Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 821
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(39): e2406479121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39284050

RESUMEN

Parkinson's disease (PD) is typically a sporadic late-onset disorder, which has made it difficult to model in mice. Several transgenic mouse models bearing mutations in SNCA, which encodes alpha-Synuclein (α-Syn), have been made, but these lines do not express SNCA in a physiologically accurate spatiotemporal pattern, which limits the ability of the mice to recapitulate the features of human PD. Here, we generated knock-in mice bearing the G51D SNCA mutation. After establishing that their motor symptoms begin at 9 mo of age, we then sought earlier pathologies. We assessed the phosphorylation at Serine 129 of α-Syn in different tissues and detected phospho-α-Syn in the olfactory bulb and enteric nervous system at 3 mo of age. Olfactory deficit and impaired gut transit followed at 6 mo, preceding motor symptoms. The SncaG51D mice thus parallel the progression of human PD and will enable us to study PD pathogenesis and test future therapies.


Asunto(s)
Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Enfermedad de Parkinson , alfa-Sinucleína , Animales , alfa-Sinucleína/metabolismo , alfa-Sinucleína/genética , Ratones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/patología , Ratones Transgénicos , Fosforilación , Trastornos del Olfato/genética , Trastornos del Olfato/metabolismo , Trastornos del Olfato/fisiopatología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Enfermedades Gastrointestinales/genética , Enfermedades Gastrointestinales/metabolismo , Enfermedades Gastrointestinales/patología , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/fisiopatología , Humanos , Masculino
2.
Life Sci ; 355: 122967, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39142504

RESUMEN

Olfactory dysfunction, influenced by factors such as aging and environmental stress, is linked to various neurological disorders. The olfactory bulb's connections to brain areas like the hypothalamus, piriform cortex, entorhinal cortex, and limbic system make olfactory dysfunction a contributor to a range of neuropathological conditions. Recent research has underscored that olfactory deficits are prevalent in individuals with both metabolic syndrome and dementia. These systemic metabolic alterations correlate with olfactory impairments, potentially affecting brain regions associated with the olfactory bulb. In cases of metabolic syndrome, phenomena such as insulin resistance and disrupted glucose metabolism may result in compromised olfactory function, leading to multiple neurological issues. This review synthesizes key findings on the interplay between metabolic-induced olfactory dysfunction and neuropathology. It emphasizes the critical role of olfactory assessment in diagnosing and managing neurological diseases related to metabolic syndrome.


Asunto(s)
Síndrome Metabólico , Bulbo Olfatorio , Humanos , Síndrome Metabólico/metabolismo , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Trastornos del Olfato/metabolismo , Trastornos del Olfato/etiología , Trastornos del Olfato/fisiopatología , Animales , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología
3.
Med Clin (Barc) ; 163(6): 286-290, 2024 09 27.
Artículo en Inglés, Español | MEDLINE | ID: mdl-38960797

RESUMEN

INTRODUCTION: Persistent post-COVID olfactory dysfunction continues to be studied due to the controversy in its pathophysiology and neuroimaging. MATERIALS AND METHODS: The patients had confirmed mild COVID-19 infection with olfactory dysfunction of more than one month of evolution and they were compared to controls with normal olfaction, assessed using the Sniffin' Sticks Olfactory Test and underwent brain, magnetic resonance imaging (MRI) of the olfactory bulb and olfactory function. RESULTS: A total of 8 patients and 2 controls participated. The average age of the patients was 34.5 years (SD 8.5), and that of the controls was 28.5 (SD 2.1). The average score in the patients' olfactory test was 7.9 points (SD 2.2). In brain and olfactory bulb MRI tests, no morphological differences were found. When evaluated by functional MRI, none of the patients activated the entorhinal area in comparison to the controls, who did show activation at this level. Activation of secondary olfactory areas in cases and controls were as follows: orbitofrontal (25% vs 100%), basal ganglia (25% vs 50%) and insula (38% vs 0%) respectively. CONCLUSIONS: There were no observed morphological changes in the brain MRI. Unlike the controls, none of the patients activated the entorhinal cortex in the olfactory functional MRI.


Asunto(s)
COVID-19 , Imagen por Resonancia Magnética , Trastornos del Olfato , Bulbo Olfatorio , Humanos , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , Adulto , Masculino , Trastornos del Olfato/etiología , Trastornos del Olfato/diagnóstico por imagen , Femenino , Bulbo Olfatorio/diagnóstico por imagen , Bulbo Olfatorio/patología , Estudios de Casos y Controles , Persona de Mediana Edad , Neuroimagen
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167347, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39019092

RESUMEN

Intranasal infection is commonly used to establish a SARS-CoV-2 mouse model due to its non-invasive procedures and a minimal effect from the operation itself. However, mice intranasally infected with SARS-CoV-2 have a high mortality rate, which limits the utility of this model for exploring therapeutic strategies and the sequelae of non-fatal COVID-19 cases. To resolve these limitations, an aerosolised viral administration method has been suggested. However, an in-depth pathological analysis comparing the two models is lacking. Here, we show that inhalation and intranasal SARS-CoV-2 (106 PFU) infection models established in K18-hACE2 mice develop unique pathological features in both the respiratory and central nervous systems, which could be directly attributed to the infection method. While the inhalation-infection model exhibited relatively milder pathological parameters, it closely mimicked the prevalent chest CT pattern observed in COVID-19 patients with focal, peripheral lesions and fibrotic scarring in the recuperating lung. We also found the evidence of direct neuron-invasion from the olfactory receptor neurons to the olfactory bulb in the intranasal model and showed the trigeminal nerve as an alternative route of transmission to the brain in inhalation infected mice. Even after viral clearance confirmed at 14 days post-infection, mild lesions were still found in the brain of inhalation-infected mice. These findings suggest that the inhalation-infection model has advantages over the intranasal-infection model in closely mimicking the pathological features of non-fatal symptoms of COVID-19, demonstrating its potential to study the sequelae and possible interventions for long COVID.


Asunto(s)
COVID-19 , Modelos Animales de Enfermedad , Pulmón , SARS-CoV-2 , Animales , COVID-19/patología , COVID-19/virología , Ratones , Pulmón/patología , Pulmón/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Bulbo Olfatorio/patología , Bulbo Olfatorio/virología , Humanos , Administración Intranasal , Femenino , Neuronas Receptoras Olfatorias/virología , Neuronas Receptoras Olfatorias/metabolismo
5.
Sci Rep ; 14(1): 13396, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38862636

RESUMEN

Despite its high prevalence, the determinants of smelling impairment in COVID-19 remain not fully understood. In this work, we aimed to examine the association between olfactory bulb volume and the clinical trajectory of COVID-19-related smelling impairment in a large-scale magnetic resonance imaging (MRI) analysis. Data of non-vaccinated COVID-19 convalescents recruited within the framework of the prospective Hamburg City Health Study COVID Program between March and December 2020 were analyzed. At baseline, 233 participants underwent MRI and neuropsychological testing as well as a structured questionnaire for olfactory function. Between March and April 2022, olfactory function was assessed at follow-up including quantitative olfactometric testing with Sniffin' Sticks. This study included 233 individuals recovered from mainly mild to moderate SARS-CoV-2 infections. Longitudinal assessment demonstrated a declining prevalence of self-reported olfactory dysfunction from 67.1% at acute infection, 21.0% at baseline examination and 17.5% at follow-up. Participants with post-acute self-reported olfactory dysfunction had a significantly lower olfactory bulb volume at baseline than normally smelling individuals. Olfactory bulb volume at baseline predicted olfactometric scores at follow-up. Performance in neuropsychological testing was not significantly associated with the olfactory bulb volume. Our work demonstrates an association of long-term self-reported smelling dysfunction and olfactory bulb integrity in a sample of individuals recovered from mainly mild to moderate COVID-19. Collectively, our results highlight olfactory bulb volume as a surrogate marker that may inform diagnosis and guide rehabilitation strategies in COVID-19.


Asunto(s)
COVID-19 , Imagen por Resonancia Magnética , Trastornos del Olfato , Bulbo Olfatorio , SARS-CoV-2 , Humanos , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/patología , Bulbo Olfatorio/diagnóstico por imagen , COVID-19/fisiopatología , COVID-19/complicaciones , Masculino , Femenino , Persona de Mediana Edad , Trastornos del Olfato/etiología , Trastornos del Olfato/fisiopatología , Adulto , SARS-CoV-2/aislamiento & purificación , Anciano , Estudios Prospectivos , Pruebas Neuropsicológicas , Olfato/fisiología
6.
Nat Commun ; 15(1): 5133, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879548

RESUMEN

Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.


Asunto(s)
Progresión de la Enfermedad , Cuerpos de Lewy , Enfermedad por Cuerpos de Lewy , alfa-Sinucleína , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , alfa-Sinucleína/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Tronco Encefálico/patología , Tronco Encefálico/metabolismo , Cuerpos de Lewy/patología , Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad por Cuerpos de Lewy/metabolismo , Bulbo Olfatorio/patología , Bulbo Olfatorio/metabolismo
7.
eNeuro ; 11(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38834299

RESUMEN

Viruses, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), use respiratory epithelial cells as an entry point for infection. Within the nasal cavity, the olfactory epithelium (OE) is particularly sensitive to infections which may lead to olfactory dysfunction. In patients suffering from coronavirus disease 2019, deficits in olfaction have been characterized as a distinctive symptom. Here, we used the K18hACE2 mice to study the spread of SARS-CoV-2 infection and inflammation in the olfactory system (OS) after 7 d of infection. In the OE, we found that SARS-CoV-2 selectively targeted the supporting/sustentacular cells (SCs) and macrophages from the lamina propria. In the brain, SARS-CoV-2 infected some microglial cells in the olfactory bulb (OB), and there was a widespread infection of projection neurons in the OB, piriform cortex (PC), and tubular striatum (TuS). Inflammation, indicated by both elevated numbers and morphologically activated IBA1+ cells (monocyte/macrophage lineages), was preferentially increased in the OE septum, while it was homogeneously distributed throughout the layers of the OB, PC, and TuS. Myelinated OS axonal tracts, the lateral olfactory tract, and the anterior commissure, exhibited decreased levels of 2',3'-cyclic-nucleotide 3'-phosphodiesterase, indicative of myelin defects. Collectively, our work supports the hypothesis that SARS-CoV-2 infected SC and macrophages in the OE and, centrally, microglia and subpopulations of OS neurons. The observed inflammation throughout the OS areas and central myelin defects may account for the long-lasting olfactory deficit.


Asunto(s)
COVID-19 , Vaina de Mielina , Bulbo Olfatorio , Mucosa Olfatoria , SARS-CoV-2 , Animales , COVID-19/patología , COVID-19/complicaciones , Ratones , Mucosa Olfatoria/patología , Mucosa Olfatoria/virología , Bulbo Olfatorio/patología , Bulbo Olfatorio/virología , Vaina de Mielina/patología , Vaina de Mielina/metabolismo , Microglía/patología , Microglía/metabolismo , Microglía/virología , Ratones Transgénicos , Enzima Convertidora de Angiotensina 2/metabolismo , Trastornos del Olfato/patología , Trastornos del Olfato/virología , Modelos Animales de Enfermedad , Masculino , Inflamación/patología , Inflamación/virología , Macrófagos/patología , Femenino
8.
AJNR Am J Neuroradiol ; 45(8): 1141-1152, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38871365

RESUMEN

BACKGROUND AND PURPOSE: Parkinson disease is a prevalent disease, with olfactory dysfunction recognized as an early nonmotor manifestation. It is sometimes difficult to differentiate Parkinson disease from atypical parkinsonism using conventional MR imaging and motor symptoms. It is also known that olfactory loss occurs to a lesser extent or is absent in atypical parkinsonism. To the best of our knowledge, no study has examined olfactory bulb changes to differentiate Parkinson disease from atypical parkinsonism, even in an early diagnosis, and its association with conventional MR imaging findings. Hence, we aimed to assess the utility of olfactory bulb measurements in differentiating Parkinson disease from atypical parkinsonism even in the early stage. MATERIALS AND METHODS: In this retrospective study, we enrolled 108 patients with Parkinson disease, 13 with corticobasal syndrome, 15 with multiple system atrophy, and 17 with progressive supranuclear palsy who developed parkinsonism. Thirty-nine age-matched healthy subjects served as controls. All subjects underwent conventional MR imaging and 3D FIESTA for olfactory bulb measurements using manual ROI quantification of the cross-sectional olfactory bulb area using the coronal plane. Bilateral olfactory bulb measurements were averaged. For group comparisons, we used the Welch t test, and we assessed diagnostic accuracy using receiver operating characteristic analysis. RESULTS: Patients with Parkinson disease had a mean olfactory bulb area of 4.2 (SD, 1.0 mm2), significantly smaller than in age-matched healthy subjects (6.6 [SD, 1.7 mm2], P < .001), and those with corticobasal syndrome (5.4 [SD, 1.2 mm2], P < .001), multiple system atrophy (6.5 [SD, 1.2 mm2], P < .001), and progressive supranuclear palsy (5.4 [SD, 1.2 mm2], P < .001). The receiver operating characteristic analysis for the olfactory bulb area measurements showed good diagnostic performance in differentiating Parkinson disease from atypical parkinsonism, with an area under the curve of 0.87, an optimal cutoff value of 5.1 mm2, and a false-positive rate of 18%. When we compared within 2 years of symptom onset, the olfactory bulb in Parkinson disease (4.2 [SD, 1.1 mm2]) remained significantly smaller than in atypical parkinsonism (versus corticobasal syndrome (6.1 [SD, 0.7 mm2]), P < .001; multiple system atrophy (6.3 [SD, 1.4 mm2]), P < .001; and progressive supranuclear palsy (5.2 [1.3 mm2], P = .003, respectively). CONCLUSIONS: 3D FIESTA-based olfactory bulb measurement holds promise for distinguishing Parkinson disease from atypical parkinsonism, especially in the early stage.


Asunto(s)
Imagen por Resonancia Magnética , Bulbo Olfatorio , Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Bulbo Olfatorio/diagnóstico por imagen , Bulbo Olfatorio/patología , Masculino , Femenino , Enfermedad de Parkinson/diagnóstico por imagen , Anciano , Diagnóstico Diferencial , Estudios Retrospectivos , Persona de Mediana Edad , Imagen por Resonancia Magnética/métodos , Trastornos Parkinsonianos/diagnóstico por imagen , Imagenología Tridimensional/métodos , Sensibilidad y Especificidad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Atrofia de Múltiples Sistemas/diagnóstico por imagen
9.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791326

RESUMEN

Chronic environmental exposure to toxic heavy metals, which often occurs as a mixture through occupational and industrial sources, has been implicated in various neurological disorders, including Parkinsonism. Vanadium pentoxide (V2O5) typically presents along with manganese (Mn), especially in welding rods and high-capacity batteries, including electric vehicle batteries; however, the neurotoxic effects of vanadium (V) and Mn co-exposure are largely unknown. In this study, we investigated the neurotoxic impact of MnCl2, V2O5, and MnCl2-V2O5 co-exposure in an animal model. C57BL/6 mice were intranasally administered either de-ionized water (vehicle), MnCl2 (252 µg) alone, V2O5 (182 µg) alone, or a mixture of MnCl2 (252 µg) and V2O5 (182 µg) three times a week for up to one month. Following exposure, we performed behavioral, neurochemical, and histological studies. Our results revealed dramatic decreases in olfactory bulb (OB) weight and levels of tyrosine hydroxylase, dopamine, and 3,4-dihydroxyphenylacetic acid in the treatment groups compared to the control group, with the Mn/V co-treatment group producing the most significant changes. Interestingly, increased levels of α-synuclein expression were observed in the substantia nigra (SN) of treated animals. Additionally, treatment groups exhibited locomotor deficits and olfactory dysfunction, with the co-treatment group producing the most severe deficits. The treatment groups exhibited increased levels of the oxidative stress marker 4-hydroxynonenal in the striatum and SN, as well as the upregulation of the pro-apoptotic protein PKCδ and accumulation of glomerular astroglia in the OB. The co-exposure of animals to Mn/V resulted in higher levels of these metals compared to other treatment groups. Taken together, our results suggest that co-exposure to Mn/V can adversely affect the olfactory and nigral systems. These results highlight the possible role of environmental metal mixtures in the etiology of Parkinsonism.


Asunto(s)
Compuestos de Manganeso , Manganeso , Ratones Endogámicos C57BL , Vanadio , Animales , Ratones , Manganeso/toxicidad , Vanadio/toxicidad , Masculino , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/patología , Dopamina/metabolismo , Compuestos de Vanadio , Estrés Oxidativo/efectos de los fármacos , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/inducido químicamente , alfa-Sinucleína/metabolismo , Cloruros/toxicidad , Cloruros/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Aldehídos/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Modelos Animales de Enfermedad , Ácido 3,4-Dihidroxifenilacético/metabolismo
10.
Acta Neuropathol Commun ; 12(1): 70, 2024 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-38698465

RESUMEN

The majority of patients with Parkinson disease (PD) experience a loss in their sense of smell and accumulate insoluble α-synuclein aggregates in their olfactory bulbs (OB). Subjects affected by a SARS-CoV-2-linked illness (COVID-19) also frequently experience hyposmia. We previously postulated that microglial activation as well as α-synuclein and tau misprocessing can occur during host responses following microbial encounters. Using semiquantitative measurements of immunohistochemical signals, we examined OB and olfactory tract specimens collected serially at autopsies between 2020 and 2023. Deceased subjects comprised 50 adults, which included COVID19 + patients (n = 22), individuals with Lewy body disease (e.g., PD; dementia with Lewy bodies (n = 6)), Alzheimer disease (AD; n = 3), and other neurodegenerative disorders (e.g., progressive supranuclear palsy (n = 2); multisystem atrophy (n = 1)). Further, we included neurologically healthy controls (n = 9), and added subjects with an inflammation-rich brain disorder as neurological controls (NCO; n = 7). When probing for microglial and histiocytic reactivity in the anterior olfactory nuclei (AON) by anti-CD68 immunostaining, scores were consistently elevated in NCO and AD cases. In contrast, microglial signals on average were not significantly altered in COVID19 + patients relative to healthy controls, although anti-CD68 reactivity in their OB and tracts declined with progression in age. Mild-to-moderate increases in phospho-α-synuclein and phospho-tau signals were detected in the AON of tauopathy- and synucleinopathy-afflicted brains, respectively, consistent with mixed pathology, as described by others. Lastly, when both sides were available for comparison in our case series, we saw no asymmetry in the degree of pathology of the left versus right OB and tracts. We concluded from our autopsy series that after a fatal course of COVID-19, microscopic changes in the rostral, intracranial portion of the olfactory circuitry -when present- reflected neurodegenerative processes seen elsewhere in the brain. In general, microglial reactivity correlated best with the degree of Alzheimer's-linked tauopathy and declined with progression of age in COVID19 + patients.


Asunto(s)
COVID-19 , Microglía , Bulbo Olfatorio , Humanos , COVID-19/patología , COVID-19/complicaciones , Bulbo Olfatorio/patología , Bulbo Olfatorio/metabolismo , Anciano , Masculino , Femenino , Anciano de 80 o más Años , Persona de Mediana Edad , Microglía/patología , Microglía/metabolismo , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo , SARS-CoV-2 , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/metabolismo
11.
Ageing Res Rev ; 97: 102288, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38580172

RESUMEN

Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects 7-10 million individuals worldwide. A common early symptom of PD is olfactory dysfunction (OD), and more than 90% of PD patients suffer from OD. Recent studies have highlighted a high incidence of OD in patients with SARS-CoV-2 infection. This review investigates the potential convergence of OD in PD and COVID-19, particularly focusing on the mechanisms by which neuroinflammation contributes to OD and neurological events. Starting from our fundamental understanding of the olfactory bulb, we summarize the clinical features of OD and pathological features of the olfactory bulb from clinical cases and autopsy reports in PD patients. We then examine SARS-CoV-2-induced olfactory bulb neuropathology and OD and emphasize the SARS-CoV-2-induced neuroinflammatory cascades potentially leading to PD manifestations. By activating microglia and astrocytes, as well as facilitating the aggregation of α-synuclein, SARS-CoV-2 could contribute to the onset or exacerbation of PD. We also discuss the possible contributions of NF-κB, the NLRP3 inflammasome, and the JAK/STAT, p38 MAPK, TLR4, IL-6/JAK2/STAT3 and cGAS-STING signaling pathways. Although olfactory dysfunction in patients with COVID-19 may be reversible, it is challenging to restore OD in patients with PD. With the emergence of new SARS-CoV-2 variants and the recurrence of infections, we call for continued attention to the intersection between PD and SARS-CoV-2 infection, especially from the perspective of OD.


Asunto(s)
COVID-19 , Enfermedades Neuroinflamatorias , Trastornos del Olfato , Enfermedad de Parkinson , SARS-CoV-2 , Humanos , COVID-19/complicaciones , COVID-19/fisiopatología , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/complicaciones , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/fisiopatología , Enfermedades Neuroinflamatorias/inmunología , Trastornos del Olfato/etiología , Trastornos del Olfato/fisiopatología , Trastornos del Olfato/virología , Bulbo Olfatorio/fisiopatología , Bulbo Olfatorio/virología , Bulbo Olfatorio/patología
12.
Am J Rhinol Allergy ; 38(4): 251-257, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38549395

RESUMEN

BACKGROUND: Endoscopic sinus surgery (ESS) could significantly improve olfactory function among patients with chronic rhinosinusitis (CRS). This study aimed to perform a meta-analysis to evaluate the effect of ESS on the olfactory bulb volume (OBV) among patients with CRS. METHODS: A systemic search of PubMed, Medline, Embase, Web of Science, and other databases was conducted to identify studies assessing OBV changes in patients with CRS after ESS utilizing magnetic resonance imaging. RESULTS: A total of four studies with 168 participants were included. Comparing the changes in OBV of patients with CRS before and after surgery within 3-6 months, the ESS significantly improved the overall OBV (P = 0.005, I2 = 66%), with the left OBV increased by 5.57mm3 (P = 0.84, I2 = 0%), and the right OBV increased by 8.63mm3 (P = 0.09, I2 = 53%). A difference in OBV persists between healthy controls and patients with CRS 3-6 months after ESS. The overall OBV of patients with CRS after ESS was significantly smaller than controls (mean difference = -3.84, P = 0.04), with a mean difference of 4.13mm3 on the left side (P = 0.72, I2 = 0%), and a mean difference of 3.22mm3 on the right side (P = 0.0001, I2 = 89%). CONCLUSIONS: ESS significantly increases the OBV among patients with CRS.


Asunto(s)
Endoscopía , Bulbo Olfatorio , Rinitis , Sinusitis , Sinusitis/cirugía , Rinitis/cirugía , Rinitis/patología , Humanos , Bulbo Olfatorio/cirugía , Bulbo Olfatorio/patología , Enfermedad Crónica , Senos Paranasales/cirugía , Senos Paranasales/patología , Senos Paranasales/diagnóstico por imagen , Imagen por Resonancia Magnética , Resultado del Tratamiento , Tamaño de los Órganos , Rinosinusitis
13.
J Allergy Clin Immunol ; 154(2): 325-339.e3, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38494093

RESUMEN

BACKGROUND: Chronic rhinosinusitis (CRS) is a common inflammatory condition affecting the nasal and paranasal sinus mucosa, often accompanied by olfactory dysfunction. Eosinophilic CRS with nasal polyps (ECRSwNP) is a subtype of CRS characterized by eosinophilic infiltration. Animal models for ECRSwNP with olfactory dysfunction are necessary for exploring potential therapeutic strategies. OBJECTIVE: The aim of this study was to establish a mouse model of ECRSwNP combined with olfactory dysfunction in a shorter time frame using intranasal ovalbumin and Aspergillus protease (AP) administration. The efficacy of the model was validated by evaluating sinonasal inflammation, cytokine levels, olfactory function, and neuroinflammation in the olfactory bulb. METHODS: Male BALB/c mice were intranasally administered ovalbumin and AP for 6 and 12 weeks to induce ECRSwNP. The resultant ECRSwNP mouse model underwent histologic assessment, cytokine analysis of nasal lavage fluid, olfactory behavioral tests, and gene expression profiling to identify neuroinflammatory markers within the olfactory bulb. RESULTS: The developed mouse model exhibited substantial eosinophil infiltration, increased levels of inflammatory cytokines in nasal lavage fluid, and confirmed olfactory dysfunction through behavioral assays. Furthermore, olfactory bulb inflammation and reduced mature olfactory sensory neurons were observed in the model. CONCLUSION: This study successfully established a validated mouse model of ECRSwNP with olfactory dysfunction within a remarkably short span of 6 weeks, providing a valuable tool for investigating the pathogenesis and potential therapies for this condition. The model offers an efficient approach for future research in CRS with nasal polyps and olfactory dysfunction.


Asunto(s)
Modelos Animales de Enfermedad , Eosinofilia , Pólipos Nasales , Trastornos del Olfato , Rinosinusitis , Animales , Masculino , Ratones , Enfermedad Crónica , Citocinas/metabolismo , Eosinofilia/inmunología , Eosinófilos/inmunología , Eosinófilos/patología , Ratones Endogámicos BALB C , Pólipos Nasales/inmunología , Pólipos Nasales/patología , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/etiología , Trastornos del Olfato/etiología , Trastornos del Olfato/patología , Bulbo Olfatorio/patología , Bulbo Olfatorio/inmunología , Ovalbúmina/inmunología , Rinosinusitis/inmunología , Rinosinusitis/patología
14.
Auris Nasus Larynx ; 51(3): 517-524, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38522356

RESUMEN

OBJECTIVE: Periglomerular and granule cells in the adult mammalian olfactory bulb modulate olfactory signal transmission. These cells originate from the subventricular zone, migrate to the olfactory bulb via the Rostral Migratory Stream (RMS), and differentiate into mature cells within the olfactory bulb throughout postnatal life. While the regulation of neuroblast development is known to be affected by external stimuli, there is a lack of information concerning changes that occur during the recovery process after injury caused by external stimuli. To address this gap in research, the present study conducted histological observations to investigate changes in the olfactory bulb and RMS occurring after the degeneration and regeneration of olfactory neurons. METHODS: To create a model of olfactory neurodegeneration, adult mice were administered methimazole intraperitoneally. Nasal tissue and whole brains were removed 3, 7, 14 and 28 days after methimazole administration, and EdU was administered 2 and 4 h before removal of these tissues to monitor dividing cells in the RMS. Methimazole-untreated mice were used as controls. Olfactory nerve fibers entering the olfactory glomerulus were observed immunohistochemically using anti-olfactory marker protein. In the brain tissue, the entire RMS was observed and the volume and total number of cells in the RMS were measured. In addition, the number of neuroblasts and dividing neuroblasts passing through the RMS were measured using anti-doublecortin and anti-EdU antibodies, respectively. Statistical analysis was performed using the Tukey test. RESULTS: Olfactory epithelium degenerated was observed after methimazole administration, and recovered after 28 days. In the olfactory glomeruli, degeneration of OMP fibers began after methimazole administration, and after day 14, OMP fibers were reduced or absent by day 28, and overall OMP positive fibers were less than 20%. Glomerular volume tended to decrease after methimazole administration and did not appear to recover, even 28 days after recovery of the olfactory epithelium. In the RMS, EdU-positive cells decreased on day 3 and began to increase on day 7. However, they did not recover to the same levels as the control methimazole-untreated mice even after 28 days. CONCLUSION: These results suggest that the division and maturation of neuroblasts migrating from the RMS was suppressed by olfactory nerve degeneration or the disruption of olfactory input.


Asunto(s)
Movimiento Celular , Metimazol , Bulbo Olfatorio , Animales , Bulbo Olfatorio/patología , Bulbo Olfatorio/efectos de los fármacos , Bulbo Olfatorio/citología , Metimazol/farmacología , Ratones , Antitiroideos/farmacología , Nervio Olfatorio/patología , Proteína Marcadora Olfativa/metabolismo , Modelos Animales de Enfermedad , Masculino
15.
Mol Psychiatry ; 29(5): 1453-1464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38321120

RESUMEN

Smell deficits and neurobiological changes in the olfactory bulb (OB) and olfactory epithelium (OE) have been observed in schizophrenia and related disorders. The OE is the most peripheral olfactory system located outside the cranium, and is connected with the brain via direct neuronal projections to the OB. Nevertheless, it is unknown whether and how a disturbance of the OE affects the OB in schizophrenia and related disorders. Addressing this gap would be the first step in studying the impact of OE pathology in the disease pathophysiology in the brain. In this cross-species study, we observed that chronic, local OE inflammation with a set of upregulated genes in an inducible olfactory inflammation (IOI) mouse model led to a volume reduction, layer structure changes, and alterations of neuron functionality in the OB. Furthermore, IOI model also displayed behavioral deficits relevant to negative symptoms (avolition) in parallel to smell deficits. In first episode psychosis (FEP) patients, we observed a significant alteration in immune/inflammation-related molecular signatures in olfactory neuronal cells (ONCs) enriched from biopsied OE and a significant reduction in the OB volume, compared with those of healthy controls (HC). The increased expression of immune/inflammation-related molecules in ONCs was significantly correlated to the OB volume reduction in FEP patients, but no correlation was found in HCs. Moreover, the increased expression of human orthologues of the IOI genes in ONCs was significantly correlated with the OB volume reduction in FEP, but not in HCs. Together, our study implies a potential mechanism of the OE-OB pathology in patients with psychotic disorders (schizophrenia and related disorders). We hope that this mechanism may have a cross-disease implication, including COVID-19-elicited mental conditions that include smell deficits.


Asunto(s)
Modelos Animales de Enfermedad , Inflamación , Bulbo Olfatorio , Mucosa Olfatoria , Trastornos Psicóticos , Esquizofrenia , Animales , Mucosa Olfatoria/patología , Mucosa Olfatoria/metabolismo , Trastornos Psicóticos/patología , Ratones , Humanos , Masculino , Inflamación/metabolismo , Inflamación/patología , Bulbo Olfatorio/patología , Bulbo Olfatorio/metabolismo , Femenino , Esquizofrenia/patología , Esquizofrenia/metabolismo , Esquizofrenia/fisiopatología , Esquizofrenia/genética , Trastornos del Olfato/etiología , Trastornos del Olfato/fisiopatología , Olfato/fisiología , Adulto , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología
16.
J Neuroimmunol ; 387: 578288, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38237527

RESUMEN

We examined the histopathological changes in the olfactory mucosa of cynomolgus and rhesus macaque models of SARS-CoV-2 infection. SARS-CoV-2 infection induced severe inflammatory changes in the olfactory mucosa. A major histocompatibility complex (MHC) class II molecule, HLA-DR was expressed in macrophage and supporting cells, and melanocytes were increased in olfactory mucosa. Supporting cells and olfactory neurons were infected, and SARS-CoV-2 N protein was detected in the axons of olfactory neurons and in olfactory bulbs. Viral RNA was detected in olfactory bulbs and brain tissues. The olfactory epithelium-olfactory bulb pathway may be important as a route for intracranial infection by SARS-CoV-2.


Asunto(s)
COVID-19 , Bulbo Olfatorio , Animales , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , SARS-CoV-2 , COVID-19/patología , Macaca mulatta , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Inflamación/metabolismo , Macaca fascicularis
17.
J Comput Assist Tomogr ; 48(2): 317-322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37876233

RESUMEN

OBJECTIVES: The aims of the study are to explore the morphological changes of olfactory bulb (OB) and olfactory sulcus in COVID-19 patients with associated olfactory dysfunction (OD) by measuring the OB volume (OBV) and olfactory sulcus depth (OSD) and to compare the measurement values with those of healthy individuals. METHODS: Between March 2020 and January 2022, 31 consecutive hospitalized patients with a diagnosis of COVID-19 with anosmia and hyposmia who underwent brain magnetic resonance imaging and 35 normosmic control individuals were retrospectively included in the study. Bilateral OBV and OSD were measured and shape of the OB was determined based on the consensus by a neuroradiologist and an otorrhynolaryngologist. RESULTS: The mean measurements for the right and the left sides for OBV (38 ± 8.5 and 37.1 ± 8.4, respectively) and OSD (7.4 ± 0.1 and 7.4 ± 1.0 mm, respectively) were significantly lower in COVID-19 patients with OD than those in control group (for the right and the left sides mean OBV 56.3 ± 17.1 and 49.1 ± 13.5, respectively, and mean OSD 9.6 ± 0.8 and 9.4 ± 0.8 mm, respectively). Abnormally shaped OB (lobulated, rectangular, or atrophic) were higher in patient group than those of controls.For the optimal cutoff values, OBV showed sensitivity and specificity values of 90.32% and, 57.14%, for the right, and 87.1% and 62.86% for the left side, respectively (area under the curve, 0.819 and 0.780). Olfactory sulcus depth showed sensitivity and specificity values of 90.32% and 94.29%, for the right, and 96.77% and 85.71%, for the left side, respectively (area under the curve, 0.960 and 0.944). CONCLUSIONS: Decrease in OBV and OSD measurements in COVID-19 patients with OD at the early chronic stage of the disease supports direct damage to olfactory neuronal pathways and may be used to monitor olfactory nerve renewal while returning back to normal function.


Asunto(s)
COVID-19 , Trastornos del Olfato , Humanos , Estudios Retrospectivos , Bulbo Olfatorio/diagnóstico por imagen , Bulbo Olfatorio/patología , COVID-19/complicaciones , COVID-19/diagnóstico por imagen , COVID-19/patología , Trastornos del Olfato/diagnóstico por imagen , Trastornos del Olfato/patología , Imagen por Resonancia Magnética
18.
Eur Arch Otorhinolaryngol ; 281(1): 497-502, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37924364

RESUMEN

PURPOSE: Post-infectious olfactory dysfunction (PIOD) is one of the most common causes of olfactory impairment but has limited treatment options. Recently, olfactory training (OT) has been considered an effective treatment method; however, several questions have arisen regarding its optimal scheme. The aim of this study was to assess whether an OT scheme with 8 odors is more effective than the classic OT scheme with 4 odors by comparing psychophysical test results and olfactory bulb (OB) volumetrics. METHODS: In this prospective cohort study, 72 patients with PIOD were included. The patients followed either the classic 4-odor OT scheme (COT; n = 34 patients) or an extended 8-odor scheme (EOT; n = 38 patients) for 16 weeks. All patients underwent olfactory testing with a Sniffin'Sticks battery test at 0, 8, and 16 weeks. Of the patients, 38 underwent brain magnetic resonance imaging for OB volumetric assessment before and after treatment. RESULTS: The comparison of the olfactory test results did not show any significant difference between the two study groups, in agreement with the OB volumetrics. The convex OB showed better test results than the non-convex OB, with significantly better improvement after treatment regardless of OT type. The EOT group presented significantly better adherence than the COT group. CONCLUSION: The number of odors did not appear to play a significant role in the effect of the OT. However, the training scheme with more than four odors showed better adherence among the patients in a long-term treatment plan. The shape of the OB may have prognostic value in clinical assessment and warrants further investigation.


Asunto(s)
Odorantes , Trastornos del Olfato , Humanos , Bulbo Olfatorio/diagnóstico por imagen , Bulbo Olfatorio/patología , Entrenamiento Olfativo , Estudios Prospectivos , Olfato , Trastornos del Olfato/diagnóstico , Trastornos del Olfato/etiología , Trastornos del Olfato/patología
19.
Parkinsonism Relat Disord ; 112: 105440, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267818

RESUMEN

INTRODUCTION: Pathological α-synuclein (α-Syn) propagation may cause Parkinson's disease progression. We aimed to verify whether single-dose intranasal administration of α-Syn preformed fibrils (PFFs) induces α-Syn pathology in the olfactory bulb (OB). METHODS: A single dose of α-Syn PFFs was administered to the left nasal cavity of wild-type mice. The untreated right side served as a control. The α-Syn pathology of the OBs was examined up to 12 months after the injection. RESULTS: Lewy neurite-like aggregates were observed in the OB 6 and 12 months after the treatment. CONCLUSIONS: These findings suggest that pathological α-Syn can propagate from the olfactory mucosa to the OB and reveal the potential dangers of α-Syn PFFs inhalation.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Ratones , Animales , Cuerpos de Lewy/patología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Administración Intranasal , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Sinucleinopatías/patología
20.
Neurobiol Dis ; 182: 106129, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37068642

RESUMEN

BACKGROUND: Olfactory ensheathing cells (OECs) serve as a bridge by migrating at the site of spinal cord injury (SCI) to facilitate the repair of the neural structure and neural function. However, OEC migration at the injury site not only faces the complex and disordered internal environment but also is closely associated with the migration ability of OECs. METHODS: We extracted OECs from the olfactory bulb of SD rats aged <7 days old. We verified the micro ribonucleic acid (miR)-145a-5p expression level in the gene chip after SCI and OEC transplantation using quantitative reverse transcription (qRT)-polymerase chain reaction (PCR). The possible target gene Plexin-A2 of miR-145a-5p was screened using bioinformatics and was verified using dual-luciferase reporter assay, Western blot, and qRT-PCR. The effect of miR-145a-5p/plexin-A2 on OEC migration ability was verified by wound healing assay, Transwell cell migration assay, and immunohistochemistry. Nerve repair was observed at the injured site of the spinal cord after OEC transplantation using tissue immunofluorescence and magnetic resonance imaging, diffusion tensor imaging, and the Basso-Beattie-Bresnahan locomotor rating scale were further used for imaging and functional evaluation. RESULTS: miR-145a-5p expression in the injured spinal cord tissue after SCI considerably decreased, while Plexin-A2 expression significantly increased. OEC transplantation can reverse miR-145a-5p and Plexin-A2 expression after SCI. miR-145a-5p overexpression enhanced the intrinsic migration ability of OECs. As a target gene of miR-145a-5p, Plexin-A2 hinders OEC migration. OEC transplantation overexpressing miR-145a-5p after SCI can increase miR-145a-5p levels in the spinal cord, reduce Plexin-A2 expression in the OECs and the spinal cord tissue, and promote OEC migration and distribution at the injured site. OEC transplantation overexpressing miR-145a-5p can promote the repair of neural morphology and neural function. CONCLUSIONS: Our study demonstrated that miR-145a-5p could promote OEC migration by down-regulating the target gene Plexin-A2, and transplantation of miR-145a-5p engineered OECs was beneficial to enhance neural structural and functional recovery in SCI rats.


Asunto(s)
MicroARNs , Traumatismos de la Médula Espinal , Ratas , Animales , Ratas Sprague-Dawley , Imagen de Difusión Tensora , Traumatismos de la Médula Espinal/metabolismo , Bulbo Olfatorio/patología , MicroARNs/genética , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA