Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872462

RESUMEN

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Prunus persica , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Polimorfismo de Nucleótido Simple/genética , Genes de Plantas
2.
Plant Physiol Biochem ; 212: 108767, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38797009

RESUMEN

Salt stress is a critical limiting factor for fruit yield and quality of apples. Brassinosteroids (BRs) play an important role in response to abiotic stresses. In the present study, application of 2,4- Epicastasterone on seedlings of Malus 'M9T337' and Malus domestica 'Gala3' alleviated the physiological effects, such as growth inhibition and leaf yellowing, induced by salt stress. Further analysis revealed that treatment with NaCl induced expression of genes involved in BR biosynthesis in 'M9T337' and 'Gala3'. Among which, the expression of BR biosynthetic gene MdBR6OX2 showed a three-fold upregulation upon salt treatment, suggesting its potential role in response to salt stress in apple. MdBR6OX2, belonging to the CYP450 family, contains a signal peptide region and a P450 domain. Expression patterns analysis showed that the expression of MdBR6OX2 can be significantly induced by different abiotic stresses. Overexpressing MdBR6OX2 enhanced the tolerance of apple callis to salt stress, and the contents of endogenous BR-related compounds, such as Typhastero (TY), Castasterone (CS) and Brassinolide (BL) were significantly increased in transgenic calli compared with that of wild-type. Extopic expression of MdBR6OX2 enhanced tolerance to salt stress in Arabidopsis. Genes associated with salt stress were significantly up-regulated, and the contents of BR-related compounds were significantly elevated under salt stress. Our data revealed that BR-biosynthetic gene MdBR6OX2 positively regulates salt stress tolerance in both apple calli and Arabidopsis.


Asunto(s)
Arabidopsis , Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , Malus , Proteínas de Plantas , Tolerancia a la Sal , Malus/genética , Malus/metabolismo , Malus/efectos de los fármacos , Brasinoesteroides/metabolismo , Brasinoesteroides/biosíntesis , Brasinoesteroides/farmacología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efectos de los fármacos , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Estrés Salino/genética , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo
3.
Science ; 380(6651): 1275-1281, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37347863

RESUMEN

Growth coordination between cell layers is essential for development of most multicellular organisms. Coordination may be mediated by molecular signaling and/or mechanical connectivity between cells, but how genes modify mechanical interactions between layers is unknown. Here we show that genes driving brassinosteroid synthesis promote growth of internal tissue, at least in part, by reducing mechanical epidermal constraint. We identified a brassinosteroid-deficient dwarf mutant in the aquatic plant Utricularia gibba with twisted internal tissue, likely caused by mechanical constraint from a slow-growing epidermis. We tested this hypothesis by showing that a brassinosteroid mutant in Arabidopsis enhances epidermal crack formation, indicative of increased tissue stress. We propose that by remodeling cell walls, brassinosteroids reduce epidermal constraint, showing how genes can control growth coordination between layers by means of mechanics.


Asunto(s)
Brasinoesteroides , Lamiales , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/biosíntesis , Comunicación Celular , Pared Celular/metabolismo , Lamiales/citología , Lamiales/genética , Lamiales/metabolismo , Epidermis de la Planta/metabolismo
4.
Int J Mol Sci ; 22(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34638765

RESUMEN

Brassinosteroids (BRs) play key roles in diverse plant growth processes through a complex signaling pathway. Components orchestrating the BR signaling pathway include receptors such as kinases, transcription factors, protein kinases and phosphatases. The proper functioning of the receptor kinase BRI1 and the transcription factors BES1/BZR1 depends on their dephosphorylation by type 2A protein phosphatases (PP2A). In this work, we report that an additional phosphatase family, type one protein phosphatases (PP1), contributes to the regulation of the BR signaling pathway. Co-immunoprecipitation and BiFC experiments performed in Arabidopsis plants overexpressing durum wheat TdPP1 showed that TdPP1 interacts with dephosphorylated BES1, but not with the BRI1 receptor. Higher levels of dephosphorylated, active BES1 were observed in these transgenic lines upon BR treatment, indicating that TdPP1 modifies the BR signaling pathway by activating BES1. Moreover, ectopic expression of durum wheat TdPP1 lead to an enhanced growth of primary roots in comparison to wild-type plants in presence of BR. This phenotype corroborates with a down-regulation of the BR-regulated genes CPD and DWF4. These data suggest a role of PP1 in fine-tuning BR-driven responses, most likely via the control of the phosphorylation status of BES1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brasinoesteroides/biosíntesis , Proteínas de Unión al ADN/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Triticum/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Fosfoproteínas Fosfatasas/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Triticum/enzimología
5.
Nat Plants ; 7(5): 619-632, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34007032

RESUMEN

Brassinosteroid (BR) hormones are indispensable for root growth and control both cell division and cell elongation through the establishment of an increasing signalling gradient along the longitudinal root axis. Because of their limited mobility, the importance of BR distribution in achieving a signalling maximum is largely overlooked. Expression pattern analysis of all known BR biosynthetic enzymes revealed that not all cells in the Arabidopsis thaliana root possess full biosynthetic machinery, and that completion of biosynthesis relies on cell-to-cell movement of hormone precursors. We demonstrate that BR biosynthesis is largely restricted to the root elongation zone, where it overlaps with BR signalling maxima. Moreover, optimal root growth requires hormone concentrations to be low in the meristem and high in the root elongation zone, attributable to increased biosynthesis. Our finding that spatiotemporal regulation of hormone synthesis results in local hormone accumulation provides a paradigm for hormone-driven organ growth in the absence of long-distance hormone transport in plants.


Asunto(s)
Brasinoesteroides/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Brasinoesteroides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Meristema/metabolismo , Redes y Vías Metabólicas , Reguladores del Crecimiento de las Plantas/fisiología , Raíces de Plantas/metabolismo
6.
Molecules ; 26(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670642

RESUMEN

We investigated the relationship between the blue-light photoreceptor cryptochrome (CRY) and melatonin biosynthesis by generating RNA interference (RNAi) transgenic rice plants that suppress the cryptochrome 1b gene (CRY1b). The resulting CRY1b RNAi rice lines expressed less CRY1b mRNA, but not CRY1a or CRY2 mRNA, suggesting that the suppression is specific to CRY1b. The growth of CRY1b RNAi rice seedlings was enhanced under blue light compared to wild-type growth, providing phenotypic evidence for impaired CRY function. When these CRY1b RNAi rice plants were challenged with cadmium to induce melatonin, wild-type plants produced 100 ng/g fresh weight (FW) melatonin, whereas CRY1b RNAi lines produced 60 ng/g FW melatonin on average, indicating that melatonin biosynthesis requires the CRY photoreceptor. Due to possible feedback regulation, the expression of melatonin biosynthesis genes such as T5H, SNAT1, SNAT2, and COMT was elevated in the CRY1b RNAi lines compared to the wild-type plants. In addition, laminar angles decreased in the CRY1b RNAi lines via the suppression of brassinosteroid (BR) biosynthesis genes such as DWARF. The main cause of the BR decrease in the CRY1b RNAi lines seems to be the suppression of CRY rather than decreased melatonin because the melatonin decrease suppressed DWARF4 rather than DWARF.


Asunto(s)
Vías Biosintéticas/genética , Brasinoesteroides/biosíntesis , Criptocromos/genética , Genes de Plantas , Melatonina/biosíntesis , Oryza/genética , Tolerancia a la Sal/genética , Vías Biosintéticas/efectos de los fármacos , Criptocromos/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Oryza/efectos de los fármacos , Fenotipo , Plantas Modificadas Genéticamente , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tolerancia a la Sal/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/genética , Serotonina/metabolismo , Cloruro de Sodio/farmacología
7.
Theor Appl Genet ; 134(7): 2023-2034, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33683399

RESUMEN

KEY MESSAGE: By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, which encodes 7 dehydrocholesterol reductase that involved in brassinosteroids biosynthesis, was identified as the candidate gene for cpa. Dwarf architecture is one of the most important breeding goals in crops. The biosynthesis and signal transduction of brassinosteroids (BRs) have a great impact on plant growth and development including plant architecture. Here, we identified a compact plant architecture (cpa) mutant from an EMS-induced cucumber population. cpa displayed the extremely dwarf phenotype with shortened internode and petiole, darkened and wrinkled leaf. Genetic analysis revealed that cpa was caused by a single recessive gene. By the strategy of bulked segregant analysis sequencing combined with genetic mapping, CsDWF5, encoding a 7-dehydrocholesterol reductase that involved in sterol biosynthesis, was identified as the candidate gene for cpa. One single nucleotide mutation (G→A) in splicing site causing 3-bp insertion (TAG) was found in the first base of the sixth intron of CsDWF5 in cpa, which furtherly resulted in the frameshift mutation and got a premature stop codon. The expression of CsDWF5 gene was significantly down regulated in different tissues of the cpa mutant compared with that in wild type. The phenotype of cpa could be partially recovered by exogenous BR treatment. Transcriptome analysis identified 1096 genes that exhibited differential expression between the cpa mutant and wild type. KEGG enrichment analysis indicated that differentially expressed genes were significantly enriched in BR biosynthesis and plant-pathogen interaction pathways. These results provide perspectives on the molecular mechanisms underlying the dwarfing phenotype in cucumber.


Asunto(s)
Brasinoesteroides/biosíntesis , Cucumis sativus/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Secuencia de Aminoácidos , Mapeo Cromosómico , Codón sin Sentido , Cucumis sativus/enzimología , Mutación del Sistema de Lectura , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Recesivos , Fenotipo
8.
Plant Physiol Biochem ; 160: 281-293, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33540331

RESUMEN

Brassinosteroids (BRs) are a group of plant steroid hormones that regulate many important agronomic traits. Studies on the functional mechanisms of BR-related genes in crop plants are necessary for the application of BRs in agriculture. In this study, ZmD11, an ortholog of rice DWARF11 (D11), and 42 other BR biosynthesis-related genes were identified in maize (Zea mays). Complementary experiments confirmed that ZmD11 completely rescued the abnormal panicle architecture and plant height of the rice cpb1 mutant. A phylogenetic analysis indicated that ZmD11-like proteins were found in other monocots and dicots, but not in lower plants and that alternative splicing variants of these homologues mainly exist in Triticeae crops. A subcellular localization analysis showed that ZmD11 localized to the endoplasmic reticulum. The ZmD11 gene was predominantly expressed in young ears and seeds from 10 to 16 days after pollination, especially in the scutellar aleurone layer and pericarp. Furthermore, the constitutive expression of the ZmD11 gene significantly increased seed length, seed area, seed weight and both seed starch and protein contents in rice and maize. Our results suggest that ZmD11 is a key gene in the regulation of seed size and quality and that it has a potential application value in the molecular breeding of crops.


Asunto(s)
Brasinoesteroides/biosíntesis , Oryza/genética , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Zea mays/genética , Empalme Alternativo , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Filogenia , Proteínas de Plantas/fisiología , Semillas/genética , Zea mays/fisiología
9.
J Exp Bot ; 72(5): 1748-1763, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247718

RESUMEN

Brassinosteroids (BRs) are essential plant hormones. In angiosperms, brassinolide and castasterone, the first and second most active BRs, respectively, are synthesised by CYP85A2 and CYP85A/A1, respectively. BRs in angiosperms function through an essential receptor, BR Insensitive 1 (BRI1). In addition, some angiosperms also have non-essential BRI1-like 1/3 (BRL1/3). In conifers, BRs promote seed germination under drought stress; however, how BRs function in gymnosperms is unknown. In this study, we performed functional complementation of BR biosynthesis and receptor genes from Picea abies with respective Arabidopsis mutants. We found that P. abies possessed functional PaCYP85A and PaBRL1 but not PaCYP85A2 or PaBRI1, and this results in weak BR signaling, and both PaCYP85A and PaBRL1 were abundantly expressed. However, neither BR treatment of P. abies seedlings nor expression of PaBRL1 in the Arabidopsis Atbri1 mutant promoted plant height, despite the fact that BR-responsive genes were activated. Importantly, chimeric AtBRI1 replaced with the BR-binding domain of PaBRL1 complemented the Atbri1 phenotypes. Furthermore, PaBRL1 had less kinase activity than BRI1 in vitro. Overall, P. abies had weak but still active BR signaling, explaining aspects of its slow growth and high stress tolerance. Our study sheds light on the functional and evolutionary significance of distinct BR signaling that is independent of BRI1 and brassinolide.


Asunto(s)
Brasinoesteroides/biosíntesis , Picea , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Picea/enzimología , Picea/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética
10.
Plant J ; 104(6): 1520-1534, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33037720

RESUMEN

In dense canopy, a reduction in red to far-red (R/FR) light ratio triggers shade avoidance responses (SARs) in Arabidopsis thaliana, a shade avoiding plant. Two red/far-red (R/FR) light photoreceptors, PHYB and PHYA, were reported to be key negative regulators of the SARs. PHYB represses the SARs under normal light conditions; however, the role of PHYA in the SARs remains elusive. We set up two shade conditions: Shade and strong Shade (s-Shade) with different R/FR ratios (0.7 and 0.1), which allowed us to observe phenotypes dominated by PHYB- and PHYA-mediated pathway, respectively. By comparing the hypocotyl growth under these two conditions with time, we found PHYA was predominantly activated in the s-Shade after prolonged shade treatment. We further showed that under s-Shade, PHYA inhibits hypocotyl elongation partially through repressing the brassinosteroid (BR) pathway. COP1 and PIF4,5 act downstream of PHYA. After prolonged shade treatment, the nuclear localization of COP1 was reduced, while the PIF4 protein level was much lower in the s-Shade than that in Shade. Both changes occurred in a PHYA-dependent manner. We propose that under deep canopy, the R/FR ratio is extremely low, which promotes the nuclear accumulation of PHYA. Activated PHYA reduces COP1 nuclear speckle, which may lead to changes of downstream targets, such as PIF4,5 and HY5. Together, these proteins regulate the BR pathway through modulating BES1/BZR1 and the expression of BR biosynthesis and BR target genes.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Fototropismo , Fitocromo A/fisiología , Arabidopsis/fisiología , Brasinoesteroides/biosíntesis , Oscuridad , Regulación de la Expresión Génica de las Plantas , Hipocótilo/crecimiento & desarrollo , Redes y Vías Metabólicas , Fitocromo B/fisiología , Ubiquitina-Proteína Ligasas/fisiología
11.
Sci China Life Sci ; 63(12): 1905-1917, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32632733

RESUMEN

Brassinosteroid (BR), a steroid phytohormone, whose signaling transduction pathways include a series of phosphorylation and dephosphorylation events, and GSK3s are the main negative regulator kinases. BRs have been shown to play vital roles in cotton fiber elongation. However, the underlying mechanism is still elusive. In this study, fibers of a BR-defective mutant Pagoda 1 (pag1), and its corresponding wild-type (ZM24) were selected for a comparative global phosphoproteome analysis at critical developmental time points: fast-growing stage (10 days after pollination (DPA)) and secondary cell wall synthesis stage (20 DPA). Based on the substrate characteristics of GSK3, 900 potential substrates were identified. Their GO and KEGG annotation results suggest that BR functions in fiber development by regulating GhSKs (GSK3s of Gossypium hirsutum L.) involved microtubule cytoskeleton organization, and pathways of glucose, sucrose and lipid metabolism. Further experimental results revealed that among the GhSK members identified, GhSK13 not only plays a role in BR signaling pathway, but also functions in developing fiber by respectively interacting with an AP2-like ethylene-responsive factor GhAP2L, a nuclear transcription factor Gh_DNF_YB19, and a homeodomain zipper member GhHDZ5. Overall, our phosphoproteomic research advances the understanding of fiber development controlled by BR signal pathways especially through GhSKs, and also offers numbers of target proteins for improving cotton fiber quality.


Asunto(s)
Brasinoesteroides/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Gossypium/crecimiento & desarrollo , Gossypium/metabolismo , Brasinoesteroides/biosíntesis , Pared Celular/metabolismo , Fibra de Algodón/análisis , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Proteínas de Homeodominio/metabolismo , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Proteoma/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo
12.
Biochem Biophys Res Commun ; 529(1): 91-96, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32560825

RESUMEN

As structural components of biological membranes, phytosterols are essential not only for a variety of cellular functions but are also precursors for brassinosteroid (BR) biosynthesis. Plant CYP51 is the oldest and most conserved obtusifoliol 14α-demethylase in eukaryotes and is an essential component of the sterol biosynthesis pathway. However, little is known about rice (Oryza sativa L.) CYP51G1. In this study, we showed that rice OsCYP51G1 shared high homology with obtusifoliol 14α-demethylase and OsCYP51G1 was strongly expressed in most of rice organs. Subcellular localization analysis indicated that OsCYP51G1 was localized to the endoplasmic reticulum. Knockdown and knockout of OsCYP51G1 resulted in delayed flowering, impaired membrane integrity, abnormal pollen, and reduced grain yield, whereas OsCYP51G1 overexpression led to increased grain yield. Knockdown of OsCYP51G1 also reduced the levels of end-products (sitosterol and stigmasterol) and increased those of upstream intermediates (24-methylene-cycloartenol and cycloeucalenol) of the OsCYP51G1-mediated sterol biosynthesis step. In contrast, overexpression of OsCYP51G1 increased the sitosterol and stigmasterol content and reduced that of cycloeucalenol. However, knockdown of OsCYP51G1 by RNAi did not elicit these BR deficiency-related phenotypes, such as dwarfism, erect leaves and small seeds, nor was the leaf lamina angle sensitive to brassinolide treatment. These results revealed that rice OsCYP15G1 encodes an obtusifoliol 14α-demethylase for the phytosterols biosynthesis and possible without affecting the biosynthesis of downstream BRs, which was different from its homolog, OsCYP51G3.


Asunto(s)
Oryza/metabolismo , Fitosteroles/biosíntesis , Proteínas de Plantas/metabolismo , Esterol 14-Desmetilasa/metabolismo , Brasinoesteroides/biosíntesis , Regulación de la Expresión Génica de las Plantas , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Genes de Plantas , Germinación/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/metabolismo , Interferencia de ARN , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Esterol 14-Desmetilasa/genética
13.
Plant Physiol ; 183(3): 998-1010, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32398320

RESUMEN

Root developmental plasticity enables plants to adapt to limiting or fluctuating nutrient conditions in the soil. When grown under nitrogen (N) deficiency, plants develop a more exploratory root system by increasing primary and lateral root length. However, mechanisms underlying this so-called foraging response remain poorly understood. We performed a genome-wide association study in Arabidopsis (Arabidopsis thaliana) and we show here that noncoding variations of the brassinosteroid (BR) biosynthesis gene DWARF1 (DWF1) lead to variation of the DWF1 transcript level that contributes to natural variation of root elongation under low N. In addition to DWF1, other central BR biosynthesis genes upregulated under low N include CONSTITUTIVE PHOTOMORPHOGENIC DWARF, DWF4, and BRASSINOSTEROID-6-OXIDASE 2 Phenotypic characterization of knockout and knockdown mutants of these genes showed significant reduction of their root elongation response to low N, suggesting a systemic stimulation of BR biosynthesis to promote root elongation. Moreover, we show that low N-induced root elongation is associated with aboveground N content and that overexpression of DWF1 significantly improves plant growth and overall N accumulation. Our study reveals that mild N deficiency induces key genes in BR biosynthesis and that natural variation in BR synthesis contributes to the root foraging response, complementing the impact of enhanced BR signaling observed recently. Furthermore, these results suggest a considerable potential of BR biosynthesis to genetically engineer plants with improved N uptake.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/biosíntesis , Nitrógeno/deficiencia , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Estudio de Asociación del Genoma Completo , Transducción de Señal/genética
14.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32326491

RESUMEN

Plant adaptations to changing environments rely on integrating external stimuli into internal responses. Brassinosteroids (BRs), a group of growth-promoting phytohormones, have been reported to act as signal molecules mediating these processes. BRs are perceived by cell surface receptor complex including receptor BRI1 and coreceptor BAK1, which subsequently triggers a signaling cascade that leads to inhibition of BIN2 and activation of BES1/BZR1 transcription factors. BES1/BZR1 can directly regulate the expression of thousands of downstream responsive genes. Recent studies in the model plant Arabidopsis demonstrated that BR biosynthesis and signal transduction, especially the regulatory components BIN2 and BES1/BZR1, are finely tuned by various environmental cues. Here, we summarize these research updates and give a comprehensive review of how BR biosynthesis and signaling are modulated by changing environments and how these changes regulate plant adaptive growth or stress tolerance.


Asunto(s)
Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/biosíntesis , Brasinoesteroides/química , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/inmunología , Luz , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Estrés Fisiológico/fisiología , Temperatura , Factores de Transcripción/metabolismo , Agua/metabolismo
15.
Plant Cell Physiol ; 61(7): 1239-1251, 2020 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-32333772

RESUMEN

Although brassinosteroids (BRs) have been proposed to be negative regulators of photomorphogenesis, their physiological role therein has remained elusive. We studied light-induced photomorphogenic development in the presence of the BR biosynthesis inhibitor, brassinazole (Brz). Hook opening was inhibited in the presence of Brz; this inhibition was reversed in the presence of brassinolide (BL). Hook opening was accompanied by cell expansion on the inner (concave) side of the hook. This cell expansion was inhibited in the presence of Brz but was restored upon the addition of BL. We then evaluated light-induced organ-specific expression of three BR biosynthesis genes, DWF4, BR6ox1 and BR6ox2, and a BR-responsive gene, SAUR-AC1, during the photomorphogenesis of Arabidopsis. Expression of these genes was induced, particularly in the hook region, in response to illumination. The induction peaked after 3 h of light exposure and preceded hook opening. Phytochrome-deficient mutants, hy1, hy2 and phyAphyB, and a light-signaling mutant, hy5, were defective in light-induced expression of BR6ox1, BR6ox2 and SAUR-AC1. Light induced both expression of BR6ox genes and petiole development. Petiole development was inhibited in the presence of Brz. Our results largely contradict the early view that BRs are negative regulators of photomorphogenesis. Our data collectively suggest that light activates the expression of BR biosynthesis genes in the hook region via a phytochrome-signaling pathway and HY5 and that BR biosynthesis is essential for hook opening and petiole development during photomorphogenesis.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/biosíntesis , Tallos de la Planta/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Cotiledón/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Luz , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/crecimiento & desarrollo , Transducción de Señal/efectos de la radiación
16.
J Agric Food Chem ; 68(13): 3912-3923, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32146811

RESUMEN

Gas chromatography-mass spectrometry (GC-MS) analysis revealed that castasterone and its biosynthetic precursors are found in Brachypodium distachyon. In vitro conversion experiments with crude enzyme solutions prepared from B. distachyon demonstrated the presence of the following biosynthetic sequences: campesterol → campesta-4-en-3-one → campesta-3-one → campestanol → 6-deoxocathasterone → 6-deoxoteasterone → teasterone ↔ 3-dehydroteasterone ↔ typhasterol → castasterone. campesterol → 22-hydroxycampesterol → 22-hydroxy-campesta-4-en-3-one → 22-hydroxy-campesta-3-one → 6-deoxo-3-dehydroteasterone → 3-dehydroteasterone. 6-deoxoteasterone ↔ 6-deoxo-3-dehydroteasterone ↔ 6-deoxotyphasterol → 6-deoxocastasterone → castasterone. This shows that there are campestanol-dependent and campestanol-independent pathway in B. distachyon that synthesize 24-methylated brassinosteroids (BRs). Biochemical analysis of BRs biosynthetic enzymes confirmed that BdDET2, BdCYP90B1, BdCYP90A1, BdCYP90D2, and BdCYP85A1 are orthologous to BR 5α-reductase, BR C-22 hydroxylase, BR C-3 oxidase, BR C-23 hydroxylase, and BR C-6 oxidase, respectively. Brassinolide was not identified in B. distachyon. Additionally, B. distachyon crude enzyme solutions could not catalyze the conversion of castasterone to brassinolide, and the gene encoding an ortholog of CYP85A2 (a brassinolide synthase) was not found in B. distachyon. These results strongly suggest that the end product for brassinosteroid biosynthesis which controls the growth and development of B. distachyon is not brassinolide but rather castasterone.


Asunto(s)
Brachypodium/metabolismo , Colestanoles/metabolismo , Vías Biosintéticas , Brachypodium/química , Brachypodium/genética , Brasinoesteroides/biosíntesis , Brasinoesteroides/química , Colestanoles/química , Cromatografía de Gases y Espectrometría de Masas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Int J Mol Sci ; 21(5)2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-32164259

RESUMEN

In temperature stress, the main role of heat-shock proteins (HSP) is to act as molecular chaperones for other cellular proteins. However, knowledge about the hormonal regulation of the production of the HSP is quite limited. Specifically, little is known about the role of the plant steroid hormones-brassinosteroids (BR)-in regulating the HSP expression. The aim of our study was to answer the question of how a BR deficit or disturbances in its signaling affect the accumulation of the HSP90, HSP70, HSP18, and HSP17 transcripts and protein in barley growing at 20 °C (control) and during the acclimation of plants at 5 °C and 27 °C. In barley, the temperature of plant growth modified the expression of HSPs. Furthermore, the BR-deficient mutants (mutations in the HvDWARF or HvCPD genes) and BR-signaling mutants (mutation in the HvBRI1 gene) were characterized by altered levels of the transcripts and proteins of the HSP group compared to the wild type. The BR-signaling mutant was characterized by a decreased level of the HSP transcripts and heat-shock proteins. In the BR-deficient mutants, there were temperature-dependent cases when the decreased accumulation of the HSP70 and HSP90 transcripts was connected to an increased accumulation of these HSP. The significance of changes in the accumulation of HSPs during acclimation at 27 °C and 5 °C is discussed in the context of the altered tolerance to more extreme temperatures of the studied mutants (i.e., heat stress and frost, respectively).


Asunto(s)
Brasinoesteroides/biosíntesis , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hordeum/crecimiento & desarrollo , Aclimatación , Vías Biosintéticas , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/metabolismo , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
18.
BMC Plant Biol ; 20(1): 109, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32143576

RESUMEN

BACKGROUND: The steroidal hormones brassinosteroids (BRs) play important roles in plant growth and development. The pathway and genes involved in BR biosynthesis have been identified primarily in model plants like Arabidopsis, but little is known about BR biosynthesis in woody fruits such as pear. RESULTS: In this study, we found that applying exogenous brassinolide (BL) could significantly increase the stem growth and rooting ability of Pyrus ussuriensis. PcDWF1, which had a significantly lower level of expression in the dwarf-type pear than in the standard-type pear, was cloned for further analysis. A phylogenetic analysis showed that PcDWF1 was a pear brassinosteroid biosynthetic gene that was homologous to AtDWARF1. The subcellular localization analysis indicated that PcDWF1 was located in the plasma membrane. Overexpression of PcDWF1 in tobacco (Nicotiana tabacum) or pear (Pyrus ussuriensis) plants promoted the growth of the stems, which was caused by a larger cell size and more developed xylem than those in the control plants, and the rooting ability was significantly enhanced. In addition to the change in vegetative growth, the tobacco plants overexpressing PcDWF1 also had a delayed flowering time and larger seed size than did the control tobacco plants. These phenotypes were considered to result from the higher BL contents in the transgenic lines than in the control tobacco and pear plants. CONCLUSIONS: Taken together, these results reveal that the pear BR biosynthetic gene PcDWF1 affected the vegetative and reproductive growth of Pyrus ussuriensis and Nicotiana tabacum and could be characterized as an important BR biosynthetic gene in perennial woody fruit plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana/genética , Proteínas de Plantas/genética , Pyrus/genética , Brasinoesteroides/biosíntesis , Flores/genética , Flores/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Pyrus/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo
19.
Genes Genomics ; 42(3): 347-354, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31902106

RESUMEN

BACKGROUND: Brassinosteroids (BR) are essential growth hormone in plants. Various components involved in signal transduction pathway have been identified as targets of 14-3-3 phospho-binding proteins. Previously, we showed that 14-3-3 proteins directly interact with the Brassinosteroid Insensitive 1 (BRI1), the BR receptor kinase, and are also subject to phosphorylation in a BR-dependent manner. OBJECTIVE: In this study, we aimed to examine a potential interplay between 14-3-3 proteins and BRI1 in plant growth. METHODS: Morphological phenotypes of a T-DNA insertion mutant line, 14-3-3ψφε, defective in three 14-3-3 isoforms, psi, phi and epsilon, were characterized and compared with bri1-5 and two transgenic lines for BRI1, BRI1-Flag and BRI1-Flag (14-3-3ψφε). We also generated complementation lines carrying each of the three 14-3-3 genes and determined their differences in rosette growth. RESULTS: No significant differences between the wild-type and 14-3-3ψφε seedlings were observed regardless of BR applications. However, BRI1-Flag (14-3-3ψφε) showed a significantly reduced cold tolerance and BR sensitivity in hypocotyl and root development when compared to BRI1-Flag. In addition, narrower leaf shape and smaller rosette size were observed in BRI1-Flag (14-3-3ψφε), while the mutant phenotypes were partially restored in the complementation lines, two of which with 14-3-3φ and 14-3-3ε showed the rosette growth comparable to BRI1-Flag. CONCLUSION: Taken together, our results suggested that 14-3-3 proteins might positively regulate BRI1 activity and showed that 14-3-3 isoforms have different functional impacts in BR signaling.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Proteínas Quinasas/metabolismo , Proteínas 14-3-3/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brasinoesteroides/biosíntesis , Brasinoesteroides/farmacología , Hipocótilo/efectos de los fármacos , Hipocótilo/genética , Hipocótilo/crecimiento & desarrollo , Hipocótilo/efectos de la radiación , Fenotipo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/genética , Transducción de Señal/genética , Triazoles/farmacología
20.
Plant Physiol ; 182(2): 1066-1082, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31776183

RESUMEN

Brassinosteroids (BRs) and jasmonates (JAs) regulate plant growth, development, and defense responses, but how these phytohormones mediate the growth-defense tradeoff is unclear. Here, we identified the Arabidopsis (Arabidopsis thaliana) dwarf at early stages1 (dwe1) mutant, which exhibits enhanced expression of defensin genes PLANT DEFENSIN1.2a (PDF1.2a) and PDF1.2b The dwe1 mutant showed increased resistance to herbivory by beet armyworms (Spodoptera exigua) and infection by botrytis (Botrytis cinerea). DWE1 encodes ROTUNDIFOLIA3, a cytochrome P450 protein essential for BR biosynthesis. The JA-inducible transcription of PDF1.2a and PDF1.2b was significantly reduced in the BRASSINOSTEROID INSENSITIVE1-ETHYL METHANESULFONATE-SUPPRESSOR1 (BES1) gain-of-function mutant bes1- D, which was highly susceptible to S. exigua and B. cinerea BES1 directly targeted the terminator regions of PDF1.2a/PDF1.2b and suppressed their expression. PDF1.2a overexpression diminished the enhanced susceptibility of bes1- D to B. cinerea but did not improve resistance of bes1- D to S. exigua In response to S. exigua herbivory, BES1 inhibited biosynthesis of the JA-induced insect defense-related metabolite indolic glucosinolate by interacting with transcription factors MYB DOMAIN PROTEIN34 (MYB34), MYB51, and MYB122 and suppressing expression of genes encoding CYTOCHROME P450 FAMILY79 SUBFAMILY B POLYPEPTIDE3 (CYP79B3) and UDP-GLUCOSYL TRANSFERASE 74B1 (UGT74B1). Thus, BR contributes to the growth-defense tradeoff by suppressing expression of defensin and glucosinolate biosynthesis genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Brasinoesteroides/biosíntesis , Ciclopentanos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Oxilipinas/metabolismo , Enfermedades de las Plantas/genética , Animales , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/parasitología , Proteínas de Arabidopsis/genética , Botrytis/patogenicidad , Brasinoesteroides/metabolismo , Ciclopentanos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Glucosinolatos/biosíntesis , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Oxilipinas/farmacología , Enfermedades de las Plantas/inmunología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Hojas de la Planta/parasitología , Estomas de Plantas/genética , Estomas de Plantas/microbiología , Estomas de Plantas/parasitología , Estomas de Plantas/ultraestructura , Plantas Modificadas Genéticamente/metabolismo , Spodoptera/patogenicidad , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA