Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.233
Filtrar
1.
Curr Microbiol ; 81(5): 129, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587647

RESUMEN

Arbuscular mycorrhizal (AM) fungi are being used as a new generation of biofertilizers to increase plant growth by improving plant nutrition and bio-protection. However, because of the obligatory nature of the plant host, large-scale multiplication of AM propagules is challenging, which limits its applicability. This study evaluates the ability of Burkholderia arboris to increase AM production in soybean mill waste and vermicompost amended by soil-sand mixture planted with sorghum as a host plant. The experiment was conducted in a nursery using a completely randomized design with four inoculation treatments (B. arboris, AM fungi, B. arboris + AM fungi, and control) under sterilized and unsterilized conditions. AM production was investigated microscopically (spore density and root colonization), and biochemically (AM-specific lipid biomarker, 16:1ω5cis derived from neutral lipid fatty acid (NLFA), and phospholipid fatty acid (PLFA) fractions from both soil and roots). Integrating B. arboris with AM fungi in organically amended pots was found to increase AM fungal production by 62.16 spores g-1 soil and root colonization by 80.85%. Biochemical parameters also increased with B. arboris inoculation: 5.49 nmol PLFA g-1 soil and 692.68 nmol PLFA g-1 root and 36.72 nmol NLFA g-1 soil and 3147.57 nmol NLFA g-1 root. Co-inoculation also increased glomalin-related soil protein and root biomass. Principal component analysis (PCA) further supported the higher contribution of B. arboris to AM fungi production under unsterilized conditions. In conclusion, inoculation of AM plant host seeds with B. arboris prior to sowing into organic potting mix could be a promising and cost-effective approach for increasing AM inoculum density for commercial production. Furthermore, efforts need to be made for up-scaling the AM production with different plant hosts and soil-substrate types.


Asunto(s)
Complejo Burkholderia cepacia , Burkholderia , Sorghum , Arena , Suelo , Glycine max , Grano Comestible , Ácidos Grasos , Hongos
2.
Mol Biol Rep ; 51(1): 519, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625424

RESUMEN

BACKGROUND: Bacterial panicle blight, incited by Burkholderia glumae, has impacted rice production globally. Despite its significance, knowledge about the disease and the virulence pattern of the causal agent is very limited. Bacterial panicle blight is a major challenge in the rice-growing belts of North-western India, resulting in yield reduction. However, the management of B. glumae has become a challenge due to the lack of proper management strategies. METHODOLOGY AND RESULTS: Twenty-one BG strains have been characterized using the 16S rRNA and the gyrB gene-based sequence approach in the present study. The gyrB gene-based phylogenetic analysis resulted in geographic region-specific clustering of the BG isolates. The virulence screening of twenty-one BG strains by inoculating the pathogenic bacterial suspension of 1 × 10-8 cfu/ml at the booting stage (55 DAT) revealed the variation in the disease severity and the grain yield of rice plants. The most virulent BG1 strain resulted in the highest disease incidence (82.11%) and lowest grain yield (11.12 g/plant), and the least virulent BG10 strain resulted in lowest disease incidence of 18.94% and highest grain yield (24.62 g/plant). In vitro evaluation of various biocontrol agents and nano copper at different concentrations by agar well diffusion method revealed that nano copper at 1000 mg/L inhibited the colony growth of B. glumae. Under net house conditions, nano copper at 1000 mg/L reduced the disease severity to 21.23% and increased the grain yield by 20.91% (31.76 g per plant) compared to the positive control (COC 0.25% + streptomycin 200 ppm). Remarkably, pre-inoculation with nano copper at 1000 mg/L followed by challenge inoculation with B. glumae enhanced the activity of enzymatic antioxidants viz., Phenyl ammonia-lyase (PAL), Polyphenol oxidase (PPO) and Peroxidase (POX) and non-enzymatic antioxidant phenol. Additionally, we observed a substantial transcript level upregulation of six defense-related genes to several folds viz., OsPR2, OsPR5, OsWRKY71, OsPAL1, OsAPX1, and OsPPO1 in comparison to the pathogen control and healthy control. CONCLUSIONS: Overall, our study provides valuable insights into the potential and practical application of nano copper for the mitigation of bacterial panicle blight, offering promising prospects for commercial utilization in disease management.


Asunto(s)
Burkholderia , Oryza , Oryza/genética , Filogenia , ARN Ribosómico 16S/genética , Burkholderia/genética , Antioxidantes , Cobre , Grano Comestible
3.
Biol Res ; 57(1): 12, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561836

RESUMEN

BACKGROUND: Bacterial aromatic degradation may cause oxidative stress. The long-chain flavodoxin FldX1 of Paraburkholderia xenovorans LB400 counteracts reactive oxygen species (ROS). The aim of this study was to evaluate the protective role of FldX1 in P. xenovorans LB400 during the degradation of 4-hydroxyphenylacetate (4-HPA) and 3-hydroxyphenylacetate (3-HPA). METHODS: The functionality of FldX1 was evaluated in P. xenovorans p2-fldX1 that overexpresses FldX1. The effects of FldX1 on P. xenovorans were studied measuring growth on hydroxyphenylacetates, degradation of 4-HPA and 3-HPA, and ROS formation. The effects of hydroxyphenylacetates (HPAs) on the proteome (LC-MS/MS) and gene expression (qRT-PCR) were quantified. Bioaugmentation with strain p2-fldX1 of 4-HPA-polluted soil was assessed, measuring aromatic degradation (HPLC), 4-HPA-degrading bacteria, and plasmid stability. RESULTS: The exposure of P. xenovorans to 4-HPA increased the formation of ROS compared to 3-HPA or glucose. P. xenovorans p2-fldX1 showed an increased growth on 4-HPA and 3-HPA compared to the control strain WT-p2. Strain p2-fldX1 degraded faster 4-HPA and 3-HPA than strain WT-p2. Both WT-p2 and p2-fldX1 cells grown on 4-HPA displayed more changes in the proteome than cells grown on 3-HPA in comparison to glucose-grown cells. Several enzymes involved in ROS detoxification, including AhpC2, AhpF, AhpD3, KatA, Bcp, CpoF1, Prx1 and Prx2, were upregulated by hydroxyphenylacetates. Downregulation of organic hydroperoxide resistance (Ohr) and DpsA proteins was observed. A downregulation of the genes encoding scavenging enzymes (katE and sodB), and gstA and trxB was observed in p2-fldX1 cells, suggesting that FldX1 prevents the antioxidant response. More than 20 membrane proteins, including porins and transporters, showed changes in expression during the growth of both strains on hydroxyphenylacetates. An increased 4-HPA degradation by recombinant strain p2-fldX1 in soil microcosms was observed. In soil, the strain overexpressing the flavodoxin FldX1 showed a lower plasmid loss, compared to WT-p2 strain, suggesting that FldX1 contributes to bacterial fitness. Overall, these results suggest that recombinant strain p2-fldX1 is an attractive bacterium for its application in bioremediation processes of aromatic compounds. CONCLUSIONS: The long-chain flavodoxin FldX1 improved the capability of P. xenovorans to degrade 4-HPA in liquid culture and soil microcosms by protecting cells against the degradation-associated oxidative stress.


Asunto(s)
Burkholderia , Burkholderiaceae , Flavodoxina , Gliceraldehído/análogos & derivados , Fenilacetatos , Propano , Biodegradación Ambiental , Flavodoxina/metabolismo , Flavodoxina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteoma/metabolismo , Proteoma/farmacología , Cromatografía Liquida , Burkholderia/genética , Burkholderia/metabolismo , Espectrometría de Masas en Tándem , Estrés Oxidativo , Glucosa/metabolismo , Suelo
4.
Cell Host Microbe ; 32(5): 676-692.e5, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38640929

RESUMEN

To spread within a host, intracellular Burkholderia form actin tails to generate membrane protrusions into neighboring host cells and use type VI secretion system-5 (T6SS-5) to induce cell-cell fusions. Here, we show that B. thailandensis also uses T6SS-5 to lyse protrusions to directly spread from cell to cell. Dynamin-2 recruitment to the membrane near a bacterium was followed by a short burst of T6SS-5 activity. This resulted in the polymerization of the actin of the newly invaded host cell and disruption of the protrusion membrane. Most protrusion lysis events were dependent on dynamin activity, caused no cell-cell fusion, and failed to be recognized by galectin-3. T6SS-5 inactivation decreased protrusion lysis but increased galectin-3, LC3, and LAMP1 accumulation in host cells. Our results indicate that B. thailandensis specifically activates T6SS-5 assembly in membrane protrusions to disrupt host cell membranes and spread without alerting cellular responses, such as autophagy.


Asunto(s)
Burkholderia , Sistemas de Secreción Tipo VI , Burkholderia/metabolismo , Burkholderia/fisiología , Sistemas de Secreción Tipo VI/metabolismo , Humanos , Membrana Celular/metabolismo , Proteínas de Membrana de los Lisosomas/metabolismo , Proteínas Bacterianas/metabolismo , Actinas/metabolismo , Dinamina II/metabolismo , Autofagia , Galectinas/metabolismo , Interacciones Huésped-Patógeno , Extensiones de la Superficie Celular/metabolismo , Animales , Proteínas Asociadas a Microtúbulos , Proteína 1 de la Membrana Asociada a los Lisosomas
5.
Emerg Infect Dis ; 30(5): 1055-1057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666739

RESUMEN

We report a clinical isolate of Burkholderia thailandensis 2022DZh obtained from a patient with an infected wound in southwest China. Genomic analysis indicates that this isolate clusters with B. thailandensis BPM, a human isolate from Chongqing, China. We recommend enhancing monitoring and surveillance for B. thailandensis infection in both humans and livestock.


Asunto(s)
Infecciones por Burkholderia , Burkholderia , Filogenia , Infección de Heridas , Humanos , Masculino , Burkholderia/genética , Burkholderia/aislamiento & purificación , Burkholderia/clasificación , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/diagnóstico , China/epidemiología , Genoma Bacteriano , Infección de Heridas/microbiología , Persona de Mediana Edad
6.
J Bacteriol ; 206(4): e0044123, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38501654

RESUMEN

Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple ß-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and ß-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.


Asunto(s)
Burkholderia cenocepacia , Complejo Burkholderia cepacia , Burkholderia , Burkholderia cenocepacia/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Complejo Burkholderia cepacia/genética , Burkholderia/metabolismo
7.
Proc Natl Acad Sci U S A ; 121(11): e2315540121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437561

RESUMEN

Insects lack acquired immunity and were thought to have no immune memory, but recent studies reported a phenomenon called immune priming, wherein sublethal dose of pathogens or nonpathogenic microbes stimulates immunity and prevents subsequential pathogen infection. Although the evidence for insect immune priming is accumulating, the underlying mechanisms are still unclear. The bean bug Riptortus pedestris acquires its gut microbiota from ambient soil and spatially structures them into a multispecies and variable community in the anterior midgut and a specific, monospecies Caballeronia symbiont population in the posterior region. We demonstrate that a particular Burkholderia strain colonizing the anterior midgut stimulates systemic immunity by penetrating gut epithelia and migrating into the hemolymph. The activated immunity, consisting of a humoral and a cellular response, had no negative effect on the host fitness, but on the contrary protected the insect from subsequent infection by pathogenic bacteria. Interruption of contact between the Burkholderia strain and epithelia of the gut weakened the host immunity back to preinfection levels and made the insects more vulnerable to microbial infection, demonstrating that persistent acquisition of environmental bacteria is important to maintain an efficient immunity.


Asunto(s)
Burkholderia , Burkholderiaceae , Animales , Endodermo , Insectos , Suelo
8.
Curr Genet ; 70(1): 4, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555312

RESUMEN

Panax notoginseng (Burkill) F.H. Chen, a valuable traditional Chinese medicine, faces significant yield and quality challenges stemming from root rot primarily caused by Fusarium solani. Burkholderia arboris PN-1, isolated from the rhizosphere soil of P. notoginseng, demonstrated a remarkable ability to inhibit the growth of F. solani. This study integrates phenotypic, phylogenetic, and genomic analyses to enhance our understanding of the biocontrol mechanisms employed by B. arboris PN-1. Phenotype analysis reveals that B. arboris PN-1 effectively suppresses P. notoginseng root rot both in vitro and in vivo. The genome of B. arboris PN-1 comprises three circular chromosomes (contig 1: 3,651,544 bp, contig 2: 1,355,460 bp, and contig 3: 3,471,056 bp), with a 66.81% GC content, housing 7,550 protein-coding genes. Notably, no plasmids were detected. Phylogenetic analysis places PN-1 in close relation to B. arboris AU14372, B. arboris LMG24066, and B. arboris MEC_B345. Average nucleotide identity (ANI) values confirm the PN-1 classification as B. arboris. Comparative analysis with seven other B. arboris strains identified 4,628 core genes in B. arboris PN-1. The pan-genome of B. arboris appears open but may approach closure. Whole-genome sequencing revealed 265 carbohydrate-active enzymes and identified 9 gene clusters encoding secondary metabolites. This comprehensive investigation enhances our understanding of B. arboris genomes, paving the way for their potential as effective biocontrol agents against fungal plant pathogens in the future.


Asunto(s)
Burkholderia , Fusarium , Panax notoginseng , Panax notoginseng/genética , Panax notoginseng/metabolismo , Panax notoginseng/microbiología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Fusarium/genética , Genómica
9.
Environ Pollut ; 348: 123833, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38522608

RESUMEN

Pyraclostrobin, a widely used fungicide, poses significant risks to both the environment and human health. However, research on the microbial degradation process of pyraclostrobin was scarce. Here, a pyraclostrobin-degrading strain, identified as Burkholderia sp. Pyr-1, was isolated from activated sludge. Pyraclostrobin was efficiently degraded by strain Pyr-1, and completely eliminated within 6 d in the presence of glucose. Additionally, pyraclostrobin degradation was significantly enhanced by the addition of divalent metal cations (Mn2+ and Cu2+). The degradation pathway involving ether bond and N-O bond cleavage was proposed by metabolite identification. The sodium alginate-immobilized strain Pyr-1 had a higher pyraclostrobin removal rate from contaminated lake water than the free cells. Moreover, the toxicity evaluation demonstrated that the metabolite 1-(4-chlorophenyl)-1H-pyrazol-3-ol significantly more effectively inhibited Chlorella ellipsoidea than pyraclostrobin, while its degradation products by strain Pyr-1 alleviated the growth inhibition of C. ellipsoidea, which confirmed that the low-toxic metabolites were generated from pyraclostrobin by strain Pyr-1. The study provides a potential strain Pyr-1 for the bioremediation in pyraclostrobin-contaminated aquatic environments.


Asunto(s)
Burkholderia , Chlorella , Fungicidas Industriales , Humanos , Fungicidas Industriales/toxicidad , Estrobilurinas , Agua , Biodegradación Ambiental
10.
J Hazard Mater ; 470: 134134, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554514

RESUMEN

Microbial remediation of cadmium-contaminated soil offers advantages like environmental friendliness, cost-effectiveness, and simple operation. However, the efficacy of this remediation process relies on obtaining dominant strains and a comprehensive understanding of their Cd adsorption mechanisms. This study identified two Cd-resistant bacteria, Burkholderia sp. 1-22 and Bacillus sp. 6-6, with significant growth-promoting effects from rice rhizosphere soil. The strains showed remarkable Cd resistance up to ∼200 mg/L and alleviated Cd toxicity by regulating pH and facilitating bacterial adsorption of Cd. FTIR analysis showed crucial surface functional groups, like carboxyl and amino groups, on bacteria played significant roles in Cd adsorption. The strains could induce CdCO3 formation via a microbially induced calcium precipitation (MICP) mechanism, confirmed by SEM-EDS, X-ray analysis, and elemental mapping. Pot experiments showed these strains significantly increased organic matter and enzyme activity (e.g., urease, sucrase, peroxidase) in the rhizosphere soil versus the control group. These changes are crucial for restricting Cd mobility. Furthermore, strains 6-6 and 1-22 significantly enhance plant root detoxification of Cd, alleviating toxicity. Notably, increased pH likely plays a vital role in enhancing Cd precipitation and adsorption by strains, converting free Cd into non-bioavailable forms.


Asunto(s)
Bacillus , Burkholderia , Cadmio , Oryza , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Oryza/microbiología , Oryza/crecimiento & desarrollo , Cadmio/toxicidad , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Burkholderia/metabolismo , Adsorción , Bacillus/metabolismo , Biodegradación Ambiental , Concentración de Iones de Hidrógeno , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo
11.
Biochem Biophys Res Commun ; 709: 149822, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547604

RESUMEN

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Asunto(s)
Burkholderia , Humanos , Nitrilos/química , Amidohidrolasas/metabolismo , Catecoles , Biodegradación Ambiental
12.
Cells ; 13(5)2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38474392

RESUMEN

Burkholderia spp. are often resistant to antibiotics, and infections with these organisms are difficult to treat. A potential alternative treatment for Burkholderia spp. infections is bacteriophage (phage) therapy; however, it can be difficult to locate phages that target these bacteria. Prophages incorporated into the bacterial genome have been identified within Burkholderia spp. and may represent a source of useful phages for therapy. Here, we investigate whether prophages within Burkholderia spp. clinical isolates can kill conspecific and heterospecific isolates. Thirty-two Burkholderia spp. isolates were induced for prophage release, and harvested phages were tested for lytic activity against the same 32 isolates. Temperate phages were passaged and their host ranges were determined, resulting in four unique phages of prophage origin that showed different ranges of lytic activity. We also analyzed the prophage content of 35 Burkholderia spp. clinical isolate genomes and identified several prophages present in the genomes of multiple isolates of the same species. Finally, we observed that Burkholdera cenocepacia isolates were more phage-susceptible than Burkholderia multivorans isolates. Overall, our findings suggest that prophages present within Burkholderia spp. genomes are a potentially useful starting point for the isolation and development of novel phages for use in phage therapy.


Asunto(s)
Bacteriófagos , Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia , Humanos , Profagos/genética , Genoma Viral , Burkholderia/genética , Complejo Burkholderia cepacia/genética
13.
Huan Jing Ke Xue ; 45(2): 1150-1160, 2024 Feb 08.
Artículo en Chino | MEDLINE | ID: mdl-38471952

RESUMEN

In order to evaluate the feasibility of using Burkholderia sp. Y4 as a cadmium (Cd)-reducing bacterial agent in contaminated wheat fields, the changes in the rhizosphere soil microbial community and Cd available state, as well as the content and transport characteristics of Cd in the wheat root, basal node, internode, and grain under the treatment of strain Y4 were tested using microbial high-throughput sequencing, step-by-step extraction, subcellular distribution, and occurrence analyses. The results showed that root application of strain Y4 significantly reduced the root and grain Cd content of wheat by 7.7% and 30.3%, respectively, compared with that in the control treatment. The Cd content and Cd transfer factor results in wheat vegetative organs showed that strain Y4 reduced the Cd transfer factor from basal node to internode by 79.3%, and Cd content in the wheat internode stem also decreased by 50.9%. The study of Cd occurrence morphology showed that strain Y4 treatment increased the proportion of residual Cd in roots and basal ganglia, decreased the contents of inorganic and water-soluble Cd in roots, and increased the content of residual Cd in basal ganglia. Further examination of the subcellular distribution of Cd showed that the Cd content in root cell walls and basal ganglia cell fluid increased by 21.3% and 98.2%, respectively, indicating that the Cd fixation ability of root cell walls and basal ganglia cell fluid was improved by the strain Y4 treatment. In the rhizosphere soil, it was found that the microbial community structure was changed by strain Y4 application. Under the Y4 treatment, the relative abundance of Burkholderia increased from 9.6% to 11.5%, whereas that of Acidobacteriota decreased. Additionally, the relative abundance of Gemmatimonadales, Pseudomonadales, and Chitinophagales were also increased by strain Y4 treatment. At the same time, the application of strain Y4 increased the pH value of rhizosphere soil by 8.3%. The contents of exchangeable Cd, carbonate-bound Cd, and iron-manganese oxide-bound Cd in the soil decreased by 44.4%, 21.7%, and 15.9%, respectively, whereas the proportion of residual Cd reached 53.6%. Root application of strain Y4 increased the contents of nitrate nitrogen and ammonium nitrogen in the soil by 22.0% and 21.4%, respectively, and the contents of alkaline nitrogen also increased to a certain extent. In conclusion, the root application of strain Y4 not only improved soil nitrogen availability but also inhibited Cd transport and accumulation from contaminated soil to wheat grains in a "two-stage" manner by reducing Cd availability in rhizosphere soil and improving Cd interception and fixation capacity of wheat roots and basal nodes. Therefore, Burkholderia Y4 has application potential as a Cd-reducing and growth-promoting agent in wheat.


Asunto(s)
Burkholderia , Compuestos Férricos , Contaminantes del Suelo , Cadmio/análisis , Triticum , Burkholderia/fisiología , Factor de Transferencia , Suelo/química , Nitrógeno/análisis , Contaminantes del Suelo/análisis
14.
BMC Res Notes ; 17(1): 70, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38475810

RESUMEN

OBJECTIVE: In this study, we sought to determine the types and prevalence of antimicrobial resistance determinants (ARDs) in Burkholderia spp. strains using the Antimicrobial Resistance Determinant Microarray (ARDM). RESULTS: Whole genome amplicons from 22 B. mallei (BM) and 37 B. pseudomallei (BP) isolates were tested for > 500 ARDs using ARDM v.3.1. ARDM detected the following Burkholderia spp.-derived genes, aac(6), blaBP/MBL-3, blaABPS, penA-BP, and qacE, in both BM and BP while blaBP/MBL-1, macB, blaOXA-42/43 and penA-BC were observed in BP only. The method of denaturing template for whole genome amplification greatly affected the numbers and types of genes detected by the ARDM. BlaTEM was detected in nearly a third of BM and BP amplicons derived from thermally, but not chemically denatured templates. BlaTEM results were confirmed by PCR, with 81% concordance between methods. Sequences from 414-nt PCR amplicons (13 preparations) were 100% identical to the Klebsiella pneumoniae reference gene. Although blaTEM sequences have been observed in B. glumae, B. cepacia, and other undefined Burkholderia strains, this is the first report of such sequences in BM/BP/B. thailandensis (BT) clade. These results highlight the importance of sample preparation in achieving adequate genome coverage in methods requiring untargeted amplification before analysis.


Asunto(s)
Antiinfecciosos , Burkholderia mallei , Burkholderia pseudomallei , Burkholderia , Síndrome de Dificultad Respiratoria , Humanos , Burkholderia mallei/genética , Burkholderia/genética
15.
J Nat Prod ; 87(4): 1268-1284, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38390739

RESUMEN

Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.


Asunto(s)
Acil-Butirolactonas , Percepción de Quorum , Percepción de Quorum/efectos de los fármacos , Acil-Butirolactonas/metabolismo , Acil-Butirolactonas/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Bacterias Gramnegativas/efectos de los fármacos , Estructura Molecular , Humanos , Burkholderia/metabolismo , Chromobacterium/efectos de los fármacos
16.
Appl Environ Microbiol ; 90(2): e0225023, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38299816

RESUMEN

Burkholderia cepacia complex bacteria have emerged as opportunistic pathogens in patients with cystic fibrosis and immunocompromised individuals, causing life-threatening infections. Because of the relevance of these microorganisms, genetic manipulation is crucial for explaining the genetic mechanisms leading to pathogenesis. Despite the availability of allelic exchange tools to obtain unmarked gene deletions in Burkholderia, these require a step of merodiploid formation and another of merodiploid resolution through two independent homologous recombination events, making the procedure long-lasting. The CRISPR/Cas9-based system could ease this constraint, as only one step is needed for allelic exchange. Here, we report the modification of a two-plasmid system (pCasPA and pACRISPR) for genome editing in Burkholderia multivorans. Several modifications were implemented, including selection marker replacement, the optimization of araB promoter induction for the expression of Cas9 and λ-Red system encoding genes, and the establishment of plasmid curing procedures based on the sacB gene or growth at a sub-optimal temperature of 18°C-20°C with serial passages. We have shown the efficiency of this CRISPR/Cas9 method in the precise and unmarked deletion of different genes (rpfR, bceF, cepR, and bcsB) from two strains of B. multivorans, as well as its usefulness in the targeted insertion of the gfp gene encoding the green fluorescence protein into a precise genome location. As pCasPA was successfully introduced in other Burkholderia cepacia complex species, this study opens up the possibility of using CRISPR/Cas9-based systems as efficient tools for genome editing in these species, allowing faster and more cost-effective genetic manipulation.IMPORTANCEBurkholderia encompasses different species of bacteria, some of them pathogenic to animals and plants, but others are beneficial by promoting plant growth through symbiosis or as biocontrol agents. Among these species, Burkholderia multivorans, a member of the Burkholderia cepacia complex, is one of the predominant species infecting the lungs of cystic fibrosis patients, often causing respiratory chronic infections that are very difficult to eradicate. Since the B. multivorans species is understudied, we have developed a genetic tool based on the CRISPR/Cas9 system to delete genes efficiently from the genomes of these strains. We could also insert foreign genes that can be precisely placed in a chosen genomic region. This method, faster than other conventional strategies based on allelic exchange, will have a major contribution to understanding the virulence mechanisms in B. multivorans, but it can likely be extended to other Burkholderia species.


Asunto(s)
Infecciones por Burkholderia , Complejo Burkholderia cepacia , Burkholderia , Fibrosis Quística , Animales , Humanos , Sistemas CRISPR-Cas , Infecciones por Burkholderia/microbiología , Fibrosis Quística/microbiología , Edición Génica , Burkholderia/genética , Complejo Burkholderia cepacia/genética , Genómica
17.
Int J Food Microbiol ; 414: 110615, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38325260

RESUMEN

Burkholderia gladiolus (B. gladiolus) is foodborne pathogenic bacteria producing bongkrekic acid (BA), which causes food poisoning and has a mortality rate of up to 40 % or more. However, no drugs have been reported in the literature for the prevention and treatment of this infection. In this study, a phage was identified to control B. gladiolus. The novel phage vB_BglM_WTB (WTB), which lyse B. gladiolus with high efficiency, was isolated from sewage of Huaihe Road Throttle Well Sewage Treatment Plant in Hefei. Transmission electron microscopy showed that WTB had an icosahedral head (69 ± 2 nm) and a long retractable tail (108 ± 2 nm). Its optimal temperature and pH ranges to control B. gladiolus were 25 °C -65 °C and 3-11 respectively. The phage WTB was identified as a linear double-stranded DNA phage of 68, 541 bp with 60.04 % G + C content, with a long latent period of 60 min. Phylogenetic analysis and comparative genetic analysis indicated that phage WTB has low identity (<50 %) with other phages, with the highest similarity to Burkholderia phage Maja (25.7 %), which showed that it does not belong to any previous genera recognized by the International Committee on Taxonomy of Viruses (ICTV) and was a candidate for a new genus within the Caudoviricetes. We have submitted a new proposal to ICTV to create a new genus, Bglawtbvirus. No transfer RNA (tRNA), virulence associated and antibiotic resistance genes were detected in phage WTB. Experimental results indicated that WTB at 4 °C and 25 °C had excellent inhibition activity against B. gladiolus in the black fungus, with an inhibition efficiency of over 99 %. The amount of B. gladiolus in the black fungus was reduced to a minimum of 89 CFU/mL when treated by WTB at 25 °C for 2 h. The inhibition rate remained at 99.97 % even after 12 h. The findings showed that the phage WTB could be applied as a food-cleaning agent for enhancing food safety and contributed to our understanding of phage biology and diversity.


Asunto(s)
Bacteriófagos , Burkholderia , Bacteriófagos/genética , Burkholderia/genética , Aguas del Alcantarillado , Filogenia , Genoma Viral , ADN Viral/genética , Hongos/genética
18.
J Appl Microbiol ; 135(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364306

RESUMEN

AIM: The increased availability of genome sequences has enabled the development of valuable tools for the prediction and identification of bacterial natural products. Burkholderia catarinensis 89T produces siderophores and an unknown potent antifungal metabolite. The aim of this work was to identify and purify natural products of B. catarinensis 89T through a genome-guided approach. MATERIALS AND METHODS: The analysis of B. catarinensis 89T genome revealed 16 clusters putatively related to secondary metabolism and antibiotics production. Of particular note was the identification of a nonribosomal peptide synthetase (NRPS) cluster related to the production of the siderophore ornibactin, a hybrid NRPS-polyketide synthase Type 1 cluster for the production of the antifungal glycolipopeptide burkholdine, and a gene cluster encoding homoserine lactones (HSL), probably involved in the regulation of both metabolites. We were able to purify high amounts of the ornibactin derivatives D/C6 and F/C8, while also detecting the derivative B/C4 in mass spectrometry investigations. A group of metabolites with molecular masses ranging from 1188 to 1272 Da could be detected in MS experiments, which we postulate to be new burkholdine analogs produced by B. catarinensis. The comparison of B. catarinensis BGCs with other Bcc members corroborates the hypothesis that this bacterium could produce new derivatives of these metabolites. Moreover, the quorum sensing metabolites C6-HSL, C8-HSL, and 3OH-C8-HSL were observed in LC-MS/MS analysis. CONCLUSION: The new species B. catarinensis is a potential source of new bioactive secondary metabolites. Our results highlight the importance of genome-guided purification and identification of metabolites of biotechnological importance.


Asunto(s)
4-Butirolactona/análogos & derivados , Productos Biológicos , Complejo Burkholderia cepacia , Burkholderia , Lipopéptidos , Sideróforos/metabolismo , Antifúngicos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Burkholderia/genética , Burkholderia/metabolismo , Complejo Burkholderia cepacia/metabolismo , Productos Biológicos/metabolismo , Proteínas Bacterianas/genética
19.
Microbiol Spectr ; 12(4): e0339523, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38380912

RESUMEN

Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.


Asunto(s)
Agaricus , Basidiomycota , Burkholderia gladioli , Burkholderia , Burkholderia gladioli/genética , Filogenia , ARN Ribosómico 16S/genética , Agaricus/genética , Burkholderia/genética , Verduras
20.
Infect Immun ; 92(3): e0001924, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38353543

RESUMEN

Virus-like particles (VLPs) are protein-based nanoparticles frequently used as carriers in conjugate vaccine platforms. VLPs have been used to display foreign antigens for vaccination and to deliver immunotherapy against diseases. Hemolysin-coregulated proteins 1 (Hcp1) is a protein component of the Burkholderia type 6 secretion system, which participates in intracellular invasion and dissemination. This protein has been reported as a protective antigen and is used in multiple vaccine candidates with various platforms against melioidosis, a severe infectious disease caused by the intracellular pathogen Burkholderia pseudomallei. In this study, we used P22 VLPs as a surface platform for decoration with Hcp1 using chemical conjugation. C57BL/6 mice were intranasally immunized with three doses of either PBS, VLPs, or conjugated Hcp1-VLPs. Immunization with Hcp1-VLPs formulation induced Hcp1-specific IgG, IgG1, IgG2c, and IgA antibody responses. Furthermore, the serum from Hcp1-VLPs immunized mice enhanced the bacterial uptake and opsonophagocytosis by macrophages in the presence of complement. This study demonstrated an alternative strategy to develop a VLPs-based vaccine platform against Burkholderia species.


Asunto(s)
Burkholderia pseudomallei , Burkholderia , Animales , Ratones , Proteínas Hemolisinas , Ratones Endogámicos C57BL , Inmunoglobulina G , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...