Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 393
Filtrar
1.
Artículo en Chino | MEDLINE | ID: mdl-38604684

RESUMEN

OBJECTIVE: To investigate the population distribution of intermediate host snails and crabs of Paragonimus along the Jiulongjiang River, Zhangjiang River, and Dongxi River basins in Bopingling Mountain, southern Fujian Province, so as to provide baseline data for researches on parasitic disease prevention and control and enlargement of samples in the parasitic resource bank. METHODS: A total of 23 villages in 8 counties (districts) along the Jiulong River, Zhangjiang River, and Dongxi River basins in Zhangzhou City, Fujian Province were selected as survey sites during the period from November 2020 through March 2023, and snail and freshwater crabs were sampled from 1 to 3 streams and ditches neighboring residential areas in each village. Morphological identification of snails was performed according to the external morphological characteristics of collected snail shells, and the unidentified snail species sampled from the natural foci of paragonimiasis in Yunxiao County were subjected to se-quence analysis of the mitochondrial cytochrome oxidase 1 (CO1) gene. The crab species was identified by observing the morphological characteristics of the terminal segment of the first pleopod of male crabs, and Paragonimus cercariae and metacercariae were detected in collected snails. RESULTS: The shells of the unidentified snails sampled from the natural foci of paragonimiasis in Yunxiao County were approximately 50 mm in height and 18 mm in width, thick and solid, long tower cone-shaped, and had 8 to 10 whorls. CO1 gene sequence analysis identified the snail species as Sulcospira hainanensis. A total of 6 freshwater snail species belonging to 5 genera within 3 families, identified 23 survey sites, including Semisulcospira libertina, Paludomus zhangchouensis and S. hainanensis that belonged to the Family Pleurceridae, Tricula fujianensis and T. huaanensis that belonged to the subfamily Triculinae, Family Pomatiopsidae, and Melanoides tuberculata (Family Thiaridae), and 11 species of freshwater crabs belonging to 5 genera within 2 families were identified, including Sinopotamon genus of S. jianglense, S. pinheense, and S. zhangzhouense, Huananpotamon genus of H. planopodum and H. zhangzhouense, Nanhaipotamon genus of N. huaanense and N. longhaiense, and Minpotamon genus of M. nasicum and M. auritum that belonged to the Family Potamidae, and Somanniathelphusa genus of S. huaanensis and S. zhangpuensis (Family Parathelphusidae). In addition, the prevalence of P. westermani cercariae infections was 0.08% (2/2 317) in P. zhangchouensis from Danyan Village in Changtai District and 0.09% (1/1 039) in S. hainanensis from Jinkeng Village in Yunxiao County, and the prevalence of P. westermani metacercariae infections was 25.81% (8/31) in S. jianglense from Danyan Village in Changtai District, and 26.31% (5/19) in S. zhangzhouense from Jinkeng Village in Yunxiao County, respectively. CONCLUSIONS: There is a population diversity in the intermediate host snails and crabs along the Jiulongjiang River, Zhangjiang River, and Dongxi River basins in Bopingling Mountain, southern Fujian Province, and P. zhangzhouensis and S. hainanensis are, for the first time, confirmed as the first intermediate hosts of P. westermani.


Asunto(s)
Braquiuros , Gastrópodos , Paragonimiasis , Paragonimus , Humanos , Animales , Masculino , Paragonimus/genética , Braquiuros/parasitología , Paragonimiasis/epidemiología , Ríos , Agua Dulce
2.
J Invertebr Pathol ; 204: 108091, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462166

RESUMEN

Ameson portunus is an intracellular pathogen that infects marine crabs Portunus trituberculatus and Scylla paramamosain, causing significant economic losses. However, research into this important parasite has been limited due to the absence of an in vitro culture system. To address this challenge, we developed an in vitro cultivation model of A. portunus using RK13 cell line in this study. The fluorescent labeling assay indicated a high infection rate (∼60 %) on the first day post-infection and quantitative PCR (qPCR) detection demonstrated successful infection as early as six hours post-inoculation. Fluorescence in situ hybridization (FISH) and qPCR were used for the detection of A. portunus infected cells. The FISH probe we designed allowed detection of A. portunus in infected cells and qPCR assay provided accurate quantification of A. portunus in the samples. Transmission electron microscopy (TEM) images revealed that A. portunus could complete its entire life cycle and produce mature spores in RK13 cells. Additionally, we have identified novel life cycle characteristics during the development of A. portunus in RK 13 cells using TEM. These findings contribute to our understanding of new life cycle pathways of A. portunus. The establishment of an in vitro culture model for A. portunus is critical as it provides a valuable tool for understanding the molecular and immunological events that occur during infection. Furthermore, it will facilitate the development of effective treatment strategies for this intracellular pathogen.


Asunto(s)
Braquiuros , Microsporidios , Animales , Microsporidios/fisiología , Microsporidios/genética , Braquiuros/parasitología , Braquiuros/microbiología , Línea Celular , Hibridación Fluorescente in Situ
3.
Dis Aquat Organ ; 157: 61-72, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421008

RESUMEN

Sustainable management of crustacean populations requires an understanding of the range of factors affecting different crustacean species. Recently, a high prevalence of a paramyxid parasite, Paramarteilia canceri, was reported in velvet crabs Necora puber in Ireland. Similar parasites have been known to cause mass mortalities in bivalves and, as velvet crabs are an important commercial species, these parasite infections are cause for concern. The main objective of this study was to examine variation in P. canceri infections in relation to host biology and season over a 2 yr period. In addition, we tested a range of host tissues and organs to gain more information on the host-parasite interaction. The parasite was present in all tissues and organs investigated, including the gonad and eggs of a berried female. Parasite prevalence was highest in the cuticular epithelium and hepatopancreas. Both annual and seasonal variation was found in parasite prevalence and parasite load. No difference was found in parasite prevalence or parasite load with either crab size or crab sex. Granulomas as a response to infection were significantly more abundant in infected velvet crab individuals. The results of this study provide important information on the host-parasite interaction between P. canceri and the velvet crab and highlight the importance of including parasite monitoring in the management of crustacean fisheries.


Asunto(s)
Braquiuros , Humanos , Animales , Femenino , Braquiuros/parasitología , Explotaciones Pesqueras , Interacciones Huésped-Parásitos
4.
Parasitol Res ; 123(1): 49, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095702

RESUMEN

Parasitic dinoflagellates of the genus Hematodinium are known to infect various marine crustaceans worldwide, especially crabs and several species of shrimp and lobster. Some of these species are new host species and components of commercial fishery products. These parasitic species are predominantly found in the hemolymph of the host and cause pathological changes and functional damage to organs and tissues, leading to death. In recent years, these parasites have infected important commercially valuable species, particularly in European waters, US waters, Australian waters, and recently in Shandong Peninsula in China. These Hematodinium pathogens were also reported to affect wild shrimp in Chinese waters and in the English North Sea. These rapid spreads affect crustacean aquaculture industries, where they are indeed a significant threat to the sustainability of the aquaculture of important crustaceans. The fishery products industries are also under pressure from the invasion of this pathogen, as the crab meat produced has a bitter taste, which may reduce its marketability. In response to these threats, this review was aimed at providing a broader understanding of the development of parasite distribution and ecological aspects of Hematodinium. In addition, the interaction of these pathogens with their hosts, the environmental drivers of Hematodinium disease, and future research perspectives were discussed.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Australia , Dinoflagelados/fisiología , Braquiuros/parasitología , Acuicultura , Alimentos Marinos
5.
Parasitol Res ; 123(1): 13, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38060025

RESUMEN

Mesanophrys sp. is a parasitic ciliate that invades and destroys the hemocytes of the swimming crab (Portunus trituberculatus). In the present study, we employed an in vitro model to elucidate how Mesanophrys sp. destroys crab hemocytes. We also evaluated the relationship between the parasite's density, the destruction rate of the hemocytes, and the rapid proliferation pattern of parasites in host crabs. We found that the survival rate and cell integrity of crab hemocytes decreased with an increase in Mesanophrys sp. density, depicting a negative correlation between hemocyte viability and parasite density. Further analyses revealed that crab hemocytes could resist destruction by a low density (10 ind/mL) of Mesanophrys sp. for a long time (60 h). Mesanophrys sp. and its culture medium (containing the ciliate secretions) destroy the host hemocytes. The natural population growth rate of Mesanophrys sp. decreased with an increase in the parasite density, but the Mesanophrys sp. density did not affect the generation time of the parasites. In summary, Mesanophrys sp. can destroy crab hemocytes, and the degree of destruction is directly proportional to the parasite density. The resistance of crab hemocytes to Mesanophrys sp. decreased gradually with an increase in the parasite density.


Asunto(s)
Braquiuros , Cilióforos , Oligohimenóforos , Parásitos , Animales , Braquiuros/parasitología , Hemocitos , Natación , Virulencia , Interacciones Huésped-Parásitos
6.
PeerJ ; 11: e16348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025701

RESUMEN

Background: Rhizocephalan interaction with their decapod hosts is a superb example of host manipulation. These parasites are able to alter the host's physiology and behavior. Host-parasite interaction is performed, presumably, via special modified rootlets invading the ventral ganglions. Methods: In this study, we focus on the morphology and ultrastructure of these special rootlets in Polyascus polygeneus (Lützen & Takahashi, 1997), family Polyascidae, invading the neuropil of the host's nervous tissue. The ventral ganglionic mass of the infected crabs were fixed, and the observed sites of the host-parasite interplay were studied using transmission electron microscopy, immunolabeling and confocal microscopy. Results: The goblet-shaped organs present in the basal families of parasitic barnacles were presumably lost in a common ancestor of Polyascidae and crown "Akentrogonida", but the observed invasive rootlets appear to perform similar functions, including the synthesis of various substances which are transferred to the host's nervous tissue. Invasive rootlets significantly differ from trophic ones in cell layer composition and cuticle thickness. Numerous multilamellar bodies are present in the rootlets indicating the intrinsic cell rearrangement. The invasive rootlets of P. polygeneus are enlaced by the thin projections of glial cells. Thus, glial cells can be both the first hosts' respondents to the nervous tissue damage and the mediator of the rhizocephalan interaction with the nervous cells. One of the potential molecules engaged in the relationships of P. polygeneus and its host is serotonin, a neurotransmitter which is found exclusively in the invasive rootlets but not in trophic ones. Serotonin participates in different biological pathways in metazoans including the regulation of aggression in crustaceans, which is reduced in infected crabs. We conclude that rootlets associated with the host's nervous tissue are crucial for the regulation of host-parasite interplay and for evolution of the Rhizocephala.


Asunto(s)
Braquiuros , Infestaciones por Piojos , Parásitos , Thoracica , Animales , Thoracica/anatomía & histología , Serotonina , Interacciones Huésped-Parásitos , Braquiuros/parasitología , Sistema Nervioso
7.
Environ Microbiol ; 25(12): 3423-3434, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37918974

RESUMEN

Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host-parasite relationships. Yet, while studies have investigated host-parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host-parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.


Asunto(s)
Braquiuros , Microbiota , Parásitos , Enfermedades Parasitarias , Animales , Interacciones Huésped-Parásitos , Braquiuros/parasitología
8.
Zoolog Sci ; 40(5): 367-374, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37818885

RESUMEN

Rhizocephalan barnacles (Thecostraca: Cirripedia) are parasitic crustaceans that lack appendages, segmentation, and a digestive system in adults, while instead infiltrating their hosts with a nutrient-absorbing system of rootlets. Sacculinids, belonging to the Rhizocephala order, are known for their various parasitization-induced effects on their decapod hosts, such as parasitic castration, reduction in the growth of secondary sexual characteristics, feminization of male crabs, and alteration of host behavior. In this study, we conducted field surveys in Japan at Manazuru Town (Kanagawa) on the Pacific coast, and on Sado Island and Noto Peninsula on the Sea of Japan side, and found that sacculinid-parasite-ratios on the grapsid crab Pachygrapsus crassipes were particularly high on the Sea of Japan coast. Molecular phylogenetic analysis revealed that the Manazuru population forms a single clade with Sacculina yatsui, and both Sado and Noto populations form a single clade with S. confragosa. We further demonstrated that external morphologies of male P. crassipes parasitized by sacculinids were changed to female phenotypes. This host-parasite interaction will be a useful model for understanding molecular mechanisms underlying rhizocephalan-driven morphological and behavioral feminization and castration.


Asunto(s)
Braquiuros , Thoracica , Femenino , Masculino , Animales , Braquiuros/parasitología , Filogenia , Feminización , Interacciones Huésped-Parásitos
9.
J Invertebr Pathol ; 198: 107918, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37019353

RESUMEN

Hematodinium perezi is a dinoflagellate endoparasitic in marine crustaceans, primarily decapods. It occurs in juvenile blue crabs, Callinectes sapidus, at high prevalence levels and has severe pathogenic effects in this host. The life history outside the host has not been experimentally investigated and, until now, transmission using dinospores has not been successful. We investigated the natural transmission dynamics of H. perezi in the laboratory using small juvenile crabs, which are highly susceptible to infection in the field, and elevated temperatures, which are known to stimulate dinospore production. Natural water-borne transmission to naïve crabs varied between 7 and 100% and was not correlated with dinospore densities measured from their aquaria water. Infections appeared to develop quickly in naïve hosts at 25 °C, suggesting that elevated temperatures as seen in the late summer and early autumn have a strong influence on the transmission of H. perezi in natural systems.


Asunto(s)
Braquiuros , Dinoflagelados , Animales , Braquiuros/parasitología , Prevalencia , Estaciones del Año
10.
J Invertebr Pathol ; 198: 107908, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36878425

RESUMEN

Carcinus spp. are global aquatic invaders and carriers of several parasites, including a taxonomically unrecognised microsporidian recently observed from Argentina. We provide genome drafts for two parasite isolates, one from Carcinus maenas and one from Carcinus aestuarii, and use multi-gene phylogenetics and genome comparison methods to outline their similarities. Their SSU genes are 100 % similar and other genes have an average similarity of 99.31 %. We informally name the parasite Agmasoma carcini, terming the isolates Ac. var. aestuarii and Ac. var. maenas, following the wealth of genomic data available for each. This study follows on from Frizzera et al. (2021), where this parasite was first histologically identified.


Asunto(s)
Braquiuros , Microsporidios , Parásitos , Animales , Braquiuros/parasitología , Microsporidios/genética , Argentina , Genómica
11.
J Invertebr Pathol ; 197: 107886, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36646414

RESUMEN

The microsporidian diversity catalogued so far has resulted in the development of several taxonomic groups, one of which is the Enterocytozoonida - a group of generalist 'ultimate opportunists', which infect many fished and aquacultured animals, as well as a broad suite of host taxa, including humans. In this study, we provide phylogenetic, ultrastructural, developmental, and pathological evidence for the creation of a new genus and species to hold a microsporidian parasite of the Jonah crab, Cancer borealis. Cancer borealis represents a species of commercial interest and has become the target of a recently developed fishery on the USA and Canadian Atlantic coast. This species was found to harbour a microsporidian parasite that develops in the cytoplasm of alpha and beta cells of the hepatopancreas. We retrieved a 937 bp fragment of the parasite SSU region, alongside developmental and ultrastructural data that suggests this species is âˆ¼ 87 % similar to Parahepatospora carcini and develops in a similar manner in direct association with the host cell cytoplasm. The mature spores are ovoid in shape and measure 1.48 ± 0.15 µm (SD) in length and 1.00 ± 0.11 µm (SD) in width. Phylogenetically, the new parasite clades in the Enterocytozoonida on the same branch as P. carcini. We provide a new genus and species to hold the parasite: Pseudohepatospora borealis n. gen. n. sp. (Microsporidia: Enterocytozoonida) and explore the likelihood that this species may fit into the Hepatoporidae family.


Asunto(s)
Braquiuros , Microsporidios , Neoplasias , Humanos , Animales , Braquiuros/parasitología , Filogenia , Canadá , Microsporidios/genética
12.
J Invertebr Pathol ; 196: 107866, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36436573

RESUMEN

During a survey for pathogens and commensals of blue crabs in commercial soft shell shedding facilities in Louisiana, we discovered an occurrence of microsporidiosis in two of forty examined crabs. Judging from spore shape and size, tissue tropism and external signs of muscle pathology, the causative agent of infections was identified as Ameson michaelis, a muscle-infecting species that has been repeatedly detected in populations of Callinectes sapidus in Louisiana since 1965. However, retrospective ultrastructural examination revealed that in one of Ameson-infected crabs, infection was caused by a parasite with ultrastructural characters not completely compliant with the ones of A. michaelis. The major difference was the absence of microtubule-like appendages attached to the exospore, typical of A. michaelis and other Ameson spp. SSUrDNA-inferred pairwise evolutionary distances between the novel species and other Ameson spp. ranged from 0.006 to 0.051; it was 0.039 in the case of A. michaelis. Hence, we describe here a new species in the genus Ameson, and name it after Prof. Earl Weidner, our colleague and friend, an outstanding microsporidiologist and the author of pioneer papers on the ultrastructure and physiology of A. michaelis.


Asunto(s)
Braquiuros , Microsporidios , Animales , Braquiuros/parasitología , Estudios Retrospectivos , Louisiana , Músculos
13.
Parasitology ; 149(12): 1536-1545, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35924593

RESUMEN

The impact of Sacculina carcini infection on the nutritional status of the shore crab Carcinus maenas was investigated in the western Dutch Wadden Sea for a period of 20 months. About 3.3% of the population was sacculinized, i.e. externally infected with S. carcini and only 0.7% presented scars of previous infection. The results of mixed linear models showed that sacculinized and non-sacculinized crabs had similar morphometric condition, while the energy density of parasitized crabs (externa excluded) was significantly reduced by about 4.3% overall, and by up to 5.8% in crabs under 40 mm carapace width. However, when Sacculina externa was included in the energy determinations, the difference in energy density decreased to 1.2%, while total energy content of the pair infected crab-parasite including externa was 30.8% higher than non-sacculinized crabs of similar size. The total energy content of ovigerous females (eggs included) was even higher, near doubling the energy of similar-sized crabs. The same way, total energy content of Sacculina externa was about 4 times lower than total energy of egg mass. The results suggest that the rhizocephalan parasite is efficient in consuming the energy that the host may allocate for growth and maintenance, but require future studies to disentangle the impact of the degree of internal infection and the implications for the dynamics of the population.


Asunto(s)
Braquiuros , Animales , Femenino , Braquiuros/parasitología
14.
Elife ; 112022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35179494

RESUMEN

Host, pathogen, and environment are determinants of the disease triangle, the latter being a key driver of disease outcomes and persistence within a community. The dinoflagellate genus Hematodinium is detrimental to crustaceans globally - considered to suppress the innate defences of hosts, making them more susceptible to co-infections. Evidence supporting immune suppression is largely anecdotal and sourced from diffuse accounts of compromised decapods. We used a population of shore crabs (Carcinus maenas), where Hematodinium sp. is endemic, to determine the extent of collateral infections across two distinct environments (open-water, semi-closed dock). Using a multi-resource approach (PCR, histology, haematology, population genetics, eDNA), we identified 162 Hematodinium-positive crabs and size/sex-matched these to 162 Hematodinium-free crabs out of 1191 analysed. Crabs were interrogated for known additional disease-causing agents; haplosporidians, microsporidians, mikrocytids, Vibrio spp., fungi, Sacculina, trematodes, and haemolymph bacterial loads. We found no significant differences in occurrence, severity, or composition of collateral infections between Hematodinium-positive and Hematodinium-free crabs at either site, but crucially, we recorded site-restricted blends of pathogens. We found no gross signs of host cell immune reactivity towards Hematodinium in the presence or absence of other pathogens. We contend Hematodinium sp. is not the proximal driver of co-infections in shore crabs, which suggests an evolutionary drive towards latency in this environmentally plastic host.


Asunto(s)
Braquiuros/parasitología , Dinoflagelados/fisiología , Animales , Bacterias/clasificación , Bacterias/aislamiento & purificación , Braquiuros/inmunología , Braquiuros/microbiología , Femenino , Helmintos/clasificación , Helmintos/aislamiento & purificación , Interacciones Huésped-Patógeno , Masculino
15.
Zoolog Sci ; 38(5): 416-426, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34664916

RESUMEN

Although many animals that perform sexual reproduction exhibit sexual dimorphism, individuals with intersex traits between the traits of males and females appear in some species, depending on environmental factors. Ptychognathus ishii, a varunid crab, exhibits distinctive sexual dimorphism in the morphology of its abdomen, chelipeds and setal tufts on the chelipeds. In this study, however, we report for the first time that intersex individuals with intermediate characters between those of males and females were occasionally found in wild populations. Morphological features of intersex individuals are described. Their taxonomic positions are identified based on DNA sequences of part of the mitochondrial cytochrome c oxidase I (COI) gene. It was shown that the intersexuality was induced by entoniscid parasites, because all intersex individuals were parasitized by entoniscid isopods, identified as Entionella sp. The apparent correlation between parasitism and morphological anomalies suggests that the parasitic isopods affect physiological conditions, leading to the feminization of male hosts.


Asunto(s)
Braquiuros/parasitología , Trastornos del Desarrollo Sexual/parasitología , Caracteres Sexuales , Animales , Braquiuros/anatomía & histología , Braquiuros/genética , Femenino , Isópodos/clasificación , Masculino , Análisis de Secuencia de ADN
16.
Sci Rep ; 11(1): 20215, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34642343

RESUMEN

Nemertean worms belonging to the genus Carcinonemertes have been tied to the collapse of crab fisheries in the northeastern Pacific Ocean. A new species is described from egg masses of two commercial crabs, Cancer porteri and Romaleon setosum, inhabiting the central-north Chilean coast. This is the first species of Carcinonemertes described from the southeastern Pacific Ocean. Total body length of Carcinonemertes camanchaco sp. nov. ranged from 2.38 to 4.93 and from 4.29 to 8.92 mm, in males and females, respectively. Among others, traits that distinguish this new species from other previously described congeneric species include: presence of two gonad rows on each side of the intestine, a simple (not decorated) mucus sheath, and a relatively wide stylet basis. Maximum likelihood and Bayesian inference phylogenetic analyses distinguished this new species from all other species of Carcinonemertes with available cox1 sequences in GenBank. Prevalence and mean (± SD) intensity of C. camanchaco sp. nov. was 24% and 2.6 (± 2.07) worms per egg mass in C. porteri and 38.1% and 3.8 (± 2.4) worms per egg mass in R. setosum. The formal description of this new species represents the first step towards the understanding of this worm's impact on the health of crab fisheries in the southeastern Pacific Ocean.


Asunto(s)
Acantocéfalos/anatomía & histología , Acantocéfalos/clasificación , Braquiuros/parasitología , ADN de Helmintos/genética , Análisis de Secuencia de ADN/métodos , Acantocéfalos/genética , Animales , Teorema de Bayes , Tamaño Corporal , Chile , Femenino , Funciones de Verosimilitud , Masculino , Océano Pacífico , Filogenia
17.
J Invertebr Pathol ; 184: 107652, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34358554

RESUMEN

Say's mud crab, Dyspanopeus sayi (Brachyura: Panopeidae) is a native shallow subtidal and inter-tidal inhabitant of the Atlantic coastline of North America and an invasive species in the Mediterranean and Black Seas. Little is known about the microparasites of this host and the broader Panopeidae. We describe a novel microsporidian parasite infecting the musculature of D. sayi from Malagash, Nova Scotia (Canada), at a prevalence of 7%. Histopathology and molecular diagnostics were used to describe pathology and parasite phylogenetics, respectively. Based on SSU rDNA gene sequencing we propose that the microsporidian requires establishment of a new genus (Panopeispora n. gen.) and species (Panopeispora mellora n. sp.), due to significant differences to closest known taxa (e.g. Facilispora margolisi [81% similarity] and Thelohania butleri [80% similarity]), residing in Clade V of the Microsporidia. Archived, wax-embedded histological material was re-processed for transmission electron microscopy to obtain preliminary details of its intracellular development cycle and ultrastructure within the host musculature. The discovery of this pathogen is discussed with relevance to microsporidian taxonomy and the potential for achieving ultrastructural data from archived material.


Asunto(s)
Braquiuros/parasitología , Microsporidios/clasificación , Animales , Nueva Escocia
18.
J Invertebr Pathol ; 184: 107651, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34348127

RESUMEN

A parasitic dinoflagellate of the genus Hematodinium was found off the Pacific coast of Kamchatka in three species of crabs: red king crab Paralithodes camtschaticus, tanner crab Chionoecetes bairdi, and spiny king crab Paralithodes brevipes. This is the first detection of Hematodinium in spiny king crab. The results of the genetic analysis showed that the pathogen found in P. brevipes, P. camtschaticus, and C bairdi from the Avacha and Kronotsky bays off the Pacific coast of Kamchatka was the same or very close to the Hematodinium sp., which infects many species of crustaceans in the Northern Hemisphere. The prevalence of infection was 0.2% for tanner crabs and 2.7% for red king crabs. Due to a limited sample size, we were unable to calculate the prevalence for spiny king crabs and female red king crabs. Both the macroscopic and microscopic signs of the pathology were similar in all diseased crabs. The differences in the micromorphology of the Hematodinium cells we found in the three crab species, including the presence or absence of trichocysts, the shape of the plasmodia, and the structure of pore complexes, are most likely related to the life cycle and the physiology of the parasite. The results of the genetic analysis showed that the pathogen found in P. brevipes, P. camtschaticus, and C. bairdi from the Avacha and Kronotsky bays of the Pacific coast of Kamchatka was the same or very close to the Hematodinium sp., which infects many species of crustaceans in the Northern Hemisphere.


Asunto(s)
Anomuros/parasitología , Braquiuros/parasitología , Dinoflagelados/fisiología , Distribución Animal , Animales , Femenino , Masculino , Federación de Rusia
19.
J Invertebr Pathol ; 184: 107650, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34352239

RESUMEN

Biological invasions have the capacity to introduce non-native parasites. This study aimed to determine whether the invasive green crab population, Carcinus spp., on the Southwestern Atlantic coast of Argentina harbours any symbionts, and whether these may spillover or spillback between native crabs, Cyrtograpsus altimanus and C. angulatus. Macroscopy, histology, and molecular analyses of some parasites were used to describe and compare their diversity across the three species of crab. We also evaluated the susceptibility of invasive Carcinus spp. to a native digenean, Maritrema madrynense, via experimental infections (exposure and cohabitation). Our results revealed that the green crab pathobiome included similar symbiotic groups to native crabs. This included putative viral, bacterial, and protozoan parasites. Haplosporidium-like observations were recorded in all crab species, and a single green crab was found to be parasitized by an Agmasoma-like microsporidium. Metagenomic analysis of one individual revealed additional symbiotic diversity (46 bacteria, 5 eukaryotic species). The green crabs were infected by more microparasite taxa than the native crabs (5:3). Wild populations of Carcinus spp. were free of metazoan parasites and are shown not to be susceptible to M. madryense under experimental conditions. Our results suggest a reduction/escape of macroparasites (trematode Maritrema madrynense; acanthocephalan Profilicollis chasmagnathi) in invasive Carcinus spp. compared to their native competitors.


Asunto(s)
Braquiuros/fisiología , Braquiuros/parasitología , Interacciones Huésped-Parásitos , Simbiosis , Trematodos/fisiología , Animales , Argentina , Especies Introducidas
20.
Parasitol Res ; 120(5): 1627-1636, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33792812

RESUMEN

Paragonimus proliferus, a lung fluke of the genus Paragonimus, was first reported in Yunnan province, China. P. proliferus can infect Sprague-Dawley (SD) rats and cause lung damage, but there is still no direct evidence of human infection. Until now, there has been a lack of studies on P. proliferus parasitism and development in mammalian lung tissue. The aim of this study was to perform transcriptomic profiling of P. proliferus at different developmental stages. SD rats were infected with P. proliferus metacercariae obtained from crabs; worms isolated from the lungs at different time points as well as metacercariae were subjected to whole transcriptome sequencing. Overall, 34,403 transcripts with the total length of 33,223,828 bp, average length of 965 bp, and N50 of 1833 bp were assembled. Comparative analysis indicated that P. proliferus, similar to other Paragonimus spp., expressed genes related to catabolism, whereas P. proliferus-specific transcripts were related to the maintenance of cellular redox homeostasis, sensitivity to bacteria, and immune response. Transcriptional dynamics analysis revealed that genes involved in the regulation of catabolism and apoptosis had stable expression over the P. proliferus life cycle, whereas those involved in development and immune response showed time-dependent changes. High expression of genes associated with immune response corresponded to that of genes regulating the sensitivity to bacteria and immune protection. We constructed a P. proliferus developmental model, including the development of the body, suckers, blood cells, reproductive and tracheal systems, lymph, skin, cartilage, and other tissues and organs, and an immune response model, which mainly involved T cells and macrophages. Our study provides a foundation for further research into the molecular biology and infection mechanism of P. proliferus.


Asunto(s)
Pulmón/parasitología , Paragonimiasis/patología , Paragonimus/embriología , Paragonimus/crecimiento & desarrollo , Animales , Braquiuros/parasitología , China , Perfilación de la Expresión Génica , Humanos , Estadios del Ciclo de Vida , Metacercarias/crecimiento & desarrollo , Paragonimiasis/parasitología , Paragonimus/aislamiento & purificación , Ratas , Ratas Sprague-Dawley , Transcriptoma/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...