RESUMEN
Bromodeoxyuridine (BrdU) is used in studies related to cell proliferation and neurogenesis. The multiple intraperitoneal injections of this molecule could favor liver function profile changes. In this study, we evaluate the systemic and hepatocellular impact of BrdU in male adult Wistar rats in 30 %-partial hepatectomy (PHx) model. The rats received BrdU 50 mg/Kg by intraperitoneal injection at 0.5, 1, 2, 3, 6, 9 and 16 days after 30 %-PH. The rats were distributed into four groups as follows, control, sham, PHx/BrdU(-) and PHx/BrdU(+). On day 16, we evaluated hepatocellular nuclei and analyzed histopathological features by haematoxylin-eosin stain and apoptotic profile was qualified by caspase-3 presence. The systemic effect was evaluated by liver markers such as alanine transferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), alkaline phosphatase (AP), bilirubin, total proteins and serum albumin content. The statistical analysis consisted of a student t-test and one-way ANOVA. BrdU did not induce apoptosis or hepatocellular damage in male rats. Multiple administrations of BrdU in male rats did not induce significant decrease body weight, but increased serum ALT and LDH levels were found. Our results show that the BrdU does not produce hepatocellular damage.
Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Masculino , Animales , Ratas Wistar , Bromodesoxiuridina/farmacología , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Hígado/patología , Alanina Transaminasa/metabolismo , Alanina Transaminasa/farmacología , Aspartato Aminotransferasas/metabolismo , Aspartato Aminotransferasas/farmacologíaRESUMEN
Bufadienolides are digitalis-like aglycones mainly found in skin secretions of toads. Among their biological properties, the mechanisms of antiproliferative action on tumor cells remain unclear for many compounds, including against leukemia cells. Herein, it was evaluated the mechanisms involved in the antiproliferative and genotoxic actions of hellebrigenin on tumor cell lines and in silico capacity to inhibit the human topoisomerase IIa enzyme. Firstly, its cytotoxic action was investigated by colorimetric assays in human tumor and peripheral blood mononuclear cells (PBMC). Next, biochemical and morphological studies were detailed by light microscopy (trypan blue dye exclusion), immunocytochemistry (BrdU uptake), flow cytometry and DNA/chromosomal damages (Cometa and aberrations). Finally, computational modelling was used to search for topoisomerase inhibition. Hellebrigenin reduced proliferation, BrdU incorporation, viability, and membrane integrity of HL-60 leukemia cells. Additionally, it increased G2/M arrest, internucleosomal DNA fragmentation, mitochondrial depolarization, and phosphatidylserine externalization in a concentration-dependent manner. In contrast to doxorubicin, hellebrigenin did not cause DNA strand breaks in HL-60 cell line and lymphocytes, and it interacts with ATPase domain residues of human topoisomerase IIa, generating a complex of hydrophobic and van der Waals interactions and hydrogen bonds. So, hellebrigenin presented potent anti-leukemic activity at concentrations as low as 0.06 µM, a value comparable to the clinical anticancer agent doxorubicin, and caused biochemical changes suggestive of apoptosis without genotoxic/clastogenic-related action, but it probably triggers catalytic inhibition of topoisomerase II. These findings also emphasize toad steroid toxins as promising lead antineoplasic compounds with relatively low cytotoxic action on human normal cells.
Asunto(s)
Antineoplásicos , Bufanólidos , Leucemia , Humanos , Leucocitos Mononucleares , Bromodesoxiuridina/farmacología , Daño del ADN , Antineoplásicos/farmacología , Bufanólidos/química , Células HL-60 , Apoptosis , ADN/farmacología , Doxorrubicina/farmacologíaRESUMEN
BACKGROUND: Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS: Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aß deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS: Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aß plaques in the DG without any impact on Wnt5a. CONCLUSION: EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.
Asunto(s)
Enfermedad de Alzheimer , Electroacupuntura , Ratones , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Bromodesoxiuridina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Neurogénesis , Giro Dentado/metabolismoRESUMEN
BACKGROUND: MicroRNAs (miRNAs) are involved in the progression of diverse human cancers. This work aimed to delve into how microRNA-135a-5p (miR-135a-5p) affects the biological behaviors of Breast Cancer (BC) cells. METHODS: Gene Expression Omnibus (GEO) datasets were used to analyze the expression differences of miR-135a-5p in cancer tissues of BC patients. Quantitative real-time PCR and western blot were conducted to detect miR-135a-5p and Bcl-2 Associated Athanogene (BAG3) expression levels in BC tissues and cells, respectively. The proliferation, migration, invasion, and cell cycle of BC cells were detected by cell counting kit-8 assay, BrdU assay, wound healing assay, transwell assay, and flow cytometry. The targeted relationship between miR-135a-5p and BAG3 mRNA 3'UTR predicted by bioinformatics was further testified by a dual-luciferase reporter gene assay. Pearson's correlation analysis was adopted to analyze the correlation between miR-135a-5p expression and BAG3 expression. The downstream pathways of BAG3 were analyzed by the LinkedOmics database. RESULTS: MiR-135a-5p was significantly down-regulated and BAG3 expression was significantly raised in BC tissues. MiR-135a-5p overexpression repressed the viability, migration and invasion of BC cells, and blocked cell cycle progression in G0/G1 phase while inhibiting miR-135a-5p worked oppositely. BAG3 was verified as a target of miR-135a-5p. Overexpression of BAG3 reversed the impacts of miR-135a-5p on the malignant biological behaviors of BC cells. The high expression of BAG3 was associated with the activation of the cell cycle, mTOR and TGF-ß signaling pathways. CONCLUSION: MiR-135a-5p regulates BAG3 to repress the growth, migration, invasion, and cell cycle progression of BC cells.
Asunto(s)
Neoplasias de la Mama , MicroARNs , Regiones no Traducidas 3' , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Neoplasias de la Mama/genética , Bromodesoxiuridina , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Endocrine-disrupting and carcinogenic effects of glyphosate have long been suspected, but little is known about the effect of compounds used in real life at different concentrations, neither in normal nor in thyroid tumor cells. As cancer cells may have different sensitivities and the effect of the product containing glyphosate may be different from that produced by the active ingredient alone, including the Acceptable Occupational Exposure Level (AOEL=160µg/L) and the Acceptable Daily Intake (ADI=830µg/L) determined by ANVISA, we used two human thyroid-derived cell lines, Nthy-ori 3-1 (from normal follicular cells) and TPC-1 (from papillary carcinoma), to test 15 different concentrations of Roundup® Original DI. Trypan blue (TB), CCK-8 and BrdU assays were used to evaluate cytotoxicity, metabolic activity and proliferation with 24h and 48h exposures in technical and biological triplicates. TB showed an important toxic effect, especially after 24h of exposure, in both cell lines. The AOEL concentration caused the death of 43% and 50% of the Nthy-ori and TPC-1 cells, respectively, in 24 h, while ADI resulted in 35% and 58% of cell death. After 48h of exposure, AOEL and ADI caused a lower number of dead Nthy-ori (33% and 18%) and TPC-1 (33% and 37%) cells, respectively, suggesting that the toxic effect of the product disappears and/or both strains have repair mechanisms that protect them from longer exposures. On the other hand, the CCK-8 assay showed that small concentrations of Roundup have a proliferative effect: 6.5µg/L increased the number of both Nthy-ori and TPC-1 cells at 24h, and the BrdU assay confirmed the stimulatory effect with a 321% increase in the absorbance of Nthy-ori cells at 48h. The herbicide produced even more frequent increases in the BrdU absorbance of TPC-1 cells, mainly at 24h. We conclude that thyroid cells exposed to Roundup present a nonmonotonic dual dose-response curve. Low concentrations of the pesticide, considered acceptable, cause significant cell death but also have an important proliferative effect, especially on TPC-1 cells. This herbicide, widely used around the world, may play a role in the increased incidence rate of thyroid nodules and cancer that has been observed in recent decades.
Asunto(s)
Carcinoma Papilar , Herbicidas , Bromodesoxiuridina , Herbicidas/toxicidad , Humanos , Glándula Tiroides/metabolismoRESUMEN
INTRODUCTION: Inner ear progenitor cells have the potential for multi-directional differentiation. Retinoic acid is an important requirement for the development of the inner ear. Blocking the Curtyr's retinoic acid signaling pathway can significantly reduce the number of hair cells. Therefore, we believe that retinoic acid may induce the regeneration of inner ear hair cells. OBJECTIVE: To investigate whether the cochlear neural progenitor cells maintain the characteristics of stem cells during recovery and subculture, whether retinoic acid can induce cochlear neural progenitor cells into hair cells in vitro, and whether retinoic acid promotes or inhibits the proliferation of cochlear neural progenitor cells during differentiation. METHODS: Cochlear neural progenitor cells were cultured and induced in DMEM/F12+RA (10-6M) and then detected the expressions of hair cell markers (Math1 and MyosinVIIa) by immunofluorescence cytochemistry and realtime-polymerase chain reaction, and the proliferation of cochlear neural progenitor cells was detected by Brdu. RESULTS: The nestin of cochlear neural progenitor cells was positively expressed. The ratios of Math1-positive cells in the control group and experimental group were 1.5% and 63%, respectively; the ratios of MyosinVIIa-positive cells in the control group and experimental group were 0.96% and 56%, respectively (p<0.05). The ratios of Brdu+-labeled cells in retinoic acid group, group PBS, and group FBS were 20.6%, 29.9%, and 54.3%, respectively; however, the proliferation rate in the experimental group decreased. CONCLUSION: Retinoic acid can promote cochlear neural progenitor cells to differentiate into the hair cells.
Asunto(s)
Células-Madre Neurales , Tretinoina , Humanos , Tretinoina/farmacología , Bromodesoxiuridina , Células Cultivadas , Diferenciación CelularRESUMEN
Background: Many microRNAs have been identified as critical mediators in the progression of melanoma through its regulation of genes involved in different cellular processes such as melanogenesis, cell cycle control, and senescence. However, microRNAs' concurrent participation in syngeneic mouse B16F1 melanoma cells simultaneously induced decreased proliferation and differential pigmentation by exposure to 5-Brd-2'-dU (5'Bromo-2-deoxyuridine) and L-Tyr (L-Tyrosine) respectively, is poorly understood. Aim: To evaluate changes in the expression of microRNAs and identify which miRNAs in-network may contribute to the functional bases of phenotypes of differential pigmentation and reduction of proliferation in B16F1 melanoma cells exposed to 5-Brd-2'-dU and L-Tyr. Methods: Small RNAseq evaluation of the expression profiles of miRNAs in B16F1 melanoma cells exposed to 5-Brd-2'-dU (2.5 µg/mL) and L-Tyr (5 mM), as well as the expression by qRT-PCR of some molecular targets related to melanogenesis, cell cycle, and senescence. By bioinformatic analysis, we constructed network models of regulation and co-expression of microRNAs. Results: We confirmed that stimulation or repression of melanogenesis with L-Tyr or 5-Brd-2'-dU, respectively, generated changes in melanin concentration, reduction in proliferation, and changes in expression of microRNAs 470-3p, 470-5p, 30d-5p, 129-5p, 148b-3p, 27b-3p, and 211-5p, which presented patterns of coordinated and reciprocal co-expression, related to changes in melanogenesis through their putative targets Mitf, Tyr and Tyrp1, and control of cell cycle and senescence: Cyclin D1, Cdk2, Cdk4, p21, and p27. Conclusions: These findings provide insights into the molecular biology of melanoma of the way miRNAs are coordinated and reciprocal expression that may operate in a network as molecular bases for understanding changes in pigmentation and decreased proliferation induced in B16F1 melanoma cells exposed to L-Tyr and 5-Brd-2'-dU.
Asunto(s)
Bromodesoxiuridina/farmacología , Melanoma Experimental/tratamiento farmacológico , MicroARNs/genética , Tirosina/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Senescencia Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Melaninas/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Pigmentación/efectos de los fármacos , Pigmentación/genética , Pigmentación/fisiología , RNA-SeqRESUMEN
Decapod crustaceans, like mammals, retain the ability to make new neurons throughout life. In mammals, immune cells are closely associated with stem cells that generate adult-born neurons. In crayfish, evidence suggests that immune cells (hemocytes) originating in the immune system travel to neurogenic regions and transform into neural progenitor cells. This nontraditional immune activity takes place continuously under normal physiological conditions, but little is known under pathological conditions (neurodegeneration). In this study, the immune system and its relationship with neurogenesis were investigated during neurodegeneration (unilateral antennular ablation) in adult crayfish. Our experiments show that after ablation (1) Proliferating cells decrease in neurogenic areas of the adult crayfish brain; (2) The immune response, but not neurogenesis, is ablation-side dependent; (3) Inducible nitric oxide synthase (iNOS) plays a crucial role in the neurogenic niche containing neural progenitors during the immune response; (4) Brain areas targeted by antennular projections respond acutely (15 min) to the lesion, increasing the number of local immune cells; (5) Immune cells are recruited to the area surrounding the ipsilateral neurogenic niche; and (6) The vasculature in the niche responds acutely by dilation and possibly also neovascularization. We conclude that immune cells are important in both neurodegeneration and neurogenesis by contributing in physiological conditions to the maintenance of the number of neural precursor cells in the neurogenic niche (neurogenesis), and in pathological conditions (neurodegeneration) by coordinating NO release and vascular responses associated with the neurogenic niche. Our data suggest that neural damage and recovery participate in a balance between these competing immune cell roles.
Asunto(s)
Astacoidea/inmunología , Sistema Inmunológico/inmunología , Degeneración Nerviosa/inmunología , Neurogénesis/inmunología , Animales , Astacoidea/ultraestructura , Vasos Sanguíneos/metabolismo , Encéfalo/patología , Bromodesoxiuridina/metabolismo , Recuento de Células , Proliferación Celular , Femenino , Glutamato-Amoníaco Ligasa/metabolismo , Hemocitos/metabolismo , Masculino , Neurópilo/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Nicho de Células MadreRESUMEN
Plasmonic photothermal therapy (PPTT) has been used as an alternative to chemotherapy for the elimination of resistant microorganisms; however, its in situ evaluation has not been well studied. In the present study, we assessed the antimicrobial activity of a chitosan-based hydrogel embedded with gold nanorods (Ch/AuNRs) using a low power infrared diode laser. The antibacterial activity was measured in both Gram-positive and -negative strains, including clinical isolates of multidrug-resistant pathogens. The cytotoxic effect, cellular proliferation, and the expression of the pro-inflammatory (IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines were quantified in a murine model of macrophages. Results showed a potent antimicrobial activity of the Ch/AuNRs with MICs ≤4⯵g/mL, very low cytotoxicity with cell viability above 80%, and the macrophage proliferation was not affected for a period of 48â¯h. These results suggest that our Ch/AuNR-embedded hydrogel could be an option to locally control chronic nosocomial infections using PPTT.
Asunto(s)
Antiinfecciosos/farmacología , Oro/farmacología , Hidrogeles/farmacología , Hipertermia Inducida , Nanotubos/química , Fototerapia , Animales , Antifúngicos/farmacología , Bromodesoxiuridina/metabolismo , Muerte Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quitosano/química , Inflamación/patología , Ratones , Pruebas de Sensibilidad Microbiana , Nanotubos/ultraestructura , Células RAW 264.7RESUMEN
In rodents, daily maternal separation for 180â¯min (MS180) during the first weeks of life affects hippocampal granule cell neurogenesis. Development of the cerebellum granule cell layer also occurs during the first weeks of life. However, whether MS180 affects this neurogenic niche remains unknown. To study this, we evaluated the immediate and long term effect of MS180 on granule cell survival within the cerebellum. Pups were injected twice at an 8-hour interval at PND (postnatal day) 5 with bromodeoxyuridine (BrdU, 50â¯mg/kg) and were sacrificed ten days later (PND15) or allowed to survive into adulthood (PND60). We observed a higher density of BrdU-positive cells in the cerebellar foliae (pâ¯<â¯0.05) of MS180 pups at PND15. This increase was also observed in both, cerebellar foliae and fissures (pâ¯<â¯0.05) at PND60. Triple immunofluorescence staining against BrdU, NeuN (a marker of mature neurons), and GFAP (a marker of mature glia), revealed that BrdUâ¯+â¯cells labeled at PND5 co-localized with NeuN but not with GFAP, indicating that they were mature neurons. MS180 did not affect baseline corticosterone levels at PND15 but significantly increased adult corticosterone levels (pâ¯<â¯0.05). In conclusion, MS180 increased cell survival in the granular layer of cerebellar foliae and fissures and resulted in further integration of the cells into adult circuits. These effects occurred without early alterations of basal corticosterone by MS180. Our results indicate that early-life stress induces a permanent increase in cerebellar neurogenesis.
Asunto(s)
Cerebelo/fisiología , Gránulos Citoplasmáticos/efectos de los fármacos , Estrés Psicológico/fisiopatología , Acetatos/farmacología , Animales , Animales Recién Nacidos , Bromodesoxiuridina/farmacología , Recuento de Células , Corticosterona/metabolismo , Gránulos Citoplasmáticos/patología , Femenino , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisario , Masculino , Privación Materna , Morfolinas/farmacología , Neurogénesis/fisiología , Neuronas/efectos de los fármacos , Sistema Hipófiso-Suprarrenal , Ratas , Ratas Sprague-DawleyRESUMEN
The aim of the present study was to characterize the in vivo radiosensitizing effect of a very low dose of bromodeoxyuridine (BrdU) in mice exposed to low-dose radiation by establishing the following: (1) the radiosensitizing effect during DNA synthesis using single-cell gel electrophoresis (SCGE) in murine bone marrow cells, and (2) the number and timing of the mechanisms of genotoxicity and cytotoxicity, as well as the correlation of both end points, using flow cytometry analysis of the kinetics of micronucleus induction in reticulocytes. Groups of mice received intraperitoneal injections of 0.125 mg/g of BrdU 24 h prior to irradiation with 0.5 Gy of 60 Co gamma rays. DNA breaks measured using SCGE were determined at 30 min after exposure to radiation. The kinetics of micronucleated reticulocyte (MN-RET) induction was determined every 8 h after irradiation up to 72 h. The results from both experimental models indicated that low-level BrdU incorporation into DNA increased the sensitivity to 0.5 Gy of radiation, particularly in the S phase. The formation of micronuclei by gamma rays was produced at three different times using two main mechanisms. In the BrdU-substituted cells, the second mechanism was associated with a high cytotoxic effect that was absent in the irradiated BrdU-unsubstituted cells. The third mechanism, in which micronucleus formation was increased in irradiated substituted cells compared with the irradiated nonsubstituted control cells, was also related to an increase in cytotoxicity. Environ. Mol. Mutagen. 60:534-545, 2019. © 2019 Wiley Periodicals, Inc.
Asunto(s)
Bromodesoxiuridina/administración & dosificación , Rayos gamma/efectos adversos , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Animales , Células de la Médula Ósea/efectos de los fármacos , ADN/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo/métodos , Cinética , Masculino , Ratones , Ratones Endogámicos ICR , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Pruebas de Micronúcleos/métodos , Reticulocitos/efectos de los fármacosRESUMEN
Multiple sclerosis (MS) is one of the most common causes of progressive disability affecting young people with very few therapeutic options available for its progressive forms. Its pathophysiology involves demyelination and neurodegeneration apparently driven by microglial activation, which is physiologically dependent on colony-stimulating factor-1 receptor (CSF-1R) signaling. In the present work, we used microglial modulation through oral administration of brain-penetrant CSF-1R inhibitor BLZ945 in acute and chronic cuprizone (CPZ)-induced demyelination to evaluate preventive and therapeutic effects on de/remyelination and neurodegeneration. Our results show that BLZ945 induced a significant reduction in the number of microglia. Preventive BLZ945 treatment attenuated demyelination in the acute CPZ model, mainly in cortex and external capsule. In contrast, BLZ945 treatment in the acute CPZ model failed to protect myelin or foster remyelination in myelin-rich areas, which may respond to a loss in microglial phagocytic capacity and the consequent impairment in oligodendroglial differentiation. Preventive and therapeutic BLZ945 treatment promoted remyelination and neuroprotection in the chronic model. These results could be potentially transferred to the treatment of progressive forms of MS.
Asunto(s)
Enfermedades Desmielinizantes/metabolismo , Microglía/metabolismo , Receptores del Factor Estimulante de Colonias/antagonistas & inhibidores , Receptores del Factor Estimulante de Colonias/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Benzotiazoles/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/patología , Encéfalo/ultraestructura , Bromodesoxiuridina/metabolismo , Cuprizona/toxicidad , Citocinas/metabolismo , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/patología , Microglía/ultraestructura , Microscopía Electrónica de Transmisión , Proteína Básica de Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ácidos Picolínicos/uso terapéutico , Receptores del Factor Estimulante de Colonias/genética , Factores de TiempoRESUMEN
Although the effects of low-intensity pulsed ultrasound (LIPUS) on diverse cell types have been fully studied, the functional role of LIPUS in keratinocytes remains poorly understood. This study aimed to investigate the effects of LIPUS on proliferation and migration of HaCaT cells as well as the regulatory mechanisms associated with signaling pathways. Human HaCaT cells were exposed or not to LIPUS, and cell proliferation and migration were measured by BrdU incorporation assay and Transwell assay, respectively. Expression of proteins associated with proliferation and migration was evaluated by western blot analysis. Expression of key kinases in the PI3K/AKT and JNK pathways was also evaluated by western blot analysis. Effects of LIPUS on the PI3K/AKT and JNK pathways, and whether LIPUS affected HaCaT cells via these two pathways were finally explored. When the parameter of LIPUS (number of cycles) was set at 300, cell viability was the highest after LIPUS stimulation. We then found that the percentage of BrdU positive cells was enhanced by LIPUS, along with up-regulation of cyclinD1, CDK6, CDK4, and VEGF. LIPUS promoted migration, as well as up-regulation of MMP-2 and MMP-9. Phosphorylation levels of key kinases in the PI3K/AKT and JNK pathways were increased by LIPUS. Inhibition of either PI3K/AKT pathway or JNK pathway attenuated effects of LIPUS on HaCaT cells, and co-inhibition of these two pathways showed augmented effects. LIPUS promoted proliferation and migration of HaCaT cells through activating the PI3K/AKT and JNK pathways.
Asunto(s)
Movimiento Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Queratinocitos/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Fosfatidilinositol 3-Quinasas/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/efectos de la radiación , Ondas Ultrasónicas , Análisis de Varianza , Western Blotting , Bromodesoxiuridina , Línea Celular Transformada , Supervivencia Celular/efectos de la radiación , Humanos , Queratinocitos/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Reproducibilidad de los Resultados , Transducción de Señal/efectos de la radiación , Regulación hacia ArribaRESUMEN
Progranulin is a 67-88 kDa glycoprotein, also known as acrogranin, PC-cell-derived growth factor, granulin-epithelin precursor, and proepithelin. This protein is present in a variety of mouse, rat, and human tissues. Progranulin, which is a growth factor, mediates cell cycle progression and cell migration in normal and pathological conditions. In several types of cancers, progranulin expression is upregulated, whereas function-interfering mutations in the granulin gene in humans have been linked to a subset of heritable cases of frontotemporal lobar degeneration. Also, progranulin has important effects on mouse preimplantation embryo development in vitro, including regulation of the appearance of the epithelium in the developing mouse blastocyst and growth of trophectoderm. Furthermore, progranulin promotes mouse blastocyst hatching, adhesion, and outgrowth in vitro. In this chapter, we describe some of the techniques that may be useful in the study of progranulin in embryo development.
Asunto(s)
Desarrollo Embrionario , Biología Molecular/métodos , Progranulinas/metabolismo , Animales , Blastocisto/citología , Blastocisto/metabolismo , Bromodesoxiuridina/metabolismo , Adhesión Celular , Medios de Cultivo Condicionados/farmacología , Ectodermo/citología , Ectodermo/metabolismo , Embrión de Mamíferos/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Masculino , Ratones , Progranulinas/genética , ARN Mensajero/metabolismoRESUMEN
The dentate gyrus (DG) is a neurogenic structure that exhibits functional and structural reorganization after injury. Neurogenesis and functional recovery occur after brain damage, and the possible relation between both processes is a matter of study. We explored whether neurogenesis and the activation of new neurons correlated with DG recovery over time. We induced a DG lesion in young adult rats through the intrahippocampal injection of kainic acid and analyzed functional recovery and the activation of new neurons after animals performed a contextual fear memory task (CFM) or a control spatial exploratory task. We analyzed the number of BrdU+ cells that co-localized with doublecortin (DCX) or with NeuN within the damaged DG and evaluated the number of cells in each population that were labelled with the activity marker c-fos after either task. At 10 days post-lesion (dpl), a region of the granular cell layer was devoid of cells, evidencing the damaged area, whereas at 30 dpl this region was significantly smaller. At 10 dpl, the number of BrdU+/DCX+/c-fos positive cells was increased compared to the sham-lesion group, but CFM was impaired. At 30 dpl, a significantly greater number of BrdU+/NeuN+/c-fos positive cells was observed than at 10 dpl, and activation correlated with CFM recovery. Performance in the spatial exploratory task induced marginal c-fos immunoreactivity in the BrdU+/NeuN+ population. We demonstrate that neurons born after the DG was damaged survive and are activated in a time- and task-dependent manner and that activation of new neurons occurs along functional recovery.
Asunto(s)
Giro Dentado/lesiones , Giro Dentado/patología , Recuerdo Mental/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Mapeo Encefálico , Bromodesoxiuridina , Condicionamiento Psicológico/efectos de los fármacos , Condicionamiento Psicológico/fisiología , Giro Dentado/diagnóstico por imagen , Proteína Doblecortina , Agonistas de Aminoácidos Excitadores/toxicidad , Conducta Exploratoria/fisiología , Miedo/efectos de los fármacos , Miedo/fisiología , Ácido Kaínico/toxicidad , Masculino , Recuerdo Mental/efectos de los fármacos , Microscopía Confocal , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar , Conducta Espacial/efectos de los fármacos , Conducta Espacial/fisiología , Estadísticas no Paramétricas , Factores de TiempoRESUMEN
Although the effects of low-intensity pulsed ultrasound (LIPUS) on diverse cell types have been fully studied, the functional role of LIPUS in keratinocytes remains poorly understood. This study aimed to investigate the effects of LIPUS on proliferation and migration of HaCaT cells as well as the regulatory mechanisms associated with signaling pathways. Human HaCaT cells were exposed or not to LIPUS, and cell proliferation and migration were measured by BrdU incorporation assay and Transwell assay, respectively. Expression of proteins associated with proliferation and migration was evaluated by western blot analysis. Expression of key kinases in the PI3K/AKT and JNK pathways was also evaluated by western blot analysis. Effects of LIPUS on the PI3K/AKT and JNK pathways, and whether LIPUS affected HaCaT cells via these two pathways were finally explored. When the parameter of LIPUS (number of cycles) was set at 300, cell viability was the highest after LIPUS stimulation. We then found that the percentage of BrdU positive cells was enhanced by LIPUS, along with up-regulation of cyclinD1, CDK6, CDK4, and VEGF. LIPUS promoted migration, as well as up-regulation of MMP-2 and MMP-9. Phosphorylation levels of key kinases in the PI3K/AKT and JNK pathways were increased by LIPUS. Inhibition of either PI3K/AKT pathway or JNK pathway attenuated effects of LIPUS on HaCaT cells, and co-inhibition of these two pathways showed augmented effects. LIPUS promoted proliferation and migration of HaCaT cells through activating the PI3K/AKT and JNK pathways.
Asunto(s)
Queratinocitos/efectos de la radiación , Movimiento Celular/efectos de la radiación , Fosfatidilinositol 3-Quinasas/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Proliferación Celular/efectos de la radiación , Ondas Ultrasónicas , Bromodesoxiuridina , Línea Celular Transformada , Transducción de Señal/efectos de la radiación , Queratinocitos/metabolismo , Regulación hacia Arriba , Supervivencia Celular/efectos de la radiación , Western Blotting , Reproducibilidad de los Resultados , Análisis de Varianza , Fosfatidilinositol 3-Quinasas/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismoRESUMEN
Trypanosomatids are the etiologic agents of various infectious diseases in humans. They diverged early during eukaryotic evolution and have attracted attention as peculiar models for evolutionary and comparative studies. Here, we show a meticulous study comparing the incorporation and detection of the thymidine analogs BrdU and EdU in Leishmania amazonensis, Trypanosoma brucei, and Trypanosoma cruzi to monitor their DNA replication. We used BrdU- and EdU-incorporated parasites with the respective standard detection approaches: indirect immunofluorescence to detect BrdU after standard denaturation (2 M HCl) and "click" chemistry to detect EdU. We found a discrepancy between these two thymidine analogs due to the poor detection of BrdU, which is reflected on the estimative of the duration of the cell cycle phases G1, S, and G2. To solve this discrepancy, we increase the exposure of incorporated BrdU using different concentrations of HCl. Using a new value for HCl concentration, we re-estimated the phases G1, S, G2 + M, and cytokinesis durations, confirming the values found by this approach using EdU. In conclusion, we suggest that the studies using BrdU with standard detection approach, not only in trypanosomatids but also in others cell types, should be reviewed to ensure an accurate estimation of DNA replication monitoring.
Asunto(s)
Bromodesoxiuridina/análisis , Ciclo Celular , Replicación del ADN , Desoxiuridina/análogos & derivados , Leishmania/crecimiento & desarrollo , Trypanosoma/crecimiento & desarrollo , Desoxiuridina/análisis , Leishmania/metabolismo , Coloración y Etiquetado , Trypanosoma/metabolismoRESUMEN
Aging increases the vulnerability to stress and risk of developing depression. These changes have been related to a reduction of dehydroepiandrosterone (DHEA) levels, an adrenal steroid with anti-stress effects. Also, adult hippocampal neurogenesis decreases during aging and its alteration or impaired is related to the development of depression. Besides, it has been hypothesized that DHEA increases the formation of new neurons. However, it is unknown whether treatment with DHEA in aging may stimulate the dendrite maturation of newborn neurons and reversing depressive-like signs evoked by chronic stress exposure. Here aged male rats (14 months old) were subjected to a scheme of chronic mild stress (CMS) during six weeks, received a treatment with DHEA from the third week of CMS. Changes in body weight and sucrose preference (SP) were measured once a week. DHEA levels were measured in serum, identification of doublecortin-(DCX)-, BrdU- and BrdU/NeuN-labeled cells was done in the dentate gyrus of the hippocampus. CMS produced a gradual reduction in the body weight, but no changes in the SP were observed. Treatment enhanced levels of DHEA, but lack of recovery on body weight of stressed rats. Aging reduced the number of DCX-, BrdU- and BrdU/NeuN- cells but DHEA just significantly increased the number of DCX-cells in rats under CMS and controls, reaching levels of young non-stressed rats (used here as a reference of an optimal status of health). In rats under CMS, DHEA facilitated dendritic maturation of immature new neurons. Our results reveal that DHEA improves neural plasticity even in conditions of CMS in middle age rats. Thus, this hormone reverted the decrement of DCX-cells caused during normal aging.
Asunto(s)
Envejecimiento/efectos de los fármacos , Deshidroepiandrosterona/farmacología , Dendritas/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Psicotrópicos/farmacología , Estrés Psicológico/tratamiento farmacológico , Envejecimiento/fisiología , Envejecimiento/psicología , Animales , Antígenos Nucleares/metabolismo , Peso Corporal/efectos de los fármacos , Bromodesoxiuridina , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Enfermedad Crónica , Deshidroepiandrosterona/sangre , Dendritas/metabolismo , Dendritas/patología , Giro Dentado/metabolismo , Giro Dentado/patología , Sacarosa en la Dieta , Proteínas de Dominio Doblecortina , Proteína Doblecortina , Masculino , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/efectos de los fármacos , Neurogénesis/fisiología , Neuropéptidos/metabolismo , Psicotrópicos/sangre , Distribución Aleatoria , Ratas Wistar , Estrés Psicológico/metabolismo , Estrés Psicológico/patologíaRESUMEN
Previous studies demonstrated that exogenous ATP is able to regulate proliferation of retinal progenitor cells (RPCs) in vitro possibly via P2Y1 receptor, a G protein-coupled receptor. Here, we evaluated the function of adenine nucleotides in vivo during retinal development of newborn rats. Intravitreal injection of apyrase, an enzyme that hydrolyzes nucleotides, reduced cell proliferation in retinas at postnatal day 2 (P2). This decrease was reversed when retinas were treated together with ATPγ-S or ADPß-S, two hydrolysis-resistant analogs of ATP and ADP, respectively. During early postnatal days (P0 to P5), an increase in ectonucleotidase (E-NTPDase) activity was observed in the retina, suggesting a decrease in the availability of adenine nucleotides, coinciding with the end of proliferation. Interestingly, intravitreal injection of the E-NTPDase inhibitor ARL67156 increased proliferation by around 60 % at P5 rats. Furthermore, immunolabeling against P2Y1 receptor was observed overall in retina layers from P2 rats, including proliferating Ki-67-positive cells in the neuroblastic layer (NBL), suggesting that this receptor could be responsible for the action of adenine nucleotides upon proliferation of RPCs. Accordingly, intravitreal injection of MRS2179, a selective antagonist of P2Y1 receptors, reduced cell proliferation by approximately 20 % in P2 rats. Moreover, treatment with MRS 2179 caused an increase in p57KIP2 and cyclin D1 expression, a reduction in cyclin E and Rb phosphorylated expression and in BrdU-positive cell number. These data suggest that the adenine nucleotides modulate the proliferation of rat RPCs via activation of P2Y1 receptors regulating transition from G1 to S phase of the cell cycle.
Asunto(s)
Adenosina Difosfato/análogos & derivados , Proliferación Celular/efectos de los fármacos , Receptores Purinérgicos P2Y1/metabolismo , Retina/efectos de los fármacos , Células Madre/efectos de los fármacos , Adenosina Difosfato/farmacología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Bromodesoxiuridina/metabolismo , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Ratas , Retina/metabolismo , Células Madre/citologíaRESUMEN
Myricitrin (MYR) is a natural flavonoid that inhibits nitric oxide (NO) transmission and has an atypical antipsychotic-like profile in animal models. Considering that several NO inhibitors exert antidepressant-like effects, the present study evaluated the antidepressant-like effect of MYR (3-30mg/kg) in the tail suspension test (TST). Because of the putative relationship between adult neurogenesis and antidepressant activity, we also assessed cell proliferation, survival, and differentiation in adult neurogenic niches, including the subgranular zone (SGZ) and subventricular zone (SVZ). Similar to the positive control imipramine (IMI; 10mg/kg), repeated treatment with 10mg/kg MIR but not acute treatment reduced immobility time in the TST, indicating an antidepressant-like effect. No effect on general motor activity was observed. Myricitrin also facilitated cell proliferation in the SGZ of the hippocampal dentate gyrus and SVZ. In the SGZ, MYR increased the number of doublecortin- and 5-bromo-2'-deoxyuridine/neuronal nuclei-positive cells. Our results suggest that MYR facilitates hippocampal neurogenesis, which might contribute to its antidepressant-like effect and atypical antipsychotic-like profile.