Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plant Biol (Stuttg) ; 26(2): 188-196, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38168064

RESUMEN

Stress memory is the development of altered responses to stress due to previous exposure, which might result in increased tolerance. Biochemical and physiological parameters shown to be positively affected by stress memory include those of the antioxidant and nitrosative metabolism, photosynthetic pigments and osmolyte content. Epiphytic bromeliads likely present stress memory since they experience frequent droughts in the canopies. Thus, we aimed to evaluate if the epiphytic bromeliad Acanthostachys strobilacea (Schult. & Schult.f.) Klotzsch shows improved metabolic stress defence responses to a second drought and rewatering cycle compared to a single exposure. In a controlled environment chamber, 90-day-old plants were exposed to one or two drought-rewatering cycles of 14 days without irrigation and 5 days of rewatering each. Sampling occurred after the final drought and rewatering periods for one or two cycles treatments. The free amino acid, chlorophyll, and carotenoid levels and S-nitrosoglutathione reductase (GSNOR) activity were higher at the second drought than at the first exposure. The rise in nocturnal acidification (indicative of increased CAM activity) caused by the initial drought persisted through the second drought-rewatering cycle, implying a lasting memory effect on CAM activity. Furthermore, the second recovery did not induce glutathione accumulation, as in the first rewatering event, suggesting the pre-exposure to drought reduced this thiol's demand during a later recovery. Our results evidence metabolic changes related to drought stress memory in A. strobilacea, supporting this mechanism might be involved in the tolerance of epiphytic bromeliads to intermittent droughts.


Asunto(s)
Bromeliaceae , Sequías , Agua/metabolismo , Hojas de la Planta/metabolismo , Fotosíntesis , Clorofila/metabolismo , Bromeliaceae/metabolismo
2.
PeerJ ; 11: e14624, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36647445

RESUMEN

Salt stress is one of the most severe abiotic stresses affecting plant growth and development. The application of silicon (Si) is an alternative that can increase the tolerance of plants to various types of biotic and abiotic stresses. The objective was to evaluate salt stress's effect in vitro and Si's mitigation potential on Aechmea blanchetiana plants. For this purpose, plants already established in vitro were transferred to a culture medium with 0 or 14 µM of Si (CaSiO3). After growth for 30 days, a stationary liquid medium containing different concentrations of NaCl (0, 100, 200, or 300 µM) was added to the flasks. Anatomical and physiological analyses were performed after growth for 45 days. The plants cultivated with excess NaCl presented reduced root diameter and effective photochemical quantum yield of photosystem II (PSII) (ΦPSII) and increased non-photochemical dissipation of fluorescence (qN). Plants that grew with the presence of Si also had greater content of photosynthetic pigments and activity of the enzymes of the antioxidant system, as well as higher values of maximum quantum yield of PSII (FV/FM), photochemical dissipation coefficient of fluorescence (qP) and fresh weight bioaccumulation of roots and shoots. The anatomical, physiological and biochemical responses, and growth induced by Si mitigated the effect of salt stress on the A. blanchetiana plants cultivated in vitro, which can be partly explained by the tolerance of this species to grow in sandbank (Restinga) areas.


Asunto(s)
Bromeliaceae , Cloruro de Sodio , Cloruro de Sodio/farmacología , Silicio/farmacología , Bromeliaceae/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo
3.
Commun Biol ; 5(1): 920, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071139

RESUMEN

Aechmea fasciata is one of the most popular bromeliads and bears a water-impounding tank with a vase-like rosette. The tank habit is a key innovation that has promoted diversity among bromeliads. To reveal the genomic basis of tank habit formation and ethylene-induced flowering, we sequenced the genome of A. fasciata and assembled 352 Mb of sequences into 24 chromosomes. Comparative genomic analysis showed that the chromosomes experienced at least two fissions and two fusions from the ancestral genome of A. fasciata and Ananas comosus. The gibberellin receptor gene GID1C-like was duplicated by a segmental duplication event. This duplication may affect GA signalling and promote rosette expansion, which may permit water-impounding tank formation. During ethylene-induced flowering, AfFTL2 expression is induced and targets the EIN3 binding site 'ATGTAC' by AfEIL1-like. The data provided here will serve as an important resource for studying the evolution and mechanisms underlying flowering time regulation in bromeliads.


Asunto(s)
Ananas , Bromeliaceae , Bromeliaceae/metabolismo , Etilenos/metabolismo , Hábitos , Agua/metabolismo
4.
Physiol Plant ; 170(4): 488-507, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32623731

RESUMEN

Studying the response to drought stress of keystone epiphytes such as tank bromeliads is essential to better understand their resistance capacity to future climate change. The objective was to test whether there is any variation in the carbon, water and nutrient status among different leaf ontogenetic stages in a bromeliad rosette subjected to a gradient of drought stress. We used a semi-controlled experiment consisting in a gradient of water shortage in Aechmea aquilega and Lutheria splendens. For each bromeliad and drought treatment, three leaves were collected based on their position in the rosette and several functional traits related to water and nutrient status, and carbon metabolism were measured. We found that water status traits (relative water content, leaf succulence, osmotic and midday water potentials) and carbon metabolism traits (carbon assimilation, maximum quantum yield of photosystem II, chlorophyll and starch contents) decreased with increasing drought stress, while leaf soluble sugars and carbon, nitrogen and phosphorus contents remained unchanged. The different leaf ontogenetic stages showed only marginal variations when subjected to a gradient of drought. Resources were not reallocated between different leaf ontogenetic stages but we found a reallocation of soluble sugars from leaf starch reserves to the root system. Both species were capable of metabolic and physiological adjustments in response to drought. Overall, this study advances our understanding of the resistance of bromeliads faced with increasing drought stress and paves the way for in-depth reflection on their strategies to cope with water shortage.


Asunto(s)
Bromeliaceae , Sequías , Bromeliaceae/metabolismo , Clorofila/metabolismo , Nitrógeno , Fotosíntesis , Hojas de la Planta/metabolismo , Agua
5.
Plant Cell Environ ; 43(12): 2987-3001, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32677061

RESUMEN

The adaptive radiation of Bromeliaceae (pineapple family) is one of the most diverse among Neotropical flowering plants. Diversification in this group was facilitated by shifts in several adaptive traits or "key innovations" including the transition from C3 to CAM photosynthesis associated with xeric (heat/drought) adaptation. We used phylogenomic approaches, complemented by differential gene expression (RNA-seq) and targeted metabolite profiling, to address the mechanisms of C3 /CAM evolution in the extremely species-rich bromeliad genus, Tillandsia, and related taxa. Evolutionary analyses of whole-genome sequencing and RNA-seq data suggest that evolution of CAM is associated with coincident changes to different pathways mediating xeric adaptation in this group. At the molecular level, C3 /CAM shifts were accompanied by gene expansion of XAP5 CIRCADIAN TIMEKEEPER homologs, a regulator involved in sugar- and light-dependent regulation of growth and development. Our analyses also support the re-programming of abscisic acid-related gene expression via differential expression of ABF2/ABF3 transcription factor homologs, and adaptive sequence evolution of an ENO2/LOS2 enolase homolog, effectively tying carbohydrate flux to abscisic acid-mediated abiotic stress response. By pinpointing different regulators of overlapping molecular responses, our results suggest plausible mechanistic explanations for the repeated evolution of correlated adaptive traits seen in a textbook example of an adaptive radiation.


Asunto(s)
Bromeliaceae/genética , Metabolismo Ácido de las Crasuláceas/genética , Especiación Genética , Evolución Biológica , Bromeliaceae/metabolismo , Bromeliaceae/fisiología , Genes de Plantas/genética , Filogenia , Análisis de Secuencia de ARN , Secuenciación del Exoma , Secuenciación Completa del Genoma
6.
Plant Biol (Stuttg) ; 22(5): 781-793, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32558085

RESUMEN

Research into the influence of stress factors, such as drought, different temperatures and/or varied light conditions, on plants due to climate changes is becoming increasingly important. Epiphytes, like many species of the Bromeliaceae, are particularly affected by this, but little is known about impacts on nectar composition and nectary metabolism. We investigated the influence of drought, different temperatures and light-dark regimes on nectar and nectaries of the epiphytic bromeliad species, Aechmea fasciata, and also the influence of drought with the terrestrial bromeliad, Billbergia nutans. The content of sugars, amino acids and ions in nectar and nectaries was analysed using HPLC. In addition, the starch content and the activities of different invertases in nectaries were determined. Compositions of nectar and nectaries were hardly influenced, neither by light nor dark, nor by different temperatures. In contrast, drought revealed changes in nectar volumes and nectar sugar compositions in the epiphytic bromeliad as well as in the terrestrial bromeliad. In both species, the sucrose-to-hexose ratio in nectar decreased considerably during the drought period. These changes in nectar sugar composition do not correlate with changes in the nectaries. The total sugar, amino acid and ion concentrations remained constant in nectar as well as in nectaries during the drought period. Changes in nectar composition or in the production of floral pollinator rewards are likely to affect plant-pollinator interactions. It remains questionable how far the adaptations of the bromeliads to drought and diverse light or temperature conditions are still sufficient.


Asunto(s)
Bromeliaceae , Sequías , Luz , Néctar de las Plantas , Temperatura , Bromeliaceae/metabolismo , Iones/química , Néctar de las Plantas/química , Néctar de las Plantas/metabolismo
7.
Planta ; 250(1): 319-332, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31030328

RESUMEN

MAIN CONCLUSION: Depending on the N source and plant ontogenetic state, the epiphytic tank-forming bromeliad Vriesea gigantea can modulate aquaporin expression to maximize the absorption of the most available nitrogen source. Epiphytic bromeliads frequently present a structure formed by the overlapping of leaf bases where water and nutrients can be accumulated and absorbed, called tank. However, this structure is not present during the juvenile ontogenetic phase, leading to differences in nutrient acquisition strategies. Recent studies have shown a high capacity of the bromeliad Vriesea gigantea, an epiphytic tank-forming bromeliad, to absorb urea by their leaves. Since plant aquaporins can facilitate the diffusion of urea through the membranes, we cloned three foliar aquaporin genes, VgPIP1;1, VgPIP1;2 and VgTIP2;1 from V. gigantea plants. Through functional studies, we observed that besides water, VgTIP2;1 was capable of transporting urea while VgPIP1;2 may facilitate ammonium/ammonia diffusion. Moreover, aiming at identifying urea and ammonium-induced changes in aquaporin expression in leaves of juvenile and adult-tank plants, we showed that VgPIP1;1 and VgPIP1;2 transcripts were up-regulated in response to either urea or ammonium only in juvenile plants, while VgTIP2;1 was up-regulated in response to urea only in adult-tank plants. Thereby, an ontogenetic shift from juvenile to adult-tank-forming-plant appears to occur with metabolic changes regarding nitrogen metabolism regulation. Investigating urea metabolism in wild species that naturally cope with organic N sources, such as V. gigantea, may provide the knowledge to modify nitrogen use efficiency of crop plants.


Asunto(s)
Acuaporinas/metabolismo , Bromeliaceae/metabolismo , Nitrógeno/metabolismo , Urea/metabolismo , Acuaporinas/genética , Bromeliaceae/genética , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Agua/metabolismo
8.
J Therm Biol ; 80: 150-157, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30784479

RESUMEN

The predicted environmental changes may be detrimental to initial seedling growth, particularly the expected increase in air temperature. We therefore investigated the thermal limits for growth and development of Vriesea friburgensis and Alcantarea imperialis seedlings in the context of oxidative stress. The optimal temperatures for the growth of V. friburgensis and A. imperialis were 25 and 25-30 °C, respectively. Extreme temperatures (15, 30, or 35 °C) induced oxidative stress in both species with significant accumulation of hydrogen peroxide (H2O2) and nitric oxide (NO). Under oxidative stress, the amount of chlorophyll decreased in both species, more prominently in V. friburgensis, while carotenoid levels dramatically increased in A. imperialis. Notably, the activities of superoxide dismutase, catalase (CAT), and ascorbate peroxidase increased in A. imperialis at extreme temperatures. Similar results were observed for V. friburgensis; however, the activity of CAT remained unaffected regardless of temperature. Seedlings of A. imperialis survived at a wider range of temperatures than V. friburgensis, which had greater than 40% mortality when growing at 30 °C. Overall, precise control of cellular H2O2 and NO levels takes place during the establishment of A. imperialis seedlings, allowing the species to cope with relatively high temperatures. The thermal limits of the fundamental niches of the species investigated, determined based on the ability of seedlings to cope with oxidative stress, were distinct from the realized niches of these species. The results suggest that recruitment success is dependent on the ability of seedlings to handle extreme temperature-triggered oxidative stress, which limits the regeneration niche.


Asunto(s)
Bromeliaceae/metabolismo , Estrés Oxidativo , Plantones/metabolismo , Temperatura , Aclimatación , Ascorbato Peroxidasas/metabolismo , Bromeliaceae/crecimiento & desarrollo , Carotenoides/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Peróxido de Hidrógeno/metabolismo , Óxido Nítrico/metabolismo , Plantones/crecimiento & desarrollo , Superóxido Dismutasa/metabolismo
9.
Plant Physiol ; 178(1): 148-162, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30042212

RESUMEN

The leaf intercellular airspace (IAS) is generally considered to have high conductance to CO2 diffusion relative to the liquid phase. While previous studies accounted for leaf-level variation in porosity and mesophyll thickness, they omitted 3D IAS traits that potentially influence IAS conductance (gIAS). Here, we reevaluated the standard equation for gIAS by incorporating tortuosity, lateral path lengthening, and IAS connectivity. We measured and spatially mapped these geometric IAS traits for 19 Bromeliaceae species with Crassulacean acid metabolism (CAM) or C3 photosynthetic pathways using x-ray microcomputed tomography imaging and a novel computational approach. We found substantial variation in porosity (0.04-0.73 m3 m-3), tortuosity (1.09-3.33 m2 m-2), lateral path lengthening (1.12-3.19 m m-1), and IAS connectivity (0.81-0.97 m2 m-2) across all bromeliad leaves. The revised gIAS model predicted significantly lower gIAS in CAM (0.01-0.19 mol m-2 s-1 bar-1) than in C3 (0.41-2.38 mol m-2 s-1 bar-1) plants due to a coordinated decline in these IAS traits. Our reevaluated equation also generally predicted lower gIAS values than the former one. Moreover, we observed high spatial heterogeneity in these IAS geometric traits throughout the mesophyll, especially within CAM leaves. Our data show that IAS traits that better capture the 3D complexity of leaves strongly influence gIAS and that the impact of the IAS on mesophyll conductance should be carefully considered with respect to leaf anatomy. We provide a simple function to estimate tortuosity and lateral path lengthening in the absence of access to imaging tools such as x-ray microcomputed tomography or other novel 3D image-processing techniques.


Asunto(s)
Bromeliaceae/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Hojas de la Planta/metabolismo , Algoritmos , Bromeliaceae/clasificación , Bromeliaceae/genética , Difusión , Fotosíntesis , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Porosidad , Especificidad de la Especie , Microtomografía por Rayos X
10.
Int J Mol Sci ; 19(7)2018 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-30021946

RESUMEN

Variations in flowering time and plant architecture have a crucial impact on crop biomass and yield, as well as the aesthetic value of ornamental plants. Aechmea fasciata, a member of the Bromeliaceae family, is a bromeliad variety that is commonly cultivated worldwide. Here, we report the characterization of AfSPL14, a squamosa promoter binding protein-like gene in A. fasciata. AfSPL14 was predominantly expressed in the young vegetative organs of adult plants. The expression of AfSPL14 could be upregulated within 1 h by exogenous ethephon treatment. The constitutive expression of AfSPL14 in Arabidopsis thaliana caused early flowering and variations in plant architecture, including smaller rosette leaves and thicker and increased numbers of main inflorescences. Our findings suggest that AfSPL14 may help facilitate the molecular breeding of A. fasciata, other ornamental and edible bromeliads (e.g., pineapple), and even cereal crops.


Asunto(s)
Arabidopsis/anatomía & histología , Arabidopsis/genética , Bromeliaceae/metabolismo , Flores/fisiología , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Secuencia de Bases , Exones/genética , Flores/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Intrones/genética , Compuestos Organofosforados/farmacología , Fenotipo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Dominios Proteicos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Análisis de Secuencia de ADN , Activación Transcripcional/genética
11.
Plant Biol (Stuttg) ; 20(3): 636-640, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29427326

RESUMEN

Global climate change is likely to impact all plant life. Vascular epiphytes represent a life form that may be affected more than any other by possible changes in precipitation leading to water shortage, but negative effects of drought may be mitigated through increasing levels of atmospheric CO2 . We studied the response of three epiphytic Aechmea species to different CO2 and watering levels in a full-factorial climate chamber study over 100 days. All species use crassulacean acid metabolism (CAM). Response variables were relative growth rate (RGR), nocturnal acidification and foliar nutrient levels (N, P, K, Mg). Both elevated CO2 and increased water supply stimulated RGR, but the interaction of the two factors was not significant. Nocturnal acidification was not affected by these factors, indicating that the increase in growth in these CAM species was due to higher assimilation in the light. Mass-based foliar nutrient contents were consistently lower under elevated CO2 , but most differences disappeared when expressed on an area basis. Compared to previous studies with epiphytes, in which doubling of CO2 increased RGR, on average, by only 14%, these Aechmea species showed a relatively strong growth stimulation of up to +61%. Consistent with earlier findings with other bromeliads, elevated CO2 did not mitigate the effect of water shortage.


Asunto(s)
Bromeliaceae/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Cambio Climático , Agua/metabolismo , Bromeliaceae/metabolismo , Bromeliaceae/fisiología , Flores/anatomía & histología , Flores/fisiología , Magnesio/análisis , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/química , Potasio/análisis
12.
J Exp Bot ; 69(8): 1993-2003, 2018 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-29462338

RESUMEN

Guzmania monostachia (Bromeliaceae) is a tropical epiphyte capable of up-regulating crassulacean acid metabolism (CAM) in its photosynthetic tissues in response to changing nutrient and water availability. Previous studies have shown that under drought there is a gradient of increasing CAM expression from the basal (youngest) to the apical (oldest) portion of the leaves, and additionally that nitrogen deficiency can further increase CAM intensity in the leaf apex of this bromeliad. The present study investigated the inter-relationships between nitrogen source (nitrate and/or ammonium) and water deficit in regulating CAM expression in G. monostachia leaves. The highest CAM activity was observed under ammonium nutrition in combination with water deficit. This was associated with enhanced activity of the key enzyme phosphoenolpyruvate carboxylase, elevated rates of ATP- and PPi-dependent proton transport at the vacuolar membrane in the presence of malate, and increased transcript levels of the vacuolar malate channel-encoding gene, ALMT. Water deficit was consistently associated with higher levels of total soluble sugars, which were maximal under ammonium nutrition, as were the activities of several antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase). Thus, ammonium nutrition, whilst associated with the highest degree of CAM induction in G. monostachia, also mitigates the effects of water deficit by osmotic adjustment and can limit oxidative damage in the leaves of this bromeliad under conditions that may be typical of its epiphytic habitat.


Asunto(s)
Compuestos de Amonio/metabolismo , Antioxidantes/metabolismo , Bromeliaceae/metabolismo , Malatos/metabolismo , Fotosíntesis , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Transporte Biológico , Bromeliaceae/genética , Catalasa/genética , Catalasa/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Glutatión Reductasa/genética , Glutatión Reductasa/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Agua/metabolismo
13.
Plant Physiol Biochem ; 123: 297-303, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29278846

RESUMEN

The Crassulacean acid metabolism (CAM) can be a transitory strategy for saving water during unfavourable conditions, like a dry season. In some cases, CAM can also contribute to the maintenance of photosynthetic integrity, even if carbon gain and growth are impaired. CAM occurs in different intensities, being stronger or weaker depending on the degree of nocturnal malic acid accumulation. For example, Guzmania monostachia is an epiphytic tank bromeliad that shows an increase in its nocturnal organic acid accumulation and a variable CAM behaviour when exposed to water deficit. In this context, this study aimed at investigating whether the weak CAM displayed by this species may mitigate the harmful effects of water limitation on its photosynthetic activity. To this, bromeliads were submitted to well-watered and water deficit conditions. Guzmania monostachia plants under water deficiency conditions showed a reduction on atmospheric carbon assimilation without exhibiting changes in PSII integrity and carbohydrate production while showed an increase in nocturnal malic acid accumulation. Additionally, spots with high PSII efficiency in the leaf portion with a greater nocturnal malic acid accumulation were observed in plants exposed to water shortage conditions. These high-efficiency spots might be associated with a greater malate decarboxylation capacity. Also, the malic acid contributed to approximately 50% of the total carbon assimilated under water deficit. These results suggest that weak CAM may participate in photo-protection and it appears to meaningfully contribute to the overall carbon balance, being an important metabolic strategy to maintain plant fitness during water deficit periods.


Asunto(s)
Bromeliaceae/metabolismo , Malatos/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Estrés Fisiológico , Deshidratación/metabolismo
14.
Plant Physiol Biochem ; 121: 21-30, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29080424

RESUMEN

Rocky outcrops represent the diversity center of vascular desiccation tolerant (DT) plants. Vegetation in this environment is exposed to an extended dry season and extreme conditions due to rocky soils and high sun exposure. In this study, we demonstrated that Pitcairnia burchellii, a bromeliad from rocky outcrops, tolerates intense desiccation for about 90 days due to strategies as accumulation of compatible osmolytes and antioxidant substances together with leaf morphological changes. In dehydrated plants, an increase in antioxidant activity was observed and the vacuolization of parenchyma cells was accompanied by proline accumulation in leaves and rhizomes. Precursors related to phenylpropanoid pathway increased significantly during plant dehydration. Accordingly, increases in anthocyanin and phenolic contents as well as lignin deposition were observed in leaves of dehydrated plants. Cell divisions and a decrease in stored starch were observed in the rhizomes indicating starch mobilization. Anatomical analyses revealed the presence of a more developed water-storage tissue in dehydrated leaves. During desiccation, leaves curl upwards and the adaxial V deep water-storage tissue is supported by two larger lateral vascular bundles. Cell wall folding and an increased proportion of arabinose-containing polymers was observed in leaves under dehydration, suggesting increasing of cell wall flexibility during desiccation. Such biochemical and morphological changes are consistent with the ability of P. burchellii to tolerate intense desiccation and behave as a resurrection species.


Asunto(s)
Antocianinas/metabolismo , Bromeliaceae/metabolismo , Resistencia a la Enfermedad , Rizoma/metabolismo , Deshidratación
15.
Plant Physiol Biochem ; 113: 32-39, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28161646

RESUMEN

Juvenile plants of epiphytes such as bromeliads are highly prone to dehydration under drought conditions. It is likely that young epiphytes evolved mostly metabolic strategies to resist drought, which may include the plastic modulation of the enzymatic antioxidant system and crassulacean acid metabolism (CAM). Few studies have investigated such strategies in juvenile epiphytes, although such research is important to understand how these plants might face drought intensification derived from potential climatic alterations. The epiphytic CAM bromeliad Guzmania monostachia (L.) Rusby ex Mez var. monostachia is known to have plastic responses to drought, but no reports have focused on the metabolism of juvenile plants to drought and recovery. Hence, we aimed to verify how juvenile G. monostachia plants adjust malate (indicative of CAM), H2O2 content and enzymatic scavenging in response to drought (eight days without irrigation) and rewatering (six days of irrigation post-drought). Interestingly, drought decreased H2O2 content and activities of superoxide dismutase, catalase (CAT) and ascorbate peroxidase (APX) in the pre-dusk period, although glutathione reductase (GR) and CAM activity increased. Rewatering restored H2O2, but activities of APX, CAT and GR exceeded pre-stress levels in the pre-dusk and/or pre-dawn periods. Results suggest that recovery from a first drought redefines the homeostatic balance of H2O2 scavenging, in which rewatered plants stimulate the enzymatic antioxidant system while drought-exposed plants intensify CAM activity to regulate H2O2 content, a photosynthetic pathway known to prevent oxidative stress. Such data show that young G. monostachia plants adjust CAM and H2O2 scavenging to adapt to water availability.


Asunto(s)
Bromeliaceae/metabolismo , Sequías , Peróxido de Hidrógeno/metabolismo , Agua/metabolismo , Antioxidantes/metabolismo , Ascorbato Peroxidasas/metabolismo , Bromeliaceae/enzimología , Catalasa/metabolismo , Glutatión Reductasa/metabolismo , Malatos/metabolismo , Estrés Oxidativo/fisiología , Fotosíntesis , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
16.
Microb Ecol ; 73(4): 751-754, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27924401

RESUMEN

We studied the propensity of the tank bromeliad Werauhia gladioliflora to emit the greenhouse gas nitrous oxide (N2O) at current and at increased N deposition levels in the range of predicted future scenarios. Potential production rates and net accumulation of N2O from tank substrate corresponded to N availability. N2O was produced in excess at all N levels due to a low level of N2O reductase activity which agreed well with a low abundance of N2O reducers compared to nitrite reducers. Transcriptional activation, however, indicated that expression of denitrification genes may be enhanced with increasing N supply eventually leading to more efficient N2O turnover with potential for adaptation of denitrifier communities to higher N levels. Our findings indicate that tank bromeliads may constitute a novel source of N2O in Neotropical forest canopies but further studies are required to understand the size and significance of in situ N2O fluxes from tank bromeliads to the environment.


Asunto(s)
Bromeliaceae/metabolismo , Óxido Nitroso/metabolismo , Bromeliaceae/genética , Desnitrificación/genética , Ambiente , Bosques , Nitritos/metabolismo , Nitrógeno/metabolismo
17.
Ann Bot ; 118(6): 1199-1208, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27578765

RESUMEN

BACKGROUND AND AIMS: Bromeliads are able to occupy some of the most nutrient-poor environments especially because they possess absorptive leaf trichomes, leaves organized in rosettes, distinct photosynthetic pathways [C3, Crassulacean acid metabolism (CAM) or facultative C3-CAM], and may present an epiphytic habit. The more derived features related to these traits are described for the Tillandsioideae subfamily. In this context, the aims of this study were to evaluate how terrestrial predators contribute to the nutrition and performance of bromeliad species, subfamilies and ecophysiological types, whether these species differ in their ecophysiological traits and whether the physiological outcomes are consistent among subfamilies and types (e.g. presence/absence of tank, soil/tank/atmosphere source of nutrients, trichomes/roots access to nutrients). METHODS: Isotopic (15N-enriched predator faeces) and physiological methods (analyses of plant protein, amino acids, growth, leaf mass per area and total N incorporated) in greenhouse experiments were used to investigate the ecophysiological contrasts between Tillandsioideae and Bromelioideae, and among ecophysiological types when a predatory anuran contributes to their nutrition. KEY RESULTS: It was observed that Bromelioideae had higher concentrations of soluble protein and only one species grew more (Ananas bracteatus), while Tillandsioideae showed higher concentrations of total amino acids, asparagine and did not grow. The ecophysiological types that showed similar protein contents also had similar growth. Additionally, an ordination analysis showed that the subfamilies and ecophysiological types were discrepant considering the results of the total nitrogen incorporated from predators, soluble protein and asparagine concentrations, relative growth rate and leaf mass per area. CONCLUSIONS: Bromeliad subfamilies showed a trade-off between two strategies: Tillandsioideae stored nitrogen into amino acids possibly for transamination reactions during nutritional stress and did not grow, whereas Bromelioideae used nitrogen for soluble protein production for immediate utilization, possibly for fast growth. These results highlight that Bromeliaceae evolution may be directly associated with the ability to stock nutrients.


Asunto(s)
Bromeliaceae/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos/metabolismo , Aminoácidos/fisiología , Ananas/metabolismo , Ananas/fisiología , Asparagina/metabolismo , Asparagina/fisiología , Bromelia/metabolismo , Bromelia/fisiología , Bromeliaceae/crecimiento & desarrollo , Bromeliaceae/fisiología , Isótopos de Nitrógeno/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/fisiología , Tillandsia/metabolismo , Tillandsia/fisiología
18.
Rev. biol. trop ; 64(3): 1101-1116, jul.-sep. 2016. tab, ilus
Artículo en Inglés | LILACS | ID: biblio-958199

RESUMEN

Abstract:Volatile compounds play a vital role in the life cycle of plants, possessing antimicrobial and anti-herbivore activities, and with a significant importance in the food, cosmetic, chemical, and pharmaceutical industry. This study aimed to identify the volatile compounds emitted by flowers of thirteen species belonging to four genera of Bromeliaceae, using headspace solid-phase micro-extraction and detection by gas chromatography-mass spectrometry. A total of 71 volatile compounds belonging to nine chemical groups were identified. The compounds identified represented more than 97 % of the major components in Aechmea bicolor, Ae. bromeliifolia, Ae. distichantha, Ae. fasciata, and Vriesea friburgensis. In the Ananas varieties, over 99 % of the components were identified, and around 90 % in V. simplex. V. friburgensis presented the largest diversity of volatiles with 31 compounds, while Alcantarea nahoumii presented only 14. All three Ananas varieties presented the same 28 compounds in relatively similar abundance, which has been confirmed by principal component analysis. Current taxonomy and pollination syndrome studies available can adequately explain the variation in volatile compounds among species. Rev. Biol. Trop. 64 (3): 1101-1116. Epub 2016 September 01.


ResumenLos compuestos volátiles tienen un papel vital en el ciclo de vida de las plantas. Poseen actividad antimicrobiana y anti-herbivoría biológica y una gran importancia en la industria de alimentos, cosméticos, perfumes, productos químicos y farmacéuticos. Este estudio tuvo como objetivo identificar los compuestos volátiles de trece flores de especies, pertenecientes a cuatro géneros de Bromeliaceae utilizando microextracción en fase sólida mediante cromatografía de gases hifenada con espacio de cabeza acoplada a espectrometría de masas. Se han identificado setenta y un diferentes compuestos volátiles pertenecientes a nueve grupos. Los compuestos identificados representaron más del 97 % de los componentes principales en Aechmea bicolor, Ae. bromeliifolia, Ae. distichantha, Ae. fasciata, Vriesea friburgensis, 99 % en las variedades de Ananas y 90 % en V. Simplex. V. friburgensis mostró la mayor diversidad de compuestos volátiles con 31, mientras que en Al. nahoumii se han encontrado sólo 14 compuestos. Las tres variedades de Ananas presentan los mismos 28 compuestos en cantidades relativamente similares, lo que se confirmó por el análisis de componentes principales. Estudios taxonómicos y síndromes de polinización disponibles podrían explicar la variación de los compuestos volátiles entre especies.


Asunto(s)
Bromeliaceae/química , Flores/química , Compuestos Orgánicos Volátiles/análisis , Valores de Referencia , Factores de Tiempo , Análisis de Componente Principal , Bromeliaceae/metabolismo , Flores/metabolismo , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos
19.
Plant Physiol Biochem ; 108: 400-411, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27552178

RESUMEN

Guzmania monostachia is an epiphytic heteroblastic bromeliad that exhibits rosette leaves forming water-holding tanks at maturity. Different portions along its leaf blades can display variable degrees of crassulacean acid metabolism (CAM) up-regulation under drought. Since abscisic acid (ABA) can act as an important long-distance signal, we conducted a joint investigation of ontogenetic and drought impacts on CAM intensity and ABA levels in different leaf groups within the G. monostachia rosette. For this, three groups of leaves were analysed according to their position within the mature-tank rosette (i.e., younger, intermediate, and older leaves) to characterize the general growth patterns and magnitude of drought-modulated CAM expression. CAM activity was evaluated by analysing key molecules in the biochemical machinery of this photosynthetic pathway, while endogenous ABA content was comparatively measured in different portions of each leaf group after seven days under well-watered (control) or drought treatment. The results revealed that G. monostachia shows more uniform morphological characteristics along the leaves when in the atmospheric stage. The drought treatment of mature-tank rosettes generally induced in older leaves a more severe water loss, followed by the lowest CAM activity and a higher increase in ABA levels, while younger leaves showed an opposite response. Therefore, leaf groups at distinct ontogenetic stages within the tank rosette of G. monostachia responded to drought with variable degrees of water loss and CAM expression. ABA seems to participate in this tissue-compartmented response as a long-distance signalling molecule, transmitting the drought-induced signals originated in older leaves towards the younger ones.


Asunto(s)
Ácido Abscísico/metabolismo , Bromeliaceae/metabolismo , Sequías , Hojas de la Planta/metabolismo , Bromeliaceae/fisiología , Fotosíntesis , Hojas de la Planta/anatomía & histología , Regulación hacia Arriba , Agua/metabolismo
20.
Int J Mol Sci ; 17(3): 303, 2016 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-26927090

RESUMEN

The Bromeliaceae family is one of the most morphologically diverse families with a pantropical distribution. To schedule an appropriate flowering time for bromeliads, ethylene is commonly used to initiate flower development in adult plants. However, the mechanism by which ethylene induces flowering in adult bromeliads remains unknown. Here, we identified an APETALA2 (AP2)-like gene, AfAP2-1, in Aechmea fasciata. AfAP2-1 contains two AP2 domains and is a nuclear-localized protein. It functions as a transcriptional activator, and the activation domain is located in the C-terminal region. The expression level of AfAP2-1 is higher in juvenile plants than in adult plants, and the AfAP2-1 transcript level was rapidly and transiently reduced in plants treated with exogenous ethylene. Overexpression of AfAP2-1 in Arabidopsis thaliana results in an extremely delayed flowering phenotype. These results suggested that AfAP2-1 responds to ethylene and is a putative age-dependent flowering regulator in A. fasciata.


Asunto(s)
Proteínas de Arabidopsis/genética , Bromeliaceae/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas Nucleares/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bromeliaceae/efectos de los fármacos , Bromeliaceae/genética , Bromeliaceae/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...