis cinerea CCg378 is a wild-type strain infected with two types of double-stranded RNA (dsRNA) mycoviruses and which presents hypovirulence-associated traits. The objectives of the present study were to characterize the mycoviruses and investigate their relationship with the low virulence degree of the fungal host. RESULTS: B. cinerea CCg378 contains five dsRNA molecules that are associated with two different types of isometric viral particles of 32 and 23 nm in diameter, formed by structural polypeptides of 70-kDa and 48-kDa, respectively. The transfection of spheroplasts of a virus-free strain, B. cinerea CKg54, with viral particles purified from the CCg378 strain revealed that the 2.2-kbp dsRNAs have no dependency on the smaller molecules for its stable maintenance in the fungal cytoplasm, because a fungal clone that only contains the 2.2-kbp dsRNAs associated with the 32-nm particles was obtained, which we named B. cinerea CKg54vi378. One of the 2.2 kbpdsRNA segments (2219 bp) was sequenced and corresponds to the gene encoding the capsid protein of B. cinerea CCg378 virus 1 (Bc378V1), a putative new member of the Partitiviridae family. Furthermore, physiological parameters related to the degree of virulence of the fungus, such as the sporulation rate and laccase activity, were lower in B. cinerea CCg378 and B. cinerea CKg54vi378 than in B. cinerea CKg54. Additionally, bioassays performed on grapevine leaves showed that the CCg378 and CKg54vi378 strains presented a lower degree of invasiveness on the plant tissue than the CKg54 strain. CONCLUSIONS: The results show that B. cinerea CCg378 is coinfected by two mycoviruses and that the 2.2-kbp dsRNAs correspond to the 32-nm mycovirus genome, which would be a new member of the Partitiviridae family as it has the typical pattern of partitiviruses. On the other hand, the results suggest that the hypovirulence of B. cinerea CCg378 could be conferred by both mycoviruses, since the fungal clone B. cinerea CKg54vi378 presents an intermediate virulence between the CKg54 and CCg378 strains. Therefore, the putative partitivirus would be partially contributing to the hypovirulence phenotype of the CCg378 strain.


Asunto(s)
Botrytis/crecimiento & desarrollo , Botrytis/virología , Virus ARN/clasificación , Virus ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Botrytis/patogenicidad , Datos de Secuencia Molecular , Peso Molecular , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Virus ARN/aislamiento & purificación , ARN Viral/aislamiento & purificación , Análisis de Secuencia de ADN , Proteínas Estructurales Virales/química , Virión/ultraestructura , Virulencia , Vitis/microbiología
19.
Adv Virus Res ; 86: 249-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23498909

RESUMEN

Botrytis cinerea (gray mold) is one of the most widespread and destructive fungal diseases of horticultural crops. Propagation and dispersal is usually by asexual conidia but the sexual stage (Botryotinia fuckeliana (de Bary) Whetzel) also occurs in nature. DsRNAs, indicative of virus infection, are common in B. cinerea, but only four viruses (Botrytis virus F (BVF), Botrytis virus X (BVX), Botrytis cinerea mitovirus 1 (BcMV1), and Botrytis porri RNA virus) have been sequenced. BVF and BVX are unusual mycoviruses being ssRNA flexous rods and have been designated the type species of the genera Mycoflexivirus and Botrexvirus (family Betaflexivirdae), respectively. The reported effects of viruses on Botrytis range from negligible to severe, with Botrytis cinerea mitovirus 1 causing hypovirulence. Little is currently known about the effects of viruses on Botrytis metabolism but recent complete sequencing of the B. cinerea genome now provides an opportunity to investigate the host-pathogen interactions at the molecular level. There is interest in the possible use of mycoviruses as biological controls for Botrytis because of the common problem of fungicide resistance. Unfortunately, hyphal anastomosis is the only known mechanism of horizontal virus transmission and the large number of vegetative incompatibility groups in Botrytis is a potential constraint on the spread of an introduced virus. Although some Botrytis viruses, such as BVF and BVX, are known to have international distribution, there is a distinct lack of epidemiological data and the means of spread are unknown.


Asunto(s)
Botrytis/virología , Virus ARN/aislamiento & purificación , Botrytis/patogenicidad , Interacciones Huésped-Parásitos , Biología Molecular/métodos , Micología/métodos , Control Biológico de Vectores/métodos , Enfermedades de las Plantas/prevención & control , Virus ARN/genética , Virus ARN/fisiología , ARN Viral/genética , Virología/métodos
20.
J Gen Virol ; 93(Pt 11): 2502-2511, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22855784

RESUMEN

Botrytis cinerea is infected by many mycoviruses with varying phenotypical effects on the fungal host, including Botrytis virus X (BVX), a mycovirus that has been found in several B. cinerea isolates worldwide with no obvious effects on growth. Here we present results from serological and immunofluorescence microscopy (IFM) studies using antiserum raised against the coat protein of BVX expressed in Escherichia coli fused to maltose-binding protein. Due to the high yield of recombinant protein it was possible to raise antibodies that recognized BVX particles. An indirect ELISA, using BVX antibodies, detected BVX in partially purified virus preparations from fungal isolates containing BVX alone and in mixed infection with Botrytis virus F. The BVX antiserum also proved suitable for IFM studies. Intensely fluorescing spots (presumed to be virus aggregates) were found to be localized in hyphal cell compartments and spores of natural and experimentally infected B. cinerea isolates using IFM. Immunofluorescently labelled sections through fungal tissue, as well as fixed mycelia grown on glass slides, showed aggregations of virions closely associated with fungal cell membranes and walls, next to septal pores, and in hyphal tips. Also, calcofluor white staining of mature cell walls of virus-transfected Botrytis clones revealed numerous cell wall areas with increased amounts of chitin/glycoproteins. Our results indicate that some BVX aggregates are closely associated with the fungal cell wall and raise the question of whether mycoviruses may be able to move through the wall and therefore not be totally dependent on intracellular routes of transmission.


Asunto(s)
Botrytis/virología , Técnica del Anticuerpo Fluorescente/métodos , Virus ARN/genética , Virus ARN/aislamiento & purificación , Anticuerpos Antivirales , Especificidad de Anticuerpos , Clonación Molecular , Ensayo de Inmunoadsorción Enzimática , Regulación Viral de la Expresión Génica/fisiología , Hifa/virología , Microscopía Fluorescente/métodos , ARN Viral/genética , Esporas Fúngicas/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA