RESUMEN
In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.
Asunto(s)
Brachypodium , Flores , Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas de Plantas , Plantas Modificadas Genéticamente , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMEN
Plant networks of oscillating genes coordinate internal processes with external cues, contributing to increased fitness. We hypothesized that the response to submergence stress may dynamically change during different times of the day. In this work, we determined the transcriptome (RNA sequencing) of the model monocotyledonous plant, Brachypodium distachyon, during a day of submergence stress, low light, and normal growth. Two ecotypes of differential tolerance, Bd21 (sensitive) and Bd21-3 (tolerant), were included. We submerged 15-day-old plants under a long-day diurnal cycle (16 h light/8 h dark) and collected samples after 8 h of submergence at ZT0 (dawn), ZT8 (midday), ZT16 (dusk), ZT20 (midnight), and ZT24 (dawn). Rhythmic processes were enriched both with up- and down-regulated genes, and clustering highlighted that the morning and daytime oscillator components (PRRs) show peak expression in the night, and a decrease in the amplitude of the clock genes (GI, LHY, RVE) was observed. Outputs included photosynthesis-related genes losing their known rhythmic expression. Up-regulated genes included oscillating suppressors of growth, hormone-related genes with new late zeniths (e.g., JAZ1, ZEP), and mitochondrial and carbohydrate signaling genes with shifted zeniths. The results highlighted genes up-regulated in the tolerant ecotype such as METALLOTHIONEIN3 and ATPase INHIBITOR FACTOR. Finally, we show by luciferase assays that Arabidopsis thaliana clock genes are also altered by submergence changing their amplitude and phase. This study can guide the research of chronocultural strategies and diurnal-associated tolerance mechanisms.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Ritmo Circadiano/genética , Brachypodium/genética , Brachypodium/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transcriptoma , Regulación de la Expresión Génica de las PlantasRESUMEN
Raffinose (Raf) protects plant cells during seed desiccation and under different abiotic stress conditions. The biosynthesis of Raf starts with the production of UDP-galactose by UDP-sugar pyrophosphorylase (USPPase) and continues with the synthesis of galactinol by galactinol synthase (GolSase). Galactinol is then used by Raf synthase to produce Raf. In this work, we report the biochemical characterization of USPPase (BdiUSPPase) and GolSase 1 (BdiGolSase1) from Brachypodium distachyon. The catalytic efficiency of BdiUSPPase was similar with galactose 1-phosphate and glucose 1-phosphate, but 5- to 17-fold lower with other sugar 1-phosphates. The catalytic efficiency of BdiGolSase1 with UDP-galactose was three orders of magnitude higher than with UDP-glucose. A structural model of BdiGolSase1 allowed us to determine the residues putatively involved in the binding of substrates. Among these, we found that Cys261 lies within the putative catalytic pocket. BdiGolSase1 was inactivated by oxidation with diamide and H2O2. The activity of the diamide-oxidized enzyme was recovered by reduction with dithiothreitol or E. coli thioredoxin, suggesting that BdiGolSase1 is redox-regulated.
Asunto(s)
Brachypodium/enzimología , Galactosiltransferasas/metabolismo , Nucleotidiltransferasas/metabolismo , Rafinosa/biosíntesis , Peróxido de Hidrógeno , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismoRESUMEN
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Asunto(s)
Brachypodium/metabolismo , Pared Celular/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Saccharum/metabolismo , Brachypodium/química , Metabolismo de los Hidratos de Carbono , Pared Celular/química , Metabolismo de los Lípidos , Oryza/química , Oxidorreductasas/análisis , Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Péptido Hidrolasas/análisis , Péptido Hidrolasas/aislamiento & purificación , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/análisis , Proteínas de Plantas/aislamiento & purificación , Proteómica , Saccharum/química , Transducción de SeñalRESUMEN
The identification of homeologous genomes and the biogeographical analyses of highly reticulate allopolyploid-rich groups face the challenge of incorrectly inferring the genomic origins and the biogeographical patterns of the polyploids from unreliable strictly bifurcating trees. Here we reconstruct a plausible evolutionary scenario of the diverging and merging genomes inherited by the diploid and allopolyploid species and cytotypes of the model grass genus Brachypodium. We have identified the ancestral Brachypodium genomes and inferred the paleogeographical ranges for potential hybridization events that originated its allopolyploid taxa. We also constructed a comprehensive phylogeny of Brachypodium from five nuclear and plastid genes using Species Tree Minimum Evolution allele grafting and Species Network analysis. The divergence ages of the lineages were estimated from a consensus maximum clade credibility tree using fossil calibrations, whereas ages of origin of the diploid and allopolyploid species were inferred from coalescence Bayesian methods. The biogeographical events of the genomes were reconstructed using a stratified Dispersal-Extinction-Colonization model with three temporal windows. Our combined Minimum Evolution-coalescence-Bayesian approach allowed us to infer the origins and the identities of the homeologous genomes of the Brachypodium allopolyploids, matching the expected ploidy levels of the hybrids. To date, the current extant progenitor genomes (species) are only known for B. hybridum. Putative ancestral homeologous genome have been inherited by B. mexicanum, ancestral and recent genomes by B. boissieri, and only recently evolved genomes by B. retusum and the core perennial clade allopolyploids (B. phoenicoides, B. pinnatum 4x, B. rupestre 4x). We dissected the complex spatio-temporal evolution of ancestral and recent genomes and have detected successive splitting, dispersal and merging events for dysploid homeologous genomes in diverse geographical scenarios that have led to the current extant taxa. Our data support Mid-Miocene splits of the Holarctic ancestral genomes that preceded the Late Miocene origins of Brachypodium ancestors of the modern diploid species. Successive divergences of the annual B. stacei and B. distachyon diploid genomes were implied to have occurred in the Mediterranean region during the Late Miocene-Pliocene. By contrast, a profusion of splits, range expansions and different genome mergings were inferred for the perennial diploid genomes in the Mediterranean and Eurasian regions, with sporadic colonizations and further mergings in other continents during the Quaternary. A reliable biogeographical scenario was obtained for the Brachypodium genomes and allopolyploids where homeologous genomes split from their respective diploid counterpart lineages in the same ancestral areas, showing similar or distinct dispersals. By contrast, the allopolyploid taxa remained in the same ancestral ranges after hybridization and genome doubling events. Our approach should have utility in deciphering the genomic composition and the historical biogeography of other allopolyploid-rich organismal groups, which are predominant in eukaryotes.
Asunto(s)
Evolución Biológica , Brachypodium/genética , Genoma de Planta , Modelos Biológicos , Filogeografía , Poliploidía , Alelos , Teorema de Bayes , Diploidia , Funciones de Verosimilitud , Filogenia , Especificidad de la Especie , Factores de TiempoRESUMEN
Feruloylation of arabinoxylan (AX) in grass cell walls is a key determinant of recalcitrance to enzyme attack, making it a target for improvement of grass crops, and of interest in grass evolution. Definitive evidence on the genes responsible is lacking so we studied a candidate gene that we identified within the BAHD acyl-CoA transferase family. We used RNA interference (RNAi) silencing of orthologs in the model grasses Setaria viridis (SvBAHD01) and Brachypodium distachyon (BdBAHD01) and determined effects on AX feruloylation. Silencing of SvBAHD01 in Setaria resulted in a c. 60% decrease in AX feruloylation in stems consistently across four generations. Silencing of BdBAHD01 in Brachypodium stems decreased feruloylation much less, possibly due to higher expression of functionally redundant genes. Setaria SvBAHD01 RNAi plants showed: no decrease in total lignin, approximately doubled arabinose acylated by p-coumarate, changes in two-dimensional NMR spectra of unfractionated cell walls consistent with biochemical estimates, no effect on total biomass production and an increase in biomass saccharification efficiency of 40-60%. We provide the first strong evidence for a key role of the BAHD01 gene in AX feruloylation and demonstrate that it is a promising target for improvement of grass crops for biofuel, biorefining and animal nutrition applications.
Asunto(s)
Biomasa , Pared Celular/metabolismo , Coenzima A Transferasas/genética , Ácidos Cumáricos/metabolismo , Genes de Plantas , Setaria (Planta)/enzimología , Setaria (Planta)/genética , Supresión Genética , Ácidos/metabolismo , Brachypodium/genética , Metabolismo de los Hidratos de Carbono , Coenzima A Transferasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Hidrólisis , Lignina/metabolismo , Espectroscopía de Resonancia Magnética , Tamaño de los Órganos , Filogenia , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Semillas/anatomía & histología , Semillas/crecimiento & desarrollo , Transcriptoma/genética , Xilanos/metabolismoRESUMEN
Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L-1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.
Asunto(s)
Brachypodium/embriología , Brachypodium/genética , Técnicas de Cultivo de Célula/métodos , Inestabilidad Genómica , Metaboloma , Regeneración , Brachypodium/metabolismo , Núcleo Celular/metabolismo , ADN de Plantas/metabolismo , PloidiasRESUMEN
In addition to playing a key role in the response to environmental changes, cell walls are also considered as a valuable feedstock for cellulosic ethanol. Here we explored the effects of the stress-response hormones, salicylic acid and methyl jasmonate, on cell wall biosynthesis and biomass digestibility in Brachypodium distachyon, a species recently considered as a suitable model for biomass conversion. We found that in response to salicylic acid or methyl jasmonate treatment, plant growth was reduced coupled with significant changes in cell wall composition. Cellulose content increased in response to methyl jasmonate whereas a reduction in lignin content was found after salicylic acid application. Moreover, hemicellulose composition was altered and increases in caffeic acid, ferulic acid and p-coumaric acid content were detected in response to both treatments. The hormonal profile and the expression pattern of genes involved in cell wall biosynthesis were also modified. Biomass digestibility was reduced in leaf tissue after salicylic acid treatment and was negatively correlated with ferulic acid and p-coumaric acid content. The results obtained here aid in our understanding of cell wall dynamics in response to stress and will enable the development of new strategies to improve cell wall digestibility in bioenergy feedstock.
Asunto(s)
Acetatos/farmacología , Brachypodium/efectos de los fármacos , Pared Celular/efectos de los fármacos , Ciclopentanos/farmacología , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Ácido Salicílico/farmacología , Biomasa , Brachypodium/crecimiento & desarrollo , Brachypodium/fisiología , Pared Celular/química , Pared Celular/metabolismo , Celulosa/metabolismo , Ácidos Cumáricos/metabolismo , Lignina/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/fisiología , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/fisiología , Polisacáridos/metabolismo , Propionatos/metabolismo , Estrés FisiológicoRESUMEN
The wild grass species Brachypodium distachyon (L.) has been proposed as a new model for temperate grasses. Among the biotechnological tools already developed for the species, an efficient induction protocol of somatic embryogenesis (SE) using immature zygotic embryos has provided the basis for genetic transformation studies. However, a systematic work to better understanding the basic cellular and molecular mechanisms that underlie the SE process of this grass species is still missing. Here, we present new insights at the morpho-histological, histochemical, and molecular aspects of B. distachyon SE pathway. Somatic embryos arose from embryogenic callus formed by cells derived from the protodermal-dividing cells of the scutellum. These protodermal cells showed typical meristematic features and high protein accumulation which were interpreted as the first observable steps towards the acquisition of a competent state. Starch content decreased along embryogenic callus differentiation supporting the idea that carbohydrate reserves are essential to morphogenetic processes. Interestingly, starch accumulation was also observed at late stages of SE process. Searches in databanks revealed three sequences available annotated as BdSERK, being two copies corresponding to SERK1 and one showing greater identity to SERK2. In silico analysis confirmed the presence of characteristic domains in a B. distachyon Somatic Embryogenesis Receptor Kinase genes candidates (BdSERKs), which suggests SERK functions are conserved in B. distachyon. In situ hybridization demonstrated the presence of transcripts of BdSERK1 in all development since globular until scutellar stages. The results reported in this study convey important information about the morphogenetic events in the embryogenic pathway which has been lacking in B. distachyon. This study also demonstrates that B. distachyon provides a useful model system for investigating the genetic regulation of SE in grass species.
Asunto(s)
Brachypodium/embriología , Reprogramación Celular/fisiología , Proteínas de Plantas/metabolismo , Brachypodium/metabolismo , Reprogramación Celular/genética , Genoma de Planta/genética , Proteínas de Plantas/genéticaRESUMEN
Hulless barley is an important crop cereal in Tibetan, China. Drought is a major abiotic stress in barley production. In this study, we cloned the drought-related HbSINA4 gene from the variety 'Himalaya 10' and analyzed its expression patterns under different drought and rehydration conditions. The cDNA of HbSINA4 was 1052 bp long, including an open reading frame of 771 bp that encoded a protein of 256 amino acids. The molecular weight of HbSINA4 protein was predicted to be 29.53 kDa and the theoretical pI was 8.32. Bioinformatic analysis showed that the HbSINA4 gene contained a protein kinase domain profile family signature motif, with high similarity to that of Oryza sativa and Brachypodium distachyon. Real-time polymerase chain reaction (PCR) assays revealed that gene expression declined rapidly with increasing drought stress; in contrast, its expression increased after rehydration treatment. Therefore, the HbSINA4 gene responds to the drought stress and plays an important role in barely drought resistance. Furthermore, our results provide information which may be useful in other temperate crop studies and in aiding resistance to drought.
Asunto(s)
Genes de Plantas/genética , Hordeum/genética , Estrés Fisiológico/genética , Regulación hacia Arriba/genética , Secuencia de Aminoácidos , Secuencia de Bases , Brachypodium/genética , China , Clonación Molecular/métodos , ADN Complementario/genética , Sequías , Regulación de la Expresión Génica de las Plantas/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genéticaRESUMEN
Brachypodium distachyon has been proposed as a new model for the temperate grass because it is related to the major cereal grain species (such as wheat, barley, oat, maize, rice, and sorghum) and many forage and turf species. In this study, a multivariate statistical analysis was performed to investigate the characteristics of codon bias and the main factors affecting synonymous codon usage in Brachypodium. We found that low- and high-GC content genes with different codon usage occur frequently in the genome. The results of neutrality, correspondence, and correlation analyses indicated that mutational pressure and selective constraint were the main factors in shaping codon usage. Coding sequence length and the hydrophobicity of each protein were also identified as influences on codon usage bias, although their effect was minor. In addition, 27 codons, defined as "optimal codons", might provide useful information for gene engineering, gene prediction, and molecular evolution studies.